人教版高中数学选修模块考试题

合集下载

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)

最新人教版高中数学选修1-2模块综合试题(共2个模块 附解析)模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若z =4+3i ,则z -|z |=( ) A .1B .-1 C.45+35i D.45-35i 解析:z -|z |=4-3i 42+32=45-35i. 答案:D2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查发现,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:由(x -,7.765)在回归直线y ^=0.66x +1.562上.所以7.765=0.66x -+1.562,则x -≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.答案:A4.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b 在平面α外,直线a 在平面α内,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误.答案:A5.执行如图所示的程序框图,如图输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:x =2,t =2,M =1,S =3,k =1.k ≤t ,M =11×2=2,S =2+3=5,k =2; k ≤t ,M =22×2=2,S =2+5=7,k =3; 3>2,不满足条件,输出S =7.答案:D6.如图所示,在复平面内,OP →对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i解析:要求P 0对应的复数,根据题意,只需知道OP 0→,而OP 0→=。

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。

人教版高中数学选修 练习题及参考答案

人教版高中数学选修 练习题及参考答案

人教版高中数学选修-练习题及参考答案(附参考答案)一、选择题1.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是( ) A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab2.三角形全等是三角形面积相等的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件3.下列四个命题中,真命题是( )A.是偶数且是无理数B.8≥10C.有些梯形内接于圆D.xR,x2x+1≠04.命题“所有奇数的立方是奇数”的否定是( )A.所有奇数的立方不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数二、填空题5.命题“若a=1,则a2=1”的逆否命题是______________________.?? 6.b=0是函数f(x)=ax2+bx+c为偶函数的______________________.7.全称命题“aZ,a有一个正因数”的否定是________________________.??8.特称命题“有些三角形的三条中线相等”的否定是______________________.条件.的______ ___,则非p是非q9.设p:|5x1|>4;?三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x23x+2=0},B={x|x2mx+2=0},若A是B的必要不充分条件,求实数m范围.??12.给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中求实数的取值范围.有且仅有一个为真命题,常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤a=0或012.解:P真:对任意实数都有恒成立??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤或0.解:12P真:对任意实数都有恒成立a=0??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???圆锥曲线练习题一.选择题若椭圆经过原点,且焦点分别为,则其离心率为() 1.1A.B. C. D.4y2=4x的焦点作直线l,交抛物线于A,过抛物线B两点,若线段AB中点的横坐标2.为3,则|AB|等于()A.10B.8C.6D.4若双曲线+=1的离心率,则k的取值范围是() 3.A. B. C. D.与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是()4. B. A. C. D.过点M(2,0)的直线L与椭圆交于两点,设线段的中点为P,若直线l的斜率为,5.的斜率为,则等于()直线OP?1-A. B. C. D.2.如果方程+=1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是()6. A. B. C. D.二.填空题椭圆+=1的焦点分别是,点P在椭圆上,如果线段的中点在y轴上,那么是的7.倍.椭圆+=1的焦点分别是,过原点O做直线与椭圆交于A,B两点,若ABF2的面积8.是20,则直线AB的方程是.?与双曲线有共同的渐近线,并且经过点的双曲线方程是9.已知直线y=kx+2与双曲线x2y2=6的右支相交于不同的两点,则k的取值范围10.是.三.解答题?抛物线y=-x2与过点M(0,1)的直线L相交于A,B两点,O为原点,若OA和OB11.的斜率之和为1,求直线L的方程.?已知中心在原点,一焦点为F(0,)的椭圆被直线截得的弦的中点横坐标为,求此12.椭圆的方程.13.是椭圆+=1的两个焦点,为椭圆上一点,且AF1F2=45,求的面积.???圆锥曲线练习题答案一.选择题:CBCADD二.填空题:7. 7倍8.y=x 9. -=1 10.-,3)<k<-1?三.解答题解:斜率不存在不合题意,设直线代入抛物线得11.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则1解:设所求的椭圆为+=12.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.圆锥曲线练习题答案CBCADD 一.选择题:二.填空题:1,3)<k<--=7. 7倍8.y=x 9. 1 10.-?三.解答题解:斜率不存在不合题意,设直线代入抛物线得13.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则解:设所求的椭圆为+=114.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.空间向量练习题一.选择题1.直棱柱ABCA1B1C1中,若=,=,=,则=( )?→→+++D.+B.+C.A.b?c????2.已知A,B,C三点不共线,对平面ABC外的任意一点O,下列条件中能确定点M与A,B,C一定共面的是( )→→→A.=++C.=2OA?OB?OC1→C.=++D.=++OC 33.若向量同时垂直向量和,向量=+(,R, ,≠0),则()???????A.∥B.C.与不平行也不垂直D.以上均有可能?4.以下四个命题中,正确的是( )A.若=+,则P,A,B三点共线B.若{,,}为空间一个基底,则{+,+,+}构成空间的另一个基底C.|()|=||||||???D.ABC为直角三角形的充要条件是=0??5.已知=(+1,0,2),=(6,21,2),∥,则和的值分别为( )??????A.,B.5,2C.,D.5,2????二.填空题6.若=(2,3,1),=(2,0,3),=(0,2,2),则(+)=________.??7.已知G是ABC的重心,O是空间任一点,若++=,则的值为_______.??? 8.已知||=1,||=2,<,>=60,则|(+2)|=________.??三.解答题9.若向量(+3)(75),(4)(72),求与的夹角.?????10.设,试求实数,使成立.求与侧面所成的角.正三棱柱的底面边长为,11.侧棱长为,小大的角面二,时值何于等问,动移上棱在点,,,中体方长在.12.为.空间向量练习题答案 DDBBA一.选择题6.3 83 7.二.填空题6.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.=(2x,1,2)可求得平面的法向量为?..(舍去)空间向量练习题答案 DDBBA一.选择题6.3 8二.填空题6.3 7.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.可求得平面的法向量为=(2x,1,2)?..(舍去)。

高中数学 模块测试一 新人教A版选修2-3(2021年整理)

高中数学 模块测试一 新人教A版选修2-3(2021年整理)

2016-2017学年高中数学模块测试一新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学模块测试一新人教A版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学模块测试一新人教A版选修2-3的全部内容。

模块测试一一。

选择题1.下面4个散点图中,适合用线性回归模型拟合其中两个变量的是( )A 。

①②B 。

①③ C。

②③ D 。

③④2. 已知离散型随机变量ξ满足的概率分布列如下:ξ 1 35 P0。

5m0.2则其方差()D X 等于( )A.1 B 。

0.6 C 。

2。

44 D 。

2.43.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合的最好的模型是( )A.模型1的相关指数2R 为0。

98;B.模型2的相关指数2R 为0.80; C 。

模型3的相关指数2R 为0.50; D.模型4的相关指数2R 为0.25。

4。

箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第四次取球之后停止的概率为( )A 。

231()54 B.354()99 C. 231()54 D. 13454()99C5.二项式15(6)x x的展开式中的常数项是第几项( )A 。

10 B. 11 C. 12 D 。

136. 明天上午李明要参加志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0。

90,则两个闹钟至少有一准时响的概率是( )A 。

高中数学选修1-1课时作业9:模块综合试卷(二)

高中数学选修1-1课时作业9:模块综合试卷(二)

模块综合试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0 [[答案]] C[[解析]] ∵命题“∀x ∈[0,+∞),x 3+x ≥0”, ∴命题的否定∃x 0∈[0,+∞),x 30+x 0<0,故选C. 2.x =1是x 2-3x +2=0的( ) A .充分不必要条件 B .既不充分也不必要条件 C .必要不充分条件 D .充要条件 [[答案]] A[[解析]] 若x =1,则x 2-3x +2=1-3+2=0成立,即充分性成立, 若x 2-3x +2=0,则x =1或x =2,此时x =1不一定成立,即必要性不成立, 故x =1是x 2-3x +2=0的充分不必要条件. 3.函数f (x )=e x ln x 在点(1,f (1))处的切线方程是( ) A .y =2e(x -1) B .y =e x -1 C .y =x -e D .y =e(x -1)[[答案]] D[[解析]] 因为f ′(x )=e x ⎝⎛⎭⎫ln x +1x ,所以f ′(1)=e.又f (1)=0,所以所求的切线方程为y =e(x -1). 4.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④ D .①④[[答案]] C[[解析]] ①的逆命题“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.5.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x[[答案]] A[[解析]] 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,所以b a =12,故双曲线x 2a 2-y 2b2=1的渐近线方程为y =±12x .6.设函数f (x )在R 上可导,f (x )=x 2f ′(2)-3x ,则f (-1)与f (1)的大小关系是( ) A .f (-1)=f (1) B .f (-1)>f (1) C .f (-1)<f (1)D .不确定[[答案]] B[[解析]]因为f(x)=x2f′(2)-3x,所以f′(x)=2xf′(2)-3,则f′(2)=4f′(2)-3,解得f′(2)=1,所以f(x)=x2-3x,所以f(1)=-2,f(-1)=4,故f(-1)>f(1).7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()[[答案]] D[[解析]]由y=f′(x)的图象知,y=f′(x)在(0,+∞)上单调递减,说明函数y=f(x)的切线的斜率在(0,+∞)上也单调递减,故可排除A,C.又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故可排除B.故选D.8.点F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,过点F1的直线l与C的左、右两支分别交于A,B两点,若△ABF2为等边三角形,则双曲线C的离心率为() A.3B.2C.7D.3[[答案]] C[[解析]]∵△ABF2是等边三角形,∴|BF2|=|AB|,根据双曲线的定义,可得|BF1|-|BF2|=2a,∴|BF1|-|AB|=|AF1|=2a,又∵|AF2|-|AF1|=2a,∴|AF2|=|AF1|+2a=4a.∵在△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|·cos120°, 即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2, 解得c =7a ,由此可得双曲线C 的离心率e =ca=7.9.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( ) A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 [[答案]] D[[解析]] 不妨设B (0,b ),由BA →=2AF →,F (c,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109, ∴b 2a 2=32.① 又|BF →|=b 2+c 2=4,c 2=a 2+b 2,∴a 2+2b 2=16,②由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D.10.已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2019)>(m -2019)f (2),则实数m 的取值范围为( ) A .(0,2019) B .(2019,+∞) C .(2021,+∞) D .(2019,2021)[[答案]] D[[解析]] 令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0, ∴函数h (x )在(0,+∞)上单调递减,∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2). ∴m -2 019<2且m -2 019>0,解得2 019<m <2 021. ∴实数m 的取值范围为(2 019,2 021).11.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)[[答案]] C[[解析]] 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得 x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0). 12.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B 交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A .5B .6C.163D.203[[答案]] C[[解析]] 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AF |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,解得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得,3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.[[答案]] (-∞,-2)∪(2,+∞)[[解析]] 由题意知原命题为真,∴Δ=a 2-4>0, ∴a >2或a <-2.14.在平面直角坐标系xOy 中,抛物线x 2=2py (p >0)上纵坐标为1的点到其焦点的距离为2,则p =________. [[答案]] 2[[解析]] 由抛物线上一点到其焦点的距离等于该点到准线的距离,得1+p2=2,即p =2.15.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是________. [[答案]] ⎝⎛⎦⎤-∞,13 [[解析]] f ′(x )=3kx 2+6(k -1)x .当k <0时,f ′(x )<0在区间(0,4)上恒成立, 即f (x )在区间(0,4)上是减函数,故k <0满足题意.当k ≥0时,则由题意,知⎩⎪⎨⎪⎧k ≥0,f ′(4)≤0,解得0≤k ≤13.综上,k 的取值范围是⎝⎛⎦⎤-∞,13. 16.若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最小值为__________. [[答案]] 6[[解析]] 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22), 由题意得左焦点F (-1,0), ∴OP →=(x ,y ),FP →=(x +1,y ), ∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤254, ∴6≤19·⎝⎛⎭⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6. 三、解答题(本大题共6小题,共70分)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除. (3)∀x ∈{x |x >0},x +1x ≥2.(4)∃x 0∈Z ,log 2x 0>2.考点 全称量词及全称命题的真假判断 题点 识别全称命题解 (1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (3)命题中含有全称量词“∀”,是全称命题,真命题. (4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知p :∀x ∈⎣⎡⎦⎤14,12,2x >m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点.若“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m 的取值范围.解 ∀x ∈⎣⎡⎦⎤14,12,2x >m (x 2+1),即m <2x x 2+1=2x +1x 在⎣⎡⎦⎤14,12上恒成立,当x =14时,⎝⎛⎭⎫x +1x max=174,∴⎝ ⎛⎭⎪⎫2x x 2+1min =817, ∴由p 真得m <817.设t =2x ,则t ∈(0,+∞),则函数f (x )化为g (t )=t 2+2t +m -1,由题意知g (t )在(0,+∞)上存在零点,令g (t )=0,得m =-(t +1)2+2,又t >0,所以由q 真得m <1. 又“p ∨q ”为真,“p ∧q ”为假,∴p ,q 一真一假, 则⎩⎪⎨⎪⎧m ≥817,m <1或⎩⎪⎨⎪⎧m <817,m ≥1,解得817≤m <1.故所求实数m 的取值范围是⎣⎡⎭⎫817,1. 19.(12分)已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.解 f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a >1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立. ③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a, 由f ′(x )<0,解得1a<x <1. 综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 20.(12分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知|AB |=52|BF |, 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴e =c a =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1. 设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0,即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717. x 1+x 2=-3217,x 1x 2=16-4b 217. ∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.从而5(16-4b 2)17-12817+4=0, 解得b =1,满足b >21717. ∴椭圆C 的方程为x 24+y 2=1. 21.(12分)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2, 所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0. 设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减. 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2. 22.(12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB→+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.解 (1)过焦点且垂直于长轴的直线被椭圆截得的线段长为433, 所以2b 2a =433. 因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,可解得b =2,c =1,a = 3.所以椭圆的方程为x 23+y 22=1. (2)由(1)可知F (-1,0),则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1, 消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0.设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2. 又A (-3,0),B (3,0),所以AC →·DB →+AD →·CB → =(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2=8, 解得k =±2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0. 所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =⎝⎛⎭⎫-322-4×0=32, |CD |=1+k 2|x 1-x 2| =1+2×32=332. 而原点O 到直线CD 的距离为 d =|k |1+k 2=21+2=63, 所以△OCD 的面积为S =12|CD |×d =12×332×63=324.。

人教A版高中数学选修2-3全册同步练习及单元检测含答案

人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。

人教版高中数学选修4-4 模块综合评价

人教版高中数学选修4-4 模块综合评价

模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的直角坐标是(-1,3),则点M 的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z) 解析:点M 的极径是2,点M 在第二象限,故点M 的极坐标是⎝⎛⎭⎪⎫2,2π3.答案:C2.极坐标方程cos θ=32(ρ∈R)表示的曲线是( )A .两条相交直线B .两条射线C .一条直线D .一条射线解析:由cos θ=32,解得θ=π6或θ=116π,又ρ∈R ,故为两条过极点的直线.答案:A3.曲线ρcos θ+1=0关于直线θ=π4对称的曲线的方程是( )A .ρsin θ+1=0B .ρcos θ+1=0C .ρsin θ=2D .ρcos θ=2解析:因为M (ρ,θ)关于直线θ=π4的对称点是N ⎝ ⎛⎭⎪⎫ρ,π2-θ,从而所求曲线方程为ρcos ⎝ ⎛⎭⎪⎫π2-θ+1=0,即ρsin θ+1=0. 答案:A4.直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)解析:将x =1+t2,y =-33+32t 代入圆方程,得⎝ ⎛⎭⎪⎫1+t 22+⎝ ⎛⎭⎪⎫-33+32t 2=16, 所以t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,所以x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3). 答案:D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1解析:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0或ρcos θ=x =1. 答案:C6.极坐标方程分别是ρ=2cos θ和ρ=4sin θ的两个圆的圆心距是( )A .2 B.2 C .5 D. 5解析:ρ=2cos θ是圆心为(1,0),半径为1的圆;ρ=4sin θ是圆心为()0,2,半径为2的圆,所以两圆的圆心距是 5.答案:D7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎪⎨⎪⎧x =4t +3,y =3t +1(t 为参数)的距离为( )A .1B .2C .3D .4解析:由题意易知圆的圆心M (1,2),由直线的参数方程化为一般方程为3x -4y -5=0,所以圆心到直线的距离为d =|3×1-4×2-5|32+42=2.答案:B8.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( ) A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3 C.⎝⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6解析:点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标为⎝⎛⎭⎪⎫1,4π3. 答案:A9.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)和参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)所表示的图形分别是( )A .直线、射线和圆B .圆、射线和双曲线C .两直线和椭圆D .圆和抛物线解析:因为(ρ-1)(θ-π)=0,所以ρ=1或θ=π(ρ≥0),ρ=1表示圆,θ=π(ρ≥0)表示一条射线,参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)化为普通方程为y 24-x 2=1,表示双曲线.答案:B10.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =at ,y =a 2t -1(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =2sin θ(θ为参数),且它们总有公共点.则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0∪(0,+∞) B .(1,+∞)C.⎣⎢⎡⎭⎪⎫-32,+∞D.⎣⎢⎡⎭⎪⎫-32,4 解析:由已知得⎩⎪⎨⎪⎧at =1+cos θ,a 2t -1=2sin θ,则4(at -1)2+(a 2t -1)2=4, 即a 2(a 2+4)t 2-2a (a +4)t +1=0,Δ=4a 2(a +4)2-4a 2(a 2+4)=16a 2(2a +3). 直线l 与椭圆总有公共点的充要条件是Δ≥0, 即a ≥-32.答案:C11.已知圆锥曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为( )A .ρcos θ+3ρsin θ= 3B .ρcos θ-3ρsin θ= 3 C.3ρcos θ+ρsin θ= 3 D.3ρcos θ-ρsin θ= 3解析:圆锥曲线为椭圆,c =1,故F 2的坐标为(1,0),直线AF 2的直角坐标方程是x +y3=1,即3x +y =3,化为极坐标方程就是3ρcos θ+ρsin θ= 3.答案:C12.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,直线l 的参数方程为⎩⎨⎧x =2t -1,y =22t(t 为参数),则直线l 与曲线C 相交所得弦长为( )A .1B .2C .3D .4解析:曲线C 的直角坐标方程为x 2+y 2-6y =0, 即x 2+(y -3)2=9,直线⎩⎨⎧x =2t -1,y =22t的直角坐标方程为x -2y +1=0, 因为圆心C 到直线l 的距离d =|0-2×3+1|12+(-2)2=5,所以直线l 与圆C 相交所得弦长为2r 2-d 2= 29-5=4. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在极坐标系中,点⎝⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为________.解析:结合图形不难知道点⎝ ⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为⎝⎛⎭⎪⎫22,π4. 答案:⎝⎛⎭⎪⎫22,π414.已知圆的渐开线的参数方程⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数),当φ=π4时,对应的曲线上的点的坐标为________.解析:当φ=π4时,代入渐开线的参数方程,得⎩⎪⎨⎪⎧x =3cos π4+3·π4·sin π4,y =3sin π4-3·π4·cos π4,x =322+32π8,y =322-32π8,所以当φ=π4时,对应的曲线上的点的坐标为⎝ ⎛⎭⎪⎫322+32π8,322-32π8. 答案:⎝ ⎛⎭⎪⎫322+32π8,322-32π8 15.若直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=32,曲线C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.解析:直线的直角坐标方程为x +y -6=0,曲线C 的方程为x 2+y 2=1,为圆;d 的最大值为圆心到直线的距离加半径,即为d max =|0+0-6|2+1=32+1. 答案:32+116.在直角坐标系Oxy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a >b >0).在极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=32,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则a =________.解析:椭圆C 的普通方程为x 2a 2+y 2b 2=1(a >b >0),直线l 的直角坐标方程为x -3y -3=0,令x =0,则y =-1,令y =0,则x =3,所以c =3,b =1,所以a 2=3+1=4,所以a =2. 答案:2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1. 18.(本小题满分12分)在极坐标系下,已知圆O :ρ=cos θ+sinθ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)由ρ=cos θ+sin θ,可得ρ2=ρcos θ+ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,代入得⊙O :x 2+y 2-x -y =0, 由l :ρsin ⎝⎛⎭⎪⎫θ-π4=22,得:22ρsin θ-22ρcos θ=22,ρsin θ-ρcos θ=1,又⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,代入得:x -y +1=0.(2)由⎩⎪⎨⎪⎧x -y +1=0,x 2+y 2-x -y =0,解得⎩⎪⎨⎪⎧x =0,y =1,又⎩⎨⎧ρ2=x 2+y 2,tan θ=y x ,得ρ=1,tan θ不存在, 又因为θ∈(0,π),则θ=π2,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.19.(本小题满分12分)已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t (t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)当m =2时,直线l 与曲线C 交于A 、B 两点,求|AB |的值. 解:(1)由ρ=2cos θ,得:ρ2=2ρcos θ,所以x 2+y 2=2x ,即(x -1)2+y 2=1, 所以曲线C 的直角坐标方程为(x -1)2+y 2=1. 由⎩⎨⎧x =32t +m ,y =12t 得x =3y +m ,即x -3y -m =0,所以直线l 的普通方程为x -3y -m =0. (2)设圆心到直线l 的距离为d , 由(1)可知直线l :x -3y -2=0, 曲线C :(x -1)2+y 2=1,圆C 的圆心坐标为(1,0),半径1, 则圆心到直线l 的距离为d =|1-3×0-2|1+(3)2=12. 所以|AB |=21-⎝ ⎛⎭⎪⎫122= 3.因此|AB |的值为 3.20.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t (t 为参数),直线l 与圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标;(2)求△PAB 面积的最大值.解:(1)圆C 的直角坐标方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.所以圆心坐标为(1,-1),圆心极坐标为⎝ ⎛⎭⎪⎫2,7π4. (2)直线l 的普通方程为22x -y -1=0,圆心到直线l 的距离d =|22+1-1|3=223, 所以|AB |=22-89=2103, 点P 到直线AB 距离的最大值为2+223=523,故最大面积S max =12×2103×523=1059. 22.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点、x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.。

人教版高中数学选修1-2 练习:模块综合测试2

人教版高中数学选修1-2 练习:模块综合测试2

选修1-2模块综合测试(二)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.[2013·江西高考]已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A. -2iB. 2iC. -4iD. 4i解析:由M∩N={4}知4∈M,所以z i=4,z=-4i,选C.答案:C2.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理()A. 正确B. 推理形式不正确C. 两个“自然数”概念不一样D. 两个“整数”概念不一致解析:此三段论中的大前提,小前提以及推理形式都是正确的,因此,此三段论推理是正确的,故选A.答案:A3.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A. b与r的符号相同B. a与r的符号相同C. b与r的符号相反D. a与r的符号相反解析:正相关时,b>0,r>0;负相关时,b<0,r<0,选A.答案:A4.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有()A. p+q+r=dB. p2+q2+r2=d2C. p3+q3+r3=d3D. p2+q2+r2+pq+pr+qr=d2解析:类比即可.答案:B5.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A. f(x)B. -f(x)C. g(x)D. -g(x)解析:由题知偶函数的导数为奇函数,选D.答案:D6.设z=log2(m2-3m-3)+ilog2(m-3)(m∈R),若z对应的点在直线x-2y+1=0上,则m的值是()A.±15 B.15C.-15D.15解析:log2(m2-3m-3)-2log2(m-3)+1=0,log2m2-3m-3m-2=-1,m2-3m-3m-2=12,m=±15,而m>3,m=15.答案:B7.[2014·贵州六校联考]如图,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,得x1=6,x2=9,p=9.5时,x3等于()A. 10B. 9C. 8D. 7解析:x1=6,x2=9,|x1-x2|=3,|x3-6|<|x3-9|不成立,取x1=x3⇒x3+9=9.5×2⇒x3=10.答案:A8.[2013·安徽高考]设i是虚数单位,z是复数z的共轭复数.若z·z i+2=2z,则z=()A. 1+iB. 1-iC. -1+iD. -1-i解析:设z =a +b i(a ,b ∈R ),则z ·z i +2=(a +b i)·(a -b i)·i +2=2+(a 2+b 2)i ,故2=2a ,a 2+b 2=2b ,解得a =1,b =1.即z =1+i.答案:A9.[2014·昆明调研]执行如图的程序框图,如果输入的N =10,那么输出的S =( )A. 109B. 169C. 95D. 2011解析:在程序执行过程中p ,S ,k 的值依次为p =0,S =0,k =1;p =1,S =1,k =2;p =3,S =43,k =3;p =6,S =32,k =4;p =10,S =85,k =5;…;p =36,S =169,k =9;p=45,S =95,k =10.又N =10,k =N ,故程序结束,输出的S =95.答案:C10.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =3,则z *z 的最小值为( )A.92B.322 C.32D.94 解析:z *z =|z |+|z |2=2a 2+b 22=a 2+b 2=a +b2-2ab ,又∵ab ≤⎝⎛⎭⎫a +b 22=94,∴-ab ≥-94,z *z ≥9-2×94=92=322. 答案:B11.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是( )A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 12解析:后一种化合物应有4个C 和10个H ,所以分子式是C 4H 10. 答案:B12.对于定义在数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,则x 0叫函数f (x )的一个不动点.已知f (x )=x 2+2ax +1不存在不动点,那么a 的取值范围是( )A. (-12,32)B. (-32,-12)C. (12,32) D. (-32,12)解析:因为f (x )=x 2+2ax +1不存在不动点,所以f (x )=x 无实根.由x 2+2ax +1=x 得x 2+(2a -1)x +1=0,此方程若无实根,则Δ=(2a -1)2-4<0,解得-12<a <32.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为________.解析:首先把两组值代入回归直线方程得⎩⎪⎨⎪⎧3b ^ +a ^=17,8b ^ +a ^ =22⇒⎩⎪⎨⎪⎧b ^=1,a ^ =14.所以回归直线方程是y ^=x +14.答案:y ^=x +1414.如图所示是按照一定规律画出的一列“树型”图,设第n 个图有a n 个“树枝”,则a n +1与a n (n ≥2)之间的关系是________.解析:观察图1~5得:a 1=1,a 2=3,a 3=7,a 4=15,a 5=31,由规律可得a n +1=2a n+1(n ≥2).答案:a n +1=2a n +1(n ≥2)15.读下面的流程图,当输入的值为-5时,输出的结果是________.解析:①A =-5<0,②A =-5+2=-3<0,③A =-3+2=-1<0,④A =-1+2=1>0,⑤A =2×1=2.答案:216.若Rt △ABC 中两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b 2,如右图,在正方体的一角上截取三棱锥P -ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC 2,那么M 、N 的大小关系是__________.解析:在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab ,∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△P AB +S 2△PBC +S 2P AC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC , ∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④,③÷④整理得M =N . 答案:M =N三、解答题(本大题共6小题,共70分)17.(10分)满足z +5z 是实数且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.解:设虚数z =x +y i(x ,y ∈R ,且y ≠0) z +5z =x +y i +5x +y i =x +5x x 2+y 2+(y -5y x 2+y 2)i , 由已知得⎩⎪⎨⎪⎧y -5y x 2+y 2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3, 解得⎩⎪⎨⎪⎧x =-1,y =-2或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件. 18.(12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0, ∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0. 又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1= x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+1>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)证法一:假设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=x 0-2x 0+1,且0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2.与假设x 0<0矛盾,故方程f (x )=0没有负数根. 证法二:假设存在x 0<0(x 0≠-1)满足f (x 0)=0. ①若-1<x 0<0,则x 0-2x 0+1<-2,0<ax 0<1,∴f (x 0)<-1,与f (x 0)=0矛盾; ②若x 0<-1,则x 0-2x 0+1>0,0<ax 0<1,∴f (x 0)>0,与f (x 0)=0矛盾. 故方程f (x )=0没有负数根.19.(12分)设z 1=1+2a i ,z 2=a -i(a ∈R ),已知A ={z ||z -z 1|≤2},B ={z ||z -z 2|≤22}, A ∩B =∅,求a 的取值范围.解:∵集合A 、B 在复平面内对应的点是两个圆面,又A ∩B =∅,∴这两个圆外离. 所以|z 1-z 2|>32, 即|(1+2a i)-(a -i)|>3 2.解之得a ∈(-∞,-2)∪⎝⎛⎭⎫85,+∞.20.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2-x x ,2 x =,2+x x ,设计一个输入x 值,输出y 值的流程图.解:流程图如图所示.21.(12分)为了调查胃病是否与生活规律有关,对某地540名40岁以上的人进行了调查,结果如下:生活规律有关系?解:根据公式得K 2的观测值 k =-280×460×220×320≈9.638>6.635,因此,在犯错误的概率不超过0.01的前提下,认为40岁以上的人患胃病与生活规律有关.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y=b ^x .)解:(1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b ^=0.7.∴a ^=1.05,∴y ^=0.7x +1.05. 回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①“ ”为真是“ ”为真的充分不必要条件;
②“ ”为假是“ ”为真的充分不必要条件;
③“ ”为真是“ ”为假的必要不充分条件;
④“ ”为真是“ ”为假的必要不充分条件。
A、①②B、③④C、①③D、②④
8、设椭圆 的离心率为 ,焦点在x轴上且长轴长为26,若曲线 上的点到椭圆 的两个焦点的距离的差的绝对值等于8,则曲线 的标准方程为()
A、 B、 C、 D、
5、已知P在抛物线 上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )
A、 B、 C、 D、
6、在平面直角坐标系 中,双曲线的中心在坐标原点,焦点在y轴上,一条渐近线的方程为 ,则它的离心率为()
A、 B、 C、 D、2
7、下列结论中,正确的结论为()
1、命题“若 ,则 ”的逆命题、否命题和逆否命题中,假命题的个数为()
A、0B、1C、2D、3
2、过点(0,2)与抛物线 只有一个公共点的直线有()
A、1条B、2条C、3条D、无数条
3、“ ”是“方程 表示直线”的()
A、必要不充分条件B、充分不必要条件
C、充要条件D、既不充分也不必要条件
4、如果 表示焦点在y轴上的椭圆,那么实数k的取值范围是()
15、若双曲线经过点 ,且其渐近线方程为 ,则此双曲线的标准方程为______________。
16、方程 + =1表示的曲线为C,给出下列四个命题:
①曲线C不可能是圆;
②若1<k<4,则曲线C为椭圆;
③若曲线C为双曲线,则k<1或k>4;
④若曲线C表示焦点在x轴上的椭圆,则1<k< 。
其中正确的命题是__________。
(1)求这段抛物线的方程;
(2)炮弹着这段抛物线飞行时,是否会与该小山碰撞?
19、(10分)如图,正方体 的棱长为1,P、Q分别是线段 和 上的点且 ,
(1)求线段PQ的长度;
(2)求证: ;
(3)求证: 。
20、(10分)如图,正方体ABCD—A1B1C1D1的棱长为1,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点。
(1)求直线EF与MN的夹角;
(2)求直线MF与平面ENF所成角的余弦值;
(3)求二面角N—EF—M的平面角的正切值。
21、(12分)在直角坐标系 中,椭圆 的左、右焦点分别为 , 也是抛物线 的焦点,点M为 在第一象限的交点,且 。
(1)求 的方程;
(2)平面上的点N满足 ,直线 ,且与 交于A,B两点,若 ,求直线 的方程。
三、解答题:(本大题共5小题,共52分,解答应写出必要的文字说明、证明过程及演算步骤.)
17、(10分)已知椭圆的短轴长为 ,焦点坐标分别是 和 ,
(1)求这个椭圆的标准方程;
(2)如果直线 与这个椭圆交于不同的两点,求m的取值范围。
18、(10分)如图,点A处为我军一炮兵阵地,距A点1000m的C处有一座小山,山高为580m,在山的另一侧距C处3000m的地方有敌武器库B,且A、B、C在同一水平直线上。已知我炮兵击中敌武器库的炮弹轨迹是一段抛物线,这段抛物线的最大高度为800m,建立适当的平面直角坐标系:
A、 B、 C、 D、
9、已知空间四边形ABCD的每条边和对角线的长都为1,点E、F分别是AB、AD的中点,则 等于()
A、 B、 C、 D、
10、⊿ABC的三个顶点分别是 , , ,则AC边上的高BD长为( )
A、 B、4C、5D、
11、设P是双曲线=1(a>0,b>0)上的点,F1、F2是焦点,双曲线的离心率是 ,且∠F1PF2=90°,△F1PF2面积是9,则a+ b=()
A、4B、5C、6D、7
12、如图所示,正方体 的棱长为1,O是平面 的中心,则O到平面 的距离是()
A、 B、
C、 D、
二、填空题:(本大题共4小题,每小题3分,共12分)
13、命题“ ”的否定是____________________。
14、已知向量 ,且A、B、C三点共线,则
________。
人教版高中数学选修-模块测试题
———————————————————————————————— 作者:
———————————————————————————————— 日期:

选修2-1模块测试试题
一、选择题:(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,有且只有一项符合题目要求.)
相关文档
最新文档