颗粒离散元法建模和仿真的若干进展
离散元法及其应用

2.离散元法的基本原理
2.1 离散元法的基本思想和假定
离散元法的基本思想是, 把研究对象分离为刚性元 素的集合, 使每个元素满足牛顿第二定律, 用中心差 分的方法求解各元素的运动方程, 得到研究对象的 整体运动形态。
2.1 离散元法的基本思想和假定
❖ 离散元法的基本假定: ❖ 1.块体单元为理想刚体,各块体的运动只是空间位置的平
② 运用离散元颗粒流软件PFC2D/3D分析道路工程材料性能, 包括沥青混凝土开裂问题的离散元分析
③ 边坡、地下洞室稳定性分析 ④ 模拟节理岩体动力响应问题,例如施工过程中的爆破和地震
所带来的动力
谢谢!
离散元法及其应用
1.离散元的历史及发展
2.离散元法的基本原理
2.1 离散元法的基本思想和假定 2.2离散元方法的建模
3.离散元法的应用
1.离散元的历史及发展
❖ 20世纪70年代, Cundall提出离散元法(Discrete Element Method, 简称DEM),用以分析散粒群体的力学行为。
移和绕形心的转动,其自身的形状和大小保持不变。 ❖ 2.块体之间的接触视为角-边接触或边-边接触。 ❖ 3.块体之间的接触作用力由节理面的刚度,接触点的相对
位移及有关的阻尼力确定。
2.2 离散元方法的建模
❖ 在采用离散元法分析颗粒的运动过程时,首先应建立颗粒模 型。散体颗粒的三维几何建模方法,通常是由二维建模方法 推广而来,主要有以下几类:
❖ 球颗粒模型: 最常见的球颗粒抽象,也是最容易实现的三维 颗粒模型。
❖ 椭圆颗粒模型: 接触计算较为复杂,计算耗费时间长。 ❖ 球-柱颗粒模型
3.离散元法的应用
① 从简单的几何形状流场到复杂的工业规模的流场地,从二维 到三维,从球形均一尺寸颗粒到非球形有一定粒径分布的情 况都有所涉及。在土木工程领域方面主要集中于:
颗粒流体力学的模拟与实验

颗粒流体力学的模拟与实验前言颗粒流体力学是近年来发展较为迅速的一个研究领域,其广泛应用于物理、化学、生物、地质、工程等领域。
颗粒流体力学的研究方法主要包括理论模型和实验模拟两种,本文将分别介绍这两种方法的相关知识和研究进展。
第一章颗粒流体力学理论模型颗粒流体力学主要研究的是由大量固体颗粒组成的粒子流体,这些颗粒之间的相互作用力会影响颗粒的运动轨迹和排列形态。
在理论模型研究中,一般采用计算机模拟方法,通过建立数学模型和模拟算法来模拟颗粒流体的运动状态。
一、颗粒流体力学的基本原理颗粒流体力学研究的基本原理是多体动力学模型,即对颗粒之间的相互作用力进行建模,通过动力学方程求解颗粒运动轨迹。
多体动力学模型的基本假设是颗粒之间只有简单的碰撞作用,可以通过弹性碰撞理论来描述颗粒之间的相互作用力。
二、颗粒流体力学模型发展历程颗粒流体力学理论模型的发展历程可以分为三个阶段:1、刚性球体模型最早的颗粒流体力学模型是刚性球体模型,即将颗粒看作刚性球体,通过碰撞理论计算颗粒运动轨迹,但该模型忽略了颗粒自身的形变和流体力学特性。
2、软粒子模型为了考虑颗粒自身的形变和流体力学特性,研究者提出了软粒子模型,该模型将颗粒看作弹性球体,并通过流体动力学原理描述颗粒之间的相互作用力。
3、离散元模型离散元模型是目前应用最广泛的颗粒流体力学模型,该模型将颗粒划分为离散的单元,通过牛顿运动定律和分子动力学方法计算颗粒之间的相互作用力。
离散元模型可以模拟颗粒流体的形变、流动和颗粒分布等运动特性,具有较高的精度和可靠性。
第二章颗粒流体力学实验模拟颗粒流体力学实验模拟是将理论模型应用到实际问题中进行验证和优化的一种手段,通过设计实验装置和实验方案,模拟颗粒流体的运动状态,通过实验数据检验理论模型的可靠性和精度,同时提供重要的实验数据支持。
一、实验方法颗粒流体力学实验模拟可以分为三类方法:1、物理实验物理实验是通过设计实验装置和实验方案来模拟颗粒流体的运动状态,但其受到实验条件的限制,难以进行尺度扩展和参数优化。
离散元法

离散元法45080223 宋建涛生物学院农机二班20世纪70年代末,Cundall等人提出离散元法,其基本思想是把颗粒材料简化成具有一定形状和质量颗粒的集合,赋予接触颗粒间及颗粒与接触边界(机械部件)间某种接触力学模型和模型中的参数,以考虑颗粒之间及颗粒与边界之间的接触作用,以及颗粒材料与边界的不同物理力学性质。
离散元法采用动态松弛法、牛顿第二定律和时步迭代,求解每个颗粒的运动速度和位移,特别适合求解非线性问题。
当采用不同的接触模型时,还可以分析颗粒结块、颗粒群整体的破坏过程(如粉碎和切断等)、多相流动,甚至可以包括化学反应和传热等问题。
正是由于诸多优点,使得离散元法已成为研究颗粒材料与边界接触作用和颗粒群体动力学问题的一种通用方法,并在以下领域得到较多应用:①岩土工程(如滑坡)和风沙流动(如雪崩、风化);②颗粒材料的输送、混合、分离(筛分);③颗粒(如土壤)的结块与冲击碰撞;④土壤与机械(如挖掘机)的相互作用;⑤化工过程装备(如流化床)和矿山装备(如球磨机)等。
离散元法在岩石和混凝土力学数值模型方面的最新成就,总结了作者20余年在岩石和混凝土介质离散,接触,断裂分析方面的研究成果,并结合我国实际,阐述了在高坝与地基安全分析中的工程应用实例。
主要内容包括:(1)岩石和混凝土非连续介质数值方法,包括离散元法、刚体弹簧元法、非连续变形分析法等;(2)岩石和混凝土非连续界面的接触力学模型;(3)岩石和混凝土非线性断裂模型,包括弥散裂缝模型与分离裂缝模型;(4)岩石和混凝土离散元与非线性断裂的耦合模型;(5)岩石和混凝土结构与地基安全分析的工程应用,包括岩质边坡的卸荷蠕变,边坡地震动力稳定,高坝断裂分析与高坝地基破坏过程仿真等。
目前为止,有关离散元法的研究大都集中在颗粒的几何模型和接触力学模型等方面,对边界建模的讨论还较少。
已报道的离散元法边界建模方法和离散元法分析软件的边界建模模块大多采用特定函数、特殊脚本语言和命令流等方法,这些方法很难满足复杂结构和不同运动方式机械部件的离散元法边界建模、离散元法仿真分析、边界模型修改和再分析等的要求。
EDEM及其应用研究与最新进展_王雪

2016.No010 2摘 要 随着数值仿真技术的发展,EDEM离散元软件在解决工程问题中发挥着越来越重要的作用。
本文介绍了离散元法的基本原理,通过与PFC离散元软件的对比说明了EDEM软件的功能特点;在阅读大量文献的基础上梳理了EDEM在农业、工业以及土木工程领域的应用情况,并分析了EDEM离散元软件的最新进展以及未来的发展趋势。
关键词 离散元 数值仿真 非连续统 颗粒流0 引言离散元法(Distinct Element Method,DEM)是由Peter Cundall于1971年提出的一种针对复杂非连续系统的动力学问题的新型数值方法。
该方法适用于在准动、静力条件下的块状集合或节理系统的力学问题的研究,最初用来分析岩石边坡的运动。
1980年开始,Cundall等人把离散元法的思想运用到颗粒状物质的微破裂、破裂扩展和颗粒流动等问题研究上[1-2]。
此后,离散元法在理论研究及应用方面均取得了许多进展,逐步运用到化工、土木、农业、矿业等领域中。
在离散元法的发展过程中,多款离散元软件陆续被开发出来。
目前,Peter Cundall加盟的ITASCA工程咨询公司是国际上开发离散元法软件最出名的软件公司。
该公司开发出了二维UDEC(Universal Distinct Element Code)、三维3DEC(3-Dimensional Distinct Element Code)和PFC2/3D(particle flow code in 2/3 dimensions)等离散元程序。
其中UDEC、3DEC是基于显式解题方案的计算工具,为岩土工程提供精确有效分析,特别适用于固体介质在荷载作用下的动静态问题处理。
PFC2/3D是ITASCA公司针对岩体工程中破裂和破裂发展问题EDEM及其应用研究与最新进展王 雪 何 立 周开发(重庆交通大学土木工程学院 重庆 400074)开发出的离散元程序,它可以模拟任意大小、任意形状的二维或三维颗粒的运动情况,并能够分析颗粒与颗粒之间的强大作用[3]。
颗粒流动的数值模拟及实验研究

颗粒流动的数值模拟及实验研究颗粒流动是一种复杂的现象,涉及到颗粒间的相互作用、运动规律等多个方面。
为了深入研究颗粒流动的特征和机理,科研工作者们通过数值模拟和实验研究等多种手段,不断地探索和发现着新的知识和成果。
一、颗粒流动的特征颗粒流动是指由多颗粒组成的流体在外力驱动下的运动,其特征主要包括:流态发生变化、颗粒间存在复杂的相互作用、流体的分布形态和粒子的分布均匀性等方面。
二、数值模拟的研究方法数值模拟是通过计算机模拟的手段对颗粒流动进行分析和研究,其研究方法包括:离散元方法、CFD方法等。
离散元方法,即基于颗粒的微观模型,通过模拟颗粒的运动以及颗粒间的相互作用,得出颗粒流动的宏观行为。
这种方法主要适用于颗粒数较少,流动过程中颗粒的相互作用较为复杂的情况。
CFD方法,即计算流体力学,是基于流体的宏观模型,通过建立热力学方程和动量方程,对流动过程进行模拟和计算。
这种方法适用于流体密度较大、流体动力学参数较为简单的情况。
三、实验研究的手段和方法实验研究是通过实际操作和测量对颗粒流动进行分析和研究,其手段和方法包括:流变仪、振荡板等。
流变仪是实验室中常用的颗粒流变测试仪器,通过测量颗粒在不同条件下的流变特性,分析颗粒流动的变化和特征。
振荡板是一种实验装置,通过振动颗粒床,观察颗粒的运动和变化过程,从而研究颗粒流动的特征和规律。
四、数值模拟和实验研究的应用颗粒流动的数值模拟和实验研究在多个领域中都得到了广泛的应用,如:材料科学、工程力学等。
在材料科学中,颗粒流动的数值模拟和实验研究可用于分析材料的流变特性、制备过程中的颗粒分布、粒度分布等,从而优化材料制备工艺,提高产品质量。
在工程力学中,颗粒流动的数值模拟和实验研究可用于分析颗粒在输送过程中的运动特征、优化输送系统的设计、改进输送效率、降低系统的维护成本等。
综上所述,颗粒流动的数值模拟和实验研究,对于深入了解其特征和机理,优化材料制备工艺,提高系统的输送效率等方面都具有重要的意义和作用。
基于EDEM的颗粒力学模拟方案

基于EDEM的颗粒力学模拟方案北京海基科技发展有限责任公司2015年8月EDEM技术方案1. 采用离散元(DEM)方法研究颗粒系统的必要性。
散体或颗粒材料在自然界和工程中极普遍,分为颗粒和粉体。
按组成相结构,有干散体、颗粒两相流或气-液-固多相流,以及密相颗粒和填隙液体组成的湿颗粒群。
其力学特征可概括为“散”和“动”,前者指颗粒物性、粒度和形状的分散性,后者指破裂、破碎。
过去常用宏观的连续体力学理论分析散体过程,上述散、动特征常与均匀、连续等假定冲突,导致理论与实际偏离。
随着计算技术的进步,出现了计算散体力学领域中新的数值方法-离散元法(Discrete Element Method,DEM)。
DEM的基本思想是把整个介质看作由一系列离散的独立运动的粒子所组成,单元本身具有一定的几何和物理、化学特征。
单元的尺寸是微观的,其只与相邻的单元作用,其运动受经典运动方程控制,整个介质的变形和演化由各个单元的运动和相互位置来描述。
2. EDEM在分析颗粒系统中的优势EDEM是世界上第一个用现代离散元模型科技设计用来模拟和分析颗粒处理和操作的CAE软件。
使用EDEM,可以快速、简便的为我们的颗粒固体系统建立一个参数化的模型,可以通过导入真实颗粒的CAD模型来准确描述它们的形状,通过添加力学性质、物料性质和其它物理性质来建立颗粒模型,并且在处理过程中,可以把产生的数据储存在相应的数据库中。
利用EDEM的Particle Factory TM技术,我们可以根据机械形状来高效生成颗粒集合,其中机械形状可以作为固体模型或表面网格从CAD或CAE系统中导入。
机械组成部分是可以集成的,并且可以对每个部分单独的设定动力学特性。
EDEM也是世界上第一个可以通过与CFD软件耦合来对固-液/气相系统进行颗粒尺度模拟的CAE 软件。
当颗粒间或颗粒和壁面相互作用对系统行为很重要时,EDEM这项独特的技术就能够使我们完成此类型的模拟分析。
离散元数值模型对颗粒颗粒摩擦力仿真

离散元数值模型对颗粒颗粒摩擦力仿真摘要:离散元数值模型(DEM)是一种用于模拟颗粒颗粒间相互作用的数值模型。
在DEM模型中,粒子被视为离散的实体,通过考虑颗粒颗粒之间的力学相互作用来模拟实际颗粒体系的动力学行为。
本文讨论了DEM模型在颗粒颗粒摩擦力仿真中的应用,并介绍了一些常用的方法和技术。
1. 引言离散元数值模型是一种基于颗粒间力学相互作用的数值模拟方法。
它广泛应用于颗粒流动、颗粒堆积、颗粒颗粒碰撞等领域。
颗粒颗粒摩擦力是DEM模型中的一个重要参数,它对颗粒系统的力学行为具有重要影响。
2. DEM模型简介DEM模型将颗粒视为离散的实体,通过求解颗粒间的力学相互作用来模拟实际颗粒体系的运动。
在DEM模型中,每个颗粒被建模为具有质量、形状和位置的刚体。
力学相互作用包括弹性力、摩擦力、粘聚力等。
3. 颗粒颗粒摩擦力模型颗粒颗粒之间的摩擦力是DEM模型中的一个重要参数。
颗粒颗粒间的摩擦力可以通过多种方式建模,常见的方法包括:- 接触力模型:常用的接触力模型包括线性弹簧-阻尼模型、Mohr-Coulomb模型等。
这些模型通过使用弹簧和阻尼元件来模拟颗粒颗粒之间的摩擦力。
- 离散元模型:离散元模型通过将颗粒视为离散的刚体,使用力学相互作用来模拟颗粒颗粒之间的碰撞和摩擦。
- 其他模型:还有一些其他的方法可以用于建模颗粒颗粒之间的摩擦力,例如基于颗粒形状的模型、基于接触表面特征的模型等。
4. DEM模型在颗粒颗粒摩擦力仿真中的应用DEM模型在颗粒颗粒摩擦力仿真中有广泛的应用。
它可以用于研究颗粒颗粒之间的摩擦力对颗粒流动、颗粒堆积等行为的影响。
DEM模型可以提供关于颗粒流动性质、颗粒堆积形态等方面的定量信息。
5. DEM模型中摩擦力参数的确定在使用DEM模型进行颗粒颗粒摩擦力仿真时,摩擦力参数的确定是一个重要的问题。
常见的方法包括实验测定、摩擦力系数调整等。
实验测定方法可以通过直接测量颗粒颗粒之间的摩擦力来获得参数值。
bonded particle method

一、介绍1.1 定义聚合颗粒法(Bonded Particle Method,简称BPM)是一种模拟颗粒材料内部和边界行为的计算方法,它被广泛应用于土力学、工程材料、岩土工程等领域。
1.2 起源BPM最早由英国的休斯教授和印度的帕尔教授在1990年提出,其理论基础源于割线法和离散元法。
二、工作原理2.1 离散元素BPM将固体材料看作数以千计的离散元素,并通过建立它们之间的连接来模拟材料内部的相互作用。
2.2 超弹性碰撞模型BPM采用超弹性碰撞模型描述邻近颗粒之间的相互作用,使得颗粒在受力后可以产生局部的形变和失效。
2.3 粘结力模型除了超弹性碰撞模型外,BPM还引入了粘结力模型来描述颗粒之间的结合力,从而模拟材料的断裂和破碎行为。
三、应用领域3.1 土力学BPM在土力学领域的应用主要包括土体变形、破坏过程、地基工程等方面,为土力学领域的研究和工程实践提供了重要的数值模拟工具。
在工程材料领域,BPM可用于模拟混凝土、砖石、岩石等材料的破坏、强度和变形性能,为工程建筑和材料设计提供了重要的技术支持。
3.3 岩土工程BPM在岩土工程中的应用主要涉及岩土体的变形、破坏、岩土体与结构的相互作用等方面,为岩土工程的工程分析和设计提供了重要支持。
四、发展现状4.1 研究热点目前,BPM在计算仿真领域仍然处于研究热点,研究者们正在不断改进其算法和模型,以提高其在多尺度、多物理场耦合等方面的适用性。
4.2 工程应用在工程实践中,BPM已经广泛应用于地下工程、岩土工程、隧道支护和坍塌现象等方面,为实际工程提供了可靠的数值模拟结果。
五、未来展望5.1 多物理场耦合未来,BPM将更多地与流体动力学、热传导等多物理场耦合,以模拟多尺度的材料行为和复杂的工程过程。
5.2 智能算法随着人工智能技术的发展,BPM也将借助智能算法,实现对材料行为和工程过程的更精确的模拟和预测。
未来,BPM将进一步拓展到材料科学、医学工程、地震工程等新领域,为解决实际工程和科学问题提供更具有前瞻性的技术支持。