midas预应力混凝土梁的施工阶段分析
Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

钢束 名称 1t1-1
1t1-3
2t1-2
3t1-1
3t1-3 23t1-1
X 0 7.6 23.85 31.45 0 5.9 25.55 31.45 32.55 40.15 55.85 63.45 64.55 72.15 88.4 96 64.55 72.15 88.4 96 56 72
坐标 (m)
为了说明采用梁格法分析一般梁桥结构的分析步骤,本例题采用了一个比较简单的分 析模型——一座由五片预应力T梁组成的3×32m桥梁结构,每片梁宽2.5m。桥梁的基本数 据取自实际结构但和实际结构有所不同。
本例题的基本数据如下:
桥梁形式:三跨连续梁桥 桥梁等级:I级 桥梁全长:3@32=96m 桥梁宽度:12.5m 设计车道:3车道
12t1-2
0
40 0.62 1.825
负弯矩
56
钢束10 23t1-2 72
0.62 1.825 0.62 1.825
钢束 类型 R 0 40 正弯矩 40 钢束8 0 0 40 正弯矩 40 钢束7 0 0 40 正弯矩 40 钢束9 0 0 40 正弯矩 40 钢束8 0 负弯矩 钢束10
负弯矩 钢束10
图4. 单位体系设定 4-10
定义材料和截面特性
同时定义多种材料
特性时,使用 键可以连续输入。
定义结构所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50
名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S) 数据库> Strand1860
图2. T型梁跨中截面图
MIDAS进行预应力混凝土桥梁设计计算步骤

a. 定义混凝土和钢束的材料模型>材料和截面特性>材料。
b. 定义截面的几何尺寸模型>材料和截面特性>截面。
c. 建立桥梁模型(节点、单元、边界条件)d. 定义结构组、边界组在模型>组中定义组名称,考虑施工阶段的过程定义结构组合边界组的内容。
e. 定义自重在荷载>自重中定义,可单独定义为一个荷载组,并一定要在第一个施工阶段开始步骤激活。
f. 定义其他施工阶段荷载挂篮、湿重、二期恒载、其他荷载,同时定义所属的荷载组。
g. 定义移动荷载和人群荷载在荷载>移动荷载分析数据中定义车辆(人群)、车道。
h. 定义温度作用在荷载>温度荷载>系统温度中定义整体温升、温降在荷载>温度荷载>梁截面温度中定义温度梯度作用i. 定义支座沉降在荷载>支座沉降分析数据中定义。
j. 定义钢束截面荷载>预应力荷载>预应力钢束特性值。
k. 布置纵向预应力钢筋荷载>预应力荷载>预应力钢束钢束形状。
l. 布置纵向普通钢筋、弯起钢筋、腹板竖筋、抗扭钢筋、箍筋模型>材料和截面特性>PSC截面钢筋。
m. 定义各纵向预应力钢筋的张拉控制应力荷载>预应力荷载>钢束预应力。
n. 定义各纵向预应力钢筋的张拉控制应力在荷载>预应力荷载>钢束预应力定义,同时定义所属荷载组。
注意注浆阶段。
o. 定义施工阶段在荷载>施工阶段分析数据>定义施工阶段中定义p. 定义分析内容在分析>施工阶段分析控制中选择分析方法和输出选项。
在分析>移动荷载分析控制中选择移动荷载分析方法、冲击计算方法、输出选项。
q. 运行分析分析>运行分析。
r. 建立荷载组合在结果>和荷载组合的一般和“混凝土”中定义。
s. 查看分析结果在结果>反力中各施工阶段、使用阶段的反力在结果>位移中各施工阶段、使用阶段的位移在结果>内力中各施工阶段、使用阶段的内力在结果>应力>梁应力(PSC)中查看法向应力、剪切应力、主应力。
迈达斯Midas_civil_梁格法建模实例

混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:
Midas预应力混凝土连续箱梁分析算例课件

MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER
midas例题演示(预应力砼连续梁)

完成建模和定义施工阶段后,在施工阶段分析选项中选择是否考虑材料的时
间依存特性和弹性收缩引起的钢束应力损失,并指定分析徐变时的收敛
条件和迭代次数。
2
④ 时间依存效果 ⑤ 徐变 和收缩 (开) ; 类型
>徐变和收缩⑥ 源自变分析时得收敛把握 ⑦ 迭代次数 ( 5 ) ; 收敛误
4
)
5
② 模型 /边界条件 / 一般支
撑
③ 单项选择(节点 : 1)
2
④ 边界组名称>B-G1
⑤ 选择>添加
⑥ 支撑条件类型> Dy, Dz,
6
Rx (开)
⑦ 同上操作
⑧ 单项选择 (节点 : 16) ⑨ 边界组名称>B-G1 ⑩ 选择>添加 ⑪ 支撑条件类型>Dx, Dy,
Dz, Rx (开) ⑫ 单项选择 (节点 : 31) ⑬ 边界组名称>B-G2 ⑭ 选择>添加 ⑮ 支撑条件类型> Dy, Dz,
5 6
7 8
9
步骤 3.1 定义构造组
操作步骤 ① 模型>组>定义构造租 ② 定义构造组>名称( S-G )
; 后缀 ( 1to2 ) ③ 定义构造组>名称 ( All ) ④ 单元号显示 (on) ⑤ 窗口选择 (单元 : 1 to
18)
3
⑥ 组>构造组>S_G1 (拖& 放)
⑦ 同上操作 ⑧ 窗口选择 (单元 : 19 to
(N, R)
⑦ 开头收缩时的混凝土材龄
(3)
23 45 67
步骤 2.3 定义材料的时间依存性并连接
操作步骤 ① 模型 / 材料和截面特性 /
预应力混凝土连续箱梁桥MIDAS建模分析

g、钢筋回缩和锚具变形为 6mm 桥面净宽:16������55m=0������5m 护栏 +0������55m 路 缘 带 +2× 3������5m 行车道+2×3������75m 行车道+0������5m 路缘+0������5m 护栏. 结 构 重 要 性 系 数 :1������1. 1������2 桥 梁 线 型 布 置 桥面纵坡:0% (平坡);桥 面 横 坡:2%; 桥 轴 平 面 线 型:直线.
12345������7
竖向日照正温差 T1=14℃,T2=5������5℃ 竖向日照反温差 T1= -7℃,T2= -2������75℃
e、 支 座 不 均 匀 沉 降 :5mm f、 相 对 湿 度 :80%
收 稿 日 期 :2018-05-04 作者简介:王雪姣 (1984-),女 (汉族),辽宁鞍山人,中冶北方 工程技术有限公司土木设计院结构工程师.
0 引 言
虽然一直以来笔者公司在专业配备上以采矿、选矿、烧 结球团以 及 热 电 工 程 为 主 体 专 业,然 而 在 承 建 的 大 型 采、 选、烧等项目中,有很多项目规划中出现过桥梁,例如 “马 城铁矿”项目中跨滦河大桥, “镜 铁 山 铁 矿” 中 出 现 的 跨 线 桥等;而在矿山道路设置中出现桥梁的情况更是比较常见.
Midas预应力混凝土连续箱梁分析算例课件

结构建模助手截和钢筋表单数据的保存和打开 41
将定义好的表单数据 予以保存,点击
另存为…按钮 以便后用
将原先保存的数据 重新打开,以借鉴 已有的经验,减少 重复工作
结构建模助手的文件 后缀为wzd
Fluid Mechanics and Machinery
跨度信息
确定桥梁的跨度信息:端部支点、 22 内部支承的数量及位置、跨经等
分配单元>经由选择的:在模型窗口 中选择单元;号:直接输入单元号
模型窗口选择单元或直接输入单元 号以后,点击 添加/替换按钮,梁 单元的单元号、单元长度、支承位 置信息将会以表格的形式列出。
如果被选单元的i端有一般支承 条件,支承一栏会显示I。被选 单元不是一般支承条件而是其 它的边界条件时,就需用户在 相应位置(I/J)中选择一项来 补充支承一栏的信息
为边界条件建立三个边界节点
19
选择节点31,这是跨中节点
将节点31复制到z=-7.13m处,生成节点62
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
为边界条件建立三个边界节点
20
选择节点1,61; 这是两端节点
将所选节点复制到z=-2.7m处, 生成节点63,64
这里介绍纵向钢筋表单
定义钢筋纵向布置的起始和终 止位置,定义钢筋横向布置的 数量、直径和间距
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
纵向钢筋布置的控制参数
39
梁名称:选择在跨度信息里定义好的梁。 如果先前没有定义好梁,点击右侧[…]按钮来定义新的梁
MIDAS 联合截面施工阶段分析方法

21
图 10. 定义施工阶段对话框
图 11. 定义第一个施工阶段 CS1 9
图 12. 定义第二个施工阶段 CS2
图 13 定义第四个施工阶段 CS4 这里将第四个施工阶段的持续时间 1000 天分成了 10 个步骤。另外二期恒载将在该阶段的第 7 天开始施 加。
10
定义联合截面施工阶段 在荷载>施工阶段分析数据>施工阶段联合截面 对话框定义联合截面的施工阶段。
图 22. CS2 first step 的变形形状 17
图 23. CS3 first step 的变形形状
图 24. CS4 first step 的变化形状 18
¾ 内力
图 25. CS4 third step 的变形形状
图 26. CS4 last step 的弯矩图(荷载工况:CS 合计) 19
图 6. 定义联合前各截面的特性值 3 号主梁截面和 4 号桥面板截面可以不必输入,但为了在后面定义联合截面施工阶段时输入各组成 截面特性值的方便,可在这里事先进行定义。
6
赋与时间依存性特性
时间依存性特性采用的是 CEB-FIP code,其内容如图 7、8 所示。
¾ 徐变和收缩
¾ 强度发展
图 7. 定义徐变和收缩对话框
图 15. 定义施工顺序对话框 ¾ 联合阶段
指定各位置的构件产生的施工阶段。 例题中位置 1 是在第一个施工阶段 CS1 产生的,故选择 CS1 或选择激活施工阶段。激活施工阶段是 指在图 14 上方的激活施工阶段栏中所选择的阶段。 位置 2 的形成阶段为 CS3,故选择 CS3。
12
¾ 材料 输入各位置的材龄。初期强度、徐变系数、收缩特性等与这里所输入的材龄有关,所以模型若要考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京迈达斯技术有限公司CONTENTS概要1桥梁概况及一般截面 2 预应力混凝土梁的分析顺序 3 使用的材料及其容许应力 4 荷载5设置操作环境6定义材料和截面7定义截面8 定义材料的时间依存性并连接9建立结构模型12定义结构组、边界条件组和荷载组13 输入边界条件16输入荷载17输入恒荷载18 输入钢束特性值19 输入钢束形状20 输入钢束预应力荷载23定义施工阶段25输入移动荷载数据30运行分析34查看分析结果35通过图形查看应力35 定义荷载组合39 利用荷载组合查看应力40 查看钢束的分析结果44 查看荷载组合条件下的内力475-1概要本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil 的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。
主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。
图1. 分析模型桥梁概况及一般截面分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。
桥梁形式:两跨连续的预应力混凝土梁桥梁长度:L = 2@30 = 60.0 m图2. 立面图和剖面图5-2预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。
1.定义材料和截面2.建立结构模型3.输入荷载恒荷载钢束特性和形状钢束预应力荷载4.定义施工阶段5.输入移动荷载数据6.运行结构分析7.查看结果5-35-4使用的材料及其容许应力❑ 混凝土设计强度:2ck cm /k gf 400=f 初期抗压强度:2ci cm /k gf 270=f弹性模量:Ec=3,000Wc1.5 √fck+ 70,000 = 3.07×105kgf/cm 2容许应力:❑预应力钢束 (ASTM A416-92低松弛270级,Φ15.2mm (0.6" strand)屈服强度:2/160mm kgf f py =→strand /tonf 6.22=P y抗拉强度: 2pu mm /k gf 190=f →strand /tonf 6.26=P u 截面面积: 2387.1cm A p = 弹性模量: 26p cm /k gf 10×0.2=E 张 拉 力: fpi=0.7fpu=133kgf/mm 2锚固装置滑动: mm 6=s Δ 磨擦系数: rad /30.0=μ m /006.0=k5-5荷载❑ 恒荷载自重在程序中按自重输入❑预应力钢束(φ15.2 mm ×31 (φ0.6" - 31))截面面积 : Au = 1.387 × 31 = 42.997 cm 2孔道直径 : 133 mm 张拉力 : 抗拉强度的70%fpj = 0.7 fpu = 13,300 kgf/cm 2Pi = Au × fpj = 405.8 tonf 张拉后的瞬间损失(程序自动计算)摩擦损失 :)(0)(kL X e P P +⋅=μα30.0=μ, 006.0=k 锚固装置滑动引起的损失 : mm 6=I Δc 弹性收缩引起的损失 : 损失量 SP P E A f P ⋅∆=∆ 最终损失(程序自动计算)钢束的松弛(Relaxation ) 徐变和收缩引起的损失❑徐变和收缩条件水泥 : 普通硅酸盐水泥长期荷载作用时混凝土的材龄 : =o t 5天 混凝土与大气接触时的材龄 : =s t 3天 相对湿度 : %70=RH 大气或养护温度 : C °20=T 适用规范 : CEB-FIP 徐变系数 : 程序计算 混凝土收缩变形率 : 程序计算❑活荷载适用规范:城市桥梁设计荷载规范 荷载种类:C-ALC-AD(20)5-6设置操作环境打开新文件(新项目),以 ‘PSC beam ’ 为名保存(保存)。
将单位体系设置为 ‘tonf ’和‘m ’。
该单位体系可根据输入数据的种类任意转换。
文件 / 新项目文件 /保存 ( PSC beam )工具 / 单位体系长度> m ; 力>tonf图3. 设置单位体系单位体系还可以通过点击画面下端状态条的单位选择键()来进行转换。
5-7定义材料和截面下面定义PSC beam 所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 /材料类型>混凝土 ; 规范>GB-civil(RC) 数据库>40 ↵名称( Tendon ) ; 类型>用户定义 ; 规范>无 分析数据弹性模量 (2.1e7) ↵图4. 定义材料对话框同时定义多种材料特性时,使用键可以连续输入。
定义截面PSC beam的截面使用比较简单的矩形截面来定义。
模型 /材料和截面特性 /截面数据库/用户> 截面号 ( 1 ) ; 名称 (Beam) 截面类型>实腹长方形截面>用户H ( 3 ) ; B ( 2 )偏心>中-下部图5. 定义截面的对话框5-85-9定义材料的时间依存性并连接为了考虑徐变、收缩以及抗压强度的变化,下面定义材料的时间依存特性。
材料的时间依存特性参照以下数据来输入。
28天强度 : f ck = 400 kgf/cm 2相对湿度 : RH = 70 %理论厚度 : 1.2m ( 2A c / u= 2 x 6 / 10 = 1.2 ) 混凝土种类 : 普通水泥 (N.R) 拆模时间 : 3天模型 /材料和截面特性 / 时间依存性材料(徐变&收缩)名称 (徐变/收缩) ; 设计标准>CEB-FIP 28天材龄抗压强度 (4000) 相对湿度 (40 ~ 99) (70)构件的理论厚度 (1.2)混凝土种类 >普通水泥 (N, R) 开始收缩时的混凝土材龄 (3)图6. 定义材料的徐变和收缩特性截面形状比较复杂时,可使用模型>材料和街面特性值>修改单元材料时间依存特性 的功能来输入h值。
5-10混凝土浇筑后随时间变化而逐渐硬化,时间越长其强度越大。
本例题根据CEB-FIP 所规定的混凝土强度发展函数考虑了混凝土的这一特性。
模型 / 材料和截面特性 /时间依存性材料(抗压强度)名称 (抗压强度) ; 类型>设计规范 强度发展>规范>CEB-FIP混凝土28天抗压强度 (S28) (4000) 混凝土类型(a) (N, R : 0.25)图7. 定义随时间变化的混凝土强度发展函数5-11参照图8将一般材料特性和时间依存材料特性相连接。
即,将时间依存材料特性赋予相应的材料。
模型 / 材料和截面特性 /时间依存材料连接时间依存材料类型>徐变/收缩>徐变/收缩强度进展>抗压强度选择指定的材料>材料> 1:40选择的材料图8. 连接时间依存材料特性5-12建立结构模型利用建立节点和扩展单元的功能来建立单元。
点格(关) ; 捕捉点(关) ; 捕捉轴线(关)正面 ; 自动对齐 模型>节点> 建立节点坐标 (0,0,0) 模型>单元>扩展单元全选扩展类型>节点 线单元单元类型>梁 ; 材料>1:40 ; 截面> 1: Beam 生成形式>复制和移动复制和移动>等间距>dx,dy,dz>(2, 0, 0) 复制次数>(30)图9. 建立几何模型5-13定义结构组、边界条件组和荷载组为了进行施工阶段分析,将在各施工阶段(construction stage)所要激活和钝化的单元和边界条件定义为组,并利用组来定义施工阶段。
组>结构租 >新建…定义结构组>名称( S-G ) ; 后缀 ( 1to2 )定义结构组>名称 ( All )单元号 (on)窗口选择 (单元 : 1 to 18) 组>结构组>S_G1 (拖&放)窗口选择 (单元 : 19 to 30) 组>结构组>S_G2 (拖 & 放) 全选组>结构组>All (拖 &放)图10. 定义结构组(Structure Group)Drag & DropS-G1S-G2为了利用 桥梁内力图 功能查看分析结果而将其定义为组。
5-14新建边界组边界组名称的建立方法如下。
组>边界组>新建…定义边界组>名称 ( B-G ) ; 后缀( 1to2 )图11. 建立边界组(Boundary Group)5-15新建荷载组恒荷载组和预应力荷载组名称的新建方法如下。
组>荷载组>新建…定义荷载组>名称 ( Selfweight )定义荷载组>名称 ( Tendon ) ; 后缀 ( 1to2 )图12. 建立荷载组(Load Group)5-16输入边界条件边界条件的输入方法如下。
单元号 (关) ; 节点号 (开) 模型 /边界条件 / 一般支撑单选(节点 : 1)边界组名称>B-G1 选择>添加支撑条件类型> Dy, Dz, Rx (开) ↵单选 (节点 : 16)边界组名称>B-G1 选择>添加支撑条件类型>Dx, Dy, Dz, Rx (开) ↵单选 (节点 : 31) 边界组名称>B-G2 选择>添加支撑条件类型> Dy, Dz, Rx (开) ↵图13. 定义边界条件输入荷载本例题针对恒荷载和预应力荷载进行施工阶段分析。
移动荷载分析则需另行输入移动荷载数据。
荷载/ 静力荷载工况名称 (恒荷载)类型 (施工阶段荷载) ↵名称 (预应力 1)类型 (施工阶段荷载) ↵名称 (预应力 2)类型 (施工阶段荷载) ↵图14. 输入静力荷载工况的对话框5-17输入恒荷载使用自重功能输入恒荷载。
荷载 / 自重荷载工况名称> 恒荷载荷载组名称 > 自重自重系数 > Z (-1)图15. 输入恒荷载5-185-19输入钢束特性值荷载/ 预应力荷载 / 预应力钢束的特性值预应力钢束的名称 ( 钢束 ) ; 预应力钢束的类型>内部 材料>2: 钢束预应力钢束总面积 (0.0042997)或者钢铰线公称直径>15.2mm(0.6") 钢铰线股数 ( 31 ) ↵钢束孔道直径 (0.133) ; 松弛系数 (45)预应力钢筋与孔道摩擦系数 (0.3) ; 孔道每米局部偏差摩擦系数 (0.0066)极限强度(190000) ; 屈服强度 (160000) 张拉方法>后张法锚具变性和钢筋内缩值>开始点 (0.006) ; 结束点(0.006) ↵图16. 输入钢束特性值当钢束施加张拉力,维持其一定的应变时,作用到钢束上的张拉应力随时间的推移逐渐减小,这个现象称之为松弛(Relax ation)。