Eviews应用时间序列分析实验手册

合集下载

ARMA模型的eviews的建立--时间序列分析实验指导

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

EVIEWS时间序列实验指导(上机操作说明)

EVIEWS时间序列实验指导(上机操作说明)
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。

Eviews 实验操作手册(部分)

Eviews 实验操作手册(部分)

Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。

②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。

相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。

个人感觉0.5左右的相关关系(趋势)就比较弱了。

eviews提供的相关计算是指序列之间的线性相关关系。

如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。

通常显著性是和建设检验关联的。

统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。

显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。

显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。

假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。

假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。

如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。

这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。

实验一EVIEWS中时间序列相关函数操作

实验一EVIEWS中时间序列相关函数操作

实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

掌握时间序列的白噪声检验【实验内容】一、复习EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式以及确定性趋势模型拟合;三、时间序列的自相关和偏自相关图与函数;四、时间序列的白噪声检验【实验步骤】复习:EViews软件的常用菜单方式和命令方式;(一)创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998(二)输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X⒉鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作
1、单变量时间序列相关函数
(1)AutoReg(自回归):自回归模型(也称为自动过程)是一种统计模型,可以用来研究一个变量与它自身以前的值之间的关系。

它可以被用来描述任何由这种类型的非平稳的随机过程生成的数据。

(2)CrossCorr(互相关):互相关函数是对两个时间序列之间的相关性进行评估的方式。

它采用两个时间序列中的观测,计算它们之间的相关性,并返回一个相关系数值,表明它们之间的相关关系。

(4)MA:移动平均函数是一种从一组数据中提取出其基本趋势的有效方法。

它通过计算一组数据的平均值来应用,然后根据当前值来计算其他值。

在EViews中,移动平均函数可以使用MA函数来计算。

2、多变量时间序列相关函数
(1)VAR:VAR是短期预测的一种重要方法。

它的主要思想是,未来的值可以由当前的值以及过去的值来预测。

它可以用来检测多个变量之间的相关性,反应不同变量间的影响关系。

在EViews中,可以使用VAR函数来计算多变量时间序列之间的相关性。

应用时间序列Eviews

应用时间序列Eviews


2.1 自相关图检验法
2.3 *单位根检验法

常用的单位根检验法为DF检验和ADF检验。

DF检验法:
原假设为序列存在单位根。 只能对AR(1)过程的时间序列作检验。


ADF检验法:
是DF检验的增广形式,可以对AR(p)过程作检验。 原假设为序列至少存在一个单位根。


两种检验方法都需要:
Dynamic(动态预测):向前多步预测 Static(静态预测):向前一步预测
Forecast
sample(预测区间):设定预测区间
扩大样本期限:工作文件窗口Proc/Structure/Resize
Current Page, 修改end date
7. 模型的预测

静态预测
1951-1991
为拟合值 1992为预测值
7. 模型的预测

动态预测 (1991-2000)
只用到1991
的观测值 1992-2000为预测值
课堂练习
给定如下时间序列, 判断该序列的平稳性和纯随机性 选择适当的模型拟合该序列的发展 利用拟合模型,预测1999-2002年的储蓄金额。
1.1时间序列数据的创建

创建群(Group)。
在数据分析时,通常需要针对多个序列操作以观 察序列间的相互关系。
1. 2.
在工作文件窗口的工具栏点击Object/New Object/Group 在窗口中输入欲建立的群所包含的序列名称。
1.2绘制时间序列图
时序图可以帮助我们了解序列的一些基本性质, 如波动幅度,趋势,平稳性等。是我们在做时间 序列分析之前必不可少的步骤。 在工具栏点击Quick/Graph或双击需要作图的序列, 单击View/Graph。

时间序列分析实验1 Eviews的基本操作与平稳性检验

时间序列分析实验1 Eviews的基本操作与平稳性检验
随机产生100个标准正态分布的随机数可在matlab中进行将结果导入eviews中命名为randnum绘制时序图和检验
实验目的: 1. 熟悉 Eviews 的基本操作,重点是工作文件的创建、数据的录入(导入) 。 2. 掌握散点图、时序图以及自相关图的操作。 3. 掌握序列平稳性的检验。
, x100 ,将它们保存起来,命名为 aut,考察这个序
实验内容:
1. 随机产生 100 个标准正态分布的随机数(可在 Matlab 中进行) ,将结果导入 Eviews 中,命名为 rand_num,绘制时序图和自相关图。
2. 考察上述序列的平稳性。
3. 对于自回归过程 X t 0.5 X t 1 0.6 t ,其中 t ~ i.i.d . N (0, 1) ,从初值 X 0 1开 始,模拟生成序列 x1 , x2 , 列的平稳性。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用时间序列分析实验手册目录第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验例导入数据,方式同上;在Quick菜单下选择自相关图,对Qiwen原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k 期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显着性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=都大于EVIEWS给出的显着性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

二、纯随机性检验计算Q统计量,根据其取值判定是否为纯随机序列。

例的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为该序列是白噪声序列。

另外,小样本情况下,LB统计量检验纯随机性更准确。

第三章平稳时间序列建模实验教程一、模型识别1.打开数据图1:打开数据2.绘制趋势图并大致判断序列的特征图2:绘制序列散点图图3:输入散点图的两个变量图4:序列的散点图3.绘制自相关和偏自相关图图1:在数据窗口下选择相关分析图2:选择变量图3:选择对象图4:序列相关图4.根据自相关图和偏自相关图的性质确定模型类型和阶数如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。

这时,通常视为(偏)自相关系数截尾。

截尾阶数为d。

本例:自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。

但序列由显着非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾偏自相关图显示除了延迟1阶的偏自相关系数显着大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 所以可以考虑拟合模型为AR(1) 自相关系数偏相关系数 模型定阶 拖尾P 阶截尾 AR(p)模型 Q 阶截尾拖尾 MA (q )模型 拖尾 拖尾 ARMA(P,Q)模型具体判别什么模型看书58到62的图例。

:就是常数项)。

表示的是求出来的系数(其中模型中的模型:)(模型:模型:μ⋯⋯ε⋯⋯---⋯⋯---+μ=ε⋯⋯---+μ=ε⋯⋯---+μ=)1(MA )1(ar B *)P (AR B *)2(AR B *)1(AR 1B *)q (MA B *)2(MA B *)1(MA 1ARMA B *)q (MA B *)2(MA B *)1(MA 1MA B*)P (AR B *)2(AR B *)1(AR 11AR t P 2q 2t X t q 2t X t P 2t X二、模型参数估计根据相关图模型确定为AR(1),建立模型估计参数在ESTIMATE 中按顺序输入变量cxccx(-1)或者cxcar(1)选择LS 参数估计方法,查看输出结果,看参数显着性,该例中两个参数都显着。

细心的同学可能发现两个模型的C 取值不同,这是因为前一个模型的C 为截距项;后者的C 则为序列期望值,两个常数的含义不同。

图1:建立模型图2:输入模型中变量,选择参数估计方法图3:参数估计结果图4:建立模型图5:输入模型中变量,选择参数估计方法图6:参数估计结果三、模型的显着性检验检验内容:整个模型对信息的提取是否充分;参数的显着性检验,模型结构是否最简。

图1:模型残差图2:残差的平稳性和纯随机性检验对残差序列进行白噪声检验,可以看出ACF和PACF都没有显着异于零,Q统计量的P值都远远大于,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

常数和滞后一阶参数的P值都很小,参数显着;因此整个模型比较精简,模型较优。

四、模型优化当一个拟合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效模型并不是唯一的。

当几个模型都是模型有效参数显着的,此时需要选择一个更好的模型,即进行优化。

优化的目的,选择相对最优模型。

优化准则:最小信息量准则(AnInformationCriterion)指导思想似然函数值越大越好未知参数的个数越少越好AIC准则的缺陷在样本容量趋于无穷大时,由AIC准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多但是本例中滞后二阶的参数不显着,不符合精简原则,不必进行深入判断。

第四章非平稳时间序列的确定性分析第三章介绍了平稳时间序列的分析方法,但是自然界中绝大多数序列都是非平稳的,因而对非平稳时间序列的分析跟普遍跟重要,人们创造的分析方法也更多。

这些方法分为确定性时序分析和随机时序分析两大类,本章主要介绍确定性时序分析方法。

一个序列在任意时刻的值能够被精确确定(或被预测),则该序列为确定性序列,如正弦序列、周期脉冲序列等。

而某序列在某时刻的取值是随机的,不能给以精确预测,只知道取某一数值的概率,如白噪声序列等。

Cramer分解定理说明每个序列都可以分成一个确定序列加一个随机序列,平稳序列的两个构成序列均平稳,非平稳时间序列则至少有一部分不平稳。

本章先分析确定性序列不平稳的非平稳时间时间序列的分析方法。

确定性序列不平稳通常显示出非常明显的规律性,如显着趋势或者固定变化周期,这种规律性信息比较容易提取,因而传统时间序列分析的重点在确定性信息的提取上。

常用的确定性分析方法为因素分解。

分析目的为:①克服其他因素的影响,单纯测度某一个确定性因素的影响;②推断出各种因素彼此之间作用关系及它们对序列的综合影响。

一、趋势分析绘制序列的线图,观测序列的特征,如果有明显的长期趋势,我们就要测度其长期趋势,测度方法有:趋势拟合法、平滑法。

(一)趋势拟合法1.线性趋势拟合例1:以澳大利亚政府1981-1990年每季度消费支出数据为例进行分析。

图1:导入数据图2:绘制线图,序列有明显的上升趋势长期趋势具备线性上升的趋势,所以进行序列对时间的线性回归分析。

图3:序列支出(zc)对时间(t)进行线性回归分析图4:回归参数估计和回归效果评价可以看出回归参数显着,模型显着,回归效果良好,序列具有明显线性趋势。

图5:运用模型进行预测图6:预测效果(偏差率、方差率等)图7:绘制原序列和预测序列的线图图8:原序列和预测序列的线图图9:残差序列的曲线图可以看出残差序列具有平稳时间序列的特征,我们可以进一步检验剔除了长期趋势后的残差序列的平稳性,第三章知识这里不在叙述。

2.曲线趋势拟合例2:对上海证券交易所每月月末上正指数序列进行拟合。

图1:导入数据图2:绘制曲线图可以看出序列不是线性上升,而是曲线上升,尝试用二次模型拟合序列的发展。

图3:模型参数估计和回归效果评价因为该模型中T的系数不显着,我们去掉该项再进行回归分析。

图4:新模型参数估计和回归效果评价图5:新模型的预测效果分析图6:原序列和预测序列值图7:原序列和预测序列值曲线图图8:计算预测误差图9:对预测误差序列进行单位根检验拒绝原假设,认为序列没有单位根,为平稳序列,说明模型对长期趋势拟合的效果还不错。

同样,序列与时间之间的关系还有很多中,比如指数曲线、生命曲线、龚柏茨曲线等等,其回归模型的建立、参数估计等方法与回归分析同,这里不再详细叙述。

(二)平滑法除了趋势拟合外,平滑法也是消除短期随机波动反应长期趋势的方法,而其平滑法可以追踪数据的新变化。

平滑法主要有移动平均方法和指数平滑法两种,这里主要介绍指数平滑方法。

例3:对北京市1950-1998年城乡居民定期储蓄所占比例序列进行平滑。

图1:打开序列,进行指数平滑分析图2:系统自动给定平滑系数趋势给定方法为选择使残差平方和最小的平滑系数,该例中平滑系数去,超过用一次平滑效果不太好图3:平滑前后序列曲线图图4:用二次平滑修匀原序列可以看出,平滑系数为,平均差为,修匀或者趋势预测效果不错。

图5:二次平滑效果图例4:对于有明显线性趋势的序列,我们可以采用Holt两参数法进行指数平滑对北京市1978-2000年报纸发行量序列进行Holt两参数指数平滑图1:报纸发行量的曲线图图2:Holt两参数指数平滑(指定平滑系数)图3:预测效果检验图4:系统自动给定平滑系数时平滑效果图5:原序列与预测序列曲线图(其中FXSM为自己给定系数时的平滑值,FXSM2为系统给定系数时的平滑值)二、季节效应分析许多序列有季节效应,比如:气温、商品零售额、某景点旅游人数等都会呈现明显的季节变动规律。

例5:以北京市1995-2000年月平均气温序列为例,介绍季节效应分析操作。

图1:建立月度数据新工作表图2:新工作表中添加数据图3:五年的月度气温数据图4:进行季节调整(移动平均法)图5:移动平均季节加法图6:12个月的加法调整因子图7:打开三个序列(季节调整序列、原序列、调整后序列)图8:三个序列(季节调整序列、原序列、调整后序列)取值图9:三个序列(季节调整序列、原序列、调整后序列)曲线图另外季节调整还可以用X11,X12等方法进行调整。

三、综合分析前面两部分介绍了单独测度长期趋势和季节效应的分析方法,这里介绍既有长期趋势又有季节效应的复杂序列的分析方法。

附录对1993——2000年中国社会消费品零售总额序列进行确定性分析图1:绘制1993——2000年中国社会消费品零售总额时序图可以看出序列中既有长期趋势又有季节波动图2:进行季节调整图3:12个月的季节因子图4:经季节调整后的序列SSA图5:对经季节调整后序列进行趋势拟合图6:趋势拟合序列SSAF与序列SSA的时序图图7:扩展时间区间后预测长期趋势值SSAF图8:经季节调整预测2001年12个月的零售总额值图9:预测2001年12个月的零售总额值图10:预测序列与原序列的时序图第五章非平稳序列的随机分析非平稳序列的确定性分析原理简单操作方便易于解释,但是只提取确定性信息,对随机信息浪费严重;且各因素之间确切的作用关系没有明确有效的判断方法。

相关文档
最新文档