[推荐学习]高中数学奥赛系列辅导资料 动点轨迹方程的求法教案

合集下载

高中数学轨迹方程求法——相关点法教案设计

高中数学轨迹方程求法——相关点法教案设计

轨迹方程求法——相关点法教学目标:1、学会用相关点法求动点的轨迹方程2、体会在何种情况可用相关点法求动点的轨迹方程教学重点:相关点法求动点的轨迹方程书写步骤教学难点:何种情况可用相关点法求动点的轨迹方程教学过程:一、引入课题求平面上的动点的轨迹方程不仅是教学大纲要求掌握的主要内容之一,也是高考考查的重点内容之一。

由于动点运动规律千差万别,因此求动点轨迹方程的方法也多种多样,上节课已介绍了常用的方法——定义法,今天我们来学习相关点法求轨迹方程。

二、相关点法的概念Q 随着P 的运动而运动,则称P 、Q 为相关点,其中P 叫主动点,Q 叫从动点。

用动点Q 的坐标(x ,y )表示相关点P 的坐标(x 0、y 0),然后代入点P 的坐标(x 0,y 0)所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法.三、例题分析例1、 已知点A (3,0)为圆922=+y x 外的一点,P 为922=+y x 上的一个动点,M 为线段PA 的中点,求M 的轨迹方程。

分析:在题目中有2个动点P 、M ,其中M 随着P 的运动而运动 ,并且P 在已知圆上的运动,因此可以用相关点法求M 的轨迹方程解:设P ),(00y x ,M ),(y x∵M 为AP 的中点,所以230+=x x , 200+=y y ∴320-=x x , y y 20=又∵P ),(00y x 为圆922=+y x 上一点∴22009x y += ∴9)2()32(22=+-y x∴49)23(22=+-y x ∴M 点轨迹方程为49)23(22=+-y x 小结:相关点法的判断和步骤判断 看题目中是否具有下列条件(1)有主动点和从动点(2)主动点在已知曲线上运动 步骤 (1)设坐标 (2)找关系 (3)代方程. 例2、已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,, 00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四、课堂练习:1. P 是椭圆15922=+y x 上的动点,过P 作椭圆长轴的垂线,垂足为M ,求PM 的中点轨迹方程2. 已知A (2,0),B )2,1(-,点C 在直线032=-+y x 上移动,求∆ABC 重心G 的轨迹方程。

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

动点轨迹方程求解教学设计

动点轨迹方程求解教学设计

动点轨迹方程求解教学设计第一部分:引言(约200字)动点轨迹方程求解是高中数学中的重要内容之一。

掌握动点轨迹方程的求解方法,对于理解和应用数学知识具有重要意义。

本教学设计旨在通过灵活多样的教学方法,帮助学生全面掌握动点轨迹方程的求解技巧。

在本教学设计中,我们将引导学生通过具体问题,逐步分析问题并建立数学模型,最终求解动点轨迹的方程,提高学生的数学能力和问题解决能力。

第二部分:教学目标(约200字)1. 知识目标:掌握动点轨迹方程的求解方法,了解不同类型问题的求解思路。

2. 能力目标:培养学生的问题分析和建模能力,能够灵活运用所学知识解决实际问题。

3. 情感目标:通过动手实践和解决问题的过程,培养学生的数学兴趣和创新精神。

第三部分:教学内容(约500字)1. 基本概念的讲解:首先,我们将讲解动点轨迹的概念以及与方程的关系,引导学生理解动点轨迹方程的意义和作用。

2. 例题分析:通过简单的例题,引导学生深入理解动点轨迹方程的基本求解思路。

例如,给定一个直线方程和一个点,让学生思考并解决点在直线上的问题。

3. 探索问题:设计一系列具体问题,要求学生通过观察、分析和实践来寻找解题方法和规律。

例如,通过让学生分析点在圆上的运动规律,引导学生建立点在圆上的动点轨迹方程。

4. 案例分析:选取一些实际问题,并引导学生分析问题可以转化为动点轨迹方程的求解。

例如,给定一个楼梯的高度和斜度,让学生思考并解决一个物体从楼梯上滚下的问题。

5. 拓展应用:为了提高学生的创新思维和问题解决能力,设计一些拓展应用题,让学生灵活应用所学知识解决更复杂的问题。

第四部分:教学方法(约300字)1. 讲授法:通过直观的图像和示例,向学生讲解动点轨迹方程的基本概念和求解方法,帮助学生建立直观的认知。

2. 探究法:通过引导学生观察问题、实践和讨论,培养学生的问题解决能力和创新精神,激发他们的学习兴趣。

3. 讨论法:组织学生进行小组讨论,让学生互相提问、思考和帮助,促进知识和经验的交流,提高学生的学习效果。

轨迹方程教案范文

轨迹方程教案范文

轨迹方程教案范文教案:轨迹方程一、教学目标:1.掌握轨迹的概念及其数学表达方式。

2.理解轨迹方程的含义及基本求解方法。

3.能够运用轨迹方程解决与实际问题相关的数学问题。

二、教学重点:1.轨迹的概念及其数学表达方式。

2.轨迹方程的含义及基本求解方法。

三、教学难点:1.轨迹方程的含义及基本求解方法。

2.运用轨迹方程解决与实际问题相关的数学问题。

四、教学过程:1.导入新课:通过展示一些日常生活中的轨迹(如自行车轮胎的轨迹、手机屏幕上的轨迹等),让学生了解轨迹的概念,并引导学生思考如何用数学语言描述这些轨迹。

2.引入轨迹方程:通过对轨迹问题的分析,引导学生认识到轨迹问题的本质就是求解方程的问题。

比如,如果一个点的坐标满足一些方程,那么这个点就在这个方程所描述的轨迹上。

3.轨迹方程的基本形式:a. 直线的轨迹方程:直线上的任意一点(x, y)的坐标满足 y = kx + b,其中 k 和 b 是常数。

b.圆的轨迹方程:圆上的任意一点(x,y)的坐标满足(x-a)²+(y-b)²=r²,其中(a,b)是圆心的坐标,r是半径的长度。

c. 抛物线的轨迹方程:抛物线上的任意一点(x, y)的坐标满足 y = ax² + bx + c,其中 a、b 和 c 是常数。

4.轨迹方程的求解方法:a.直线的轨迹方程求解方法:由已知的点和直线的特性确定k和b的值,然后写出方程。

b.圆的轨迹方程求解方法:由已知的圆心坐标和半径长度确定(a,b)和r的值,然后写出方程。

c.抛物线的轨迹方程求解方法:由已知的点和抛物线的特性确定a、b和c的值,然后写出方程。

5.运用轨迹方程解决问题:通过实例演示,让学生理解如何根据问题中的已知条件,列出轨迹方程,并求解出满足条件的未知数的值。

6.练习与拓展:提供一些轨迹问题,要求学生利用所学的知识来解决问题,并提供一些拓展问题进一步巩固与拓展学生的知识。

7.总结与评价:让学生总结本课所学的内容,并评价轨迹方程在解决实际问题中的重要性。

动点轨迹方程的求法教案高中数学奥赛教程集

动点轨迹方程的求法教案高中数学奥赛教程集

学科:奥数教学内容:动点轨迹方程的求法一、直接法按求动点轨迹方程的一样步骤求,其进程是建系设点,列出几何等式,坐标代换,化简整理,要紧用于动点具有的几何条件比较明显时.例1(1994年全国)已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.解:设M (x ,y ),直线MN 切圆C 于N ,则有 λ=MQ MN,即 λ=-MQON MO 22, λ=+--+2222)2(1yx y x . 整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这确实是动点M 的轨迹方程.若1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线; 若λ≠1,方程化为2222222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122-+λλ为半径的圆.二、代入法若动点M (x ,y )依托已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或知足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一样用于两个或两个以上动点的情形.例2 (1986年全国)已知抛物线12+=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :P A =1:2,当点B 在抛物线上变更时,求点P 的轨迹方程,并指出那个轨迹为哪一种曲线.解:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2==PB AP λ, ∴ .2121,212311++=++=y y x x 解得2123,232311-=-=y y x x .又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,∴ .1)2323()2123(2+-=-x y 整理得点P 的轨迹方程为),31(32)31(2-=-x y 其轨迹为抛物线.三、概念法若动点运动的规律知足某种曲线的概念,则可依照曲线的概念直接写出动点的轨迹方程.此法一样用于求圆锥曲线的方程,在高考中常填空、选择题的形式显现.例3 (1986年广东)若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是(A )012122=+-x y(B )012122=-+x y(C )082=+x y(D )082=-x y解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为核心,直线x =4为准线的抛物线,而且p =6,极点是(1,0),开口向左,因此方程是)1(122--=x y .选(B ).例4 (1993年全国)一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为(A )抛物线 (B )圆(C )双曲线的一支 (D )椭圆解:如图,设动圆圆心为M ,半径为r ,则有 .1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线概念知,其轨迹是以O 、C 为核心的双曲线的左支,选(C ).四、参数法若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点转变受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为一般方程.例5 (1994年上海)设椭圆中心为原点O ,一个核心为F (0,1),长轴和短轴的长度之比为t .(A )求椭圆的方程;(2)设通过原点且斜率为t 的直线与椭圆在y 轴右边部份的交点为Q ,点P 在该直线上,且12-=t t OQ OP ,当t 转变时,求点P 的轨迹方程,并说明轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+ 由题意得⎪⎩⎪⎨⎧==-,,122t ba b a解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 因此椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQOP=得 ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y tx t y t x 或 其中t >1.消去t ,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x . 其轨迹为抛物线y x 222=在直线22=x 右边的部份和抛物线y x 222-=在直线22-=x 在侧的部份. 五、交轨法一样用于求二动曲线交点的轨迹方程.其进程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例6 (1985年全国)已知两点)2,0(),2,2(Q P -和一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线P A 和QB 交点M 的轨迹方程.解:P A 和QB 的交点M (x ,y )随A 、B 的移动而转变,故可设)1,1(),,(++t t B t t A ,则P A :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,P A 与QB 的交点坐标也知足上式,因此点M 的轨迹方程是 .0822222=+--+-y x x y x以上是求动点轨迹方程的要紧方式,也是经常使用方式,若是动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但不管用何方式,都要注意所求轨迹方程中变量的取值范围.。

求动点的轨迹方程(教学设计)

求动点的轨迹方程(教学设计)

求动点的轨迹方程(教学设计)教学目标:根据条件,想象动点轨迹曲线的形状,学生之间能沟通交流; 用几何画板演示,验证想象的正确性;用坐标法求动点轨迹方程.教学重点:用坐标法求动点轨迹方程.教学难点:根据条件,想象动点轨迹曲线的形状.教学过程:一、辅助点法例1. 在圆422=+y x 上任取一点P ,过点P 作x 轴的垂线段,垂足为D.当点P在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?方法1:想象动点轨迹(或满足条件的点的集合)→用信息技术验证想象的正确性,形成动点M 的轨迹曲线.方法2:求动点的轨迹方程,根据方程判断轨迹形状.(注意过程步骤)变式1. 延长DP 至N ,使得P 是DN 的中点. 当点P 在圆上运动时,N 的轨迹是什么?评述:上面问题是从圆出发形成椭圆,你还有哪些心得?二、直接代入法例2.已知点A )05(,-、B )05(,,直线AM 与BM 相交于点M ,且它们的斜率之积是94-.点M 的轨迹是什么?方法:用信息技术探索点M 的轨迹,注意斜率存在的条件.变式2.1. 直线AM 与BM 的斜率之积是49-呢?1-呢?变式2.2. 直线AM 与BM 的斜率之商是2呢?评述:上面问题是从直线的斜率出发形成椭圆,你还有哪些心得?例3. 动点M )(y x ,到定点F )04(,的距离与它到定直线l :425=x 的距离之比是常数54,动点M 的轨迹是什么? 变式3. 动点M )(y x ,到定点F )05(,的距离与它到定直线l :516=x 的距离之比是常数45,动点M 的轨迹是什么?评述:圆锥曲线的第二定义,仅仅作为例题应用,不向学生说明.三、定义法例4. 圆O 的半径为r ,A 是圆O 内的一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是什么?变式4. 若A 是圆O 外的一个定点,当点P 在圆上运动时,点Q 的轨迹是什么?评述:根据定义得Q 点的轨迹是椭圆,但求方程还需恰当建立直角坐标系.小结:求动点轨迹,要先根据条件收集信息,想象轨迹曲线的大致形状,有条件的可以用信息技术验证,并注意挖去不满足条件的点.用坐标法求动点轨迹方程时,要走完五步:建→设→限→代→化,用方程来检验曲线,注意不满足条件的点应排除.。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

求动点轨迹方程的基本方法教学案蒋爱红

求动点轨迹方程的基本方法教学案蒋爱红

求动点轨迹方程的基本方法蒋爱红1、学法重点:掌握求动点轨迹的基本方法.2、难点:找动点满足的等量关系.3、易错点:用坐标正确表达等量关系以及剔除不满足条件的点4、求动点轨迹方程的基本方法有::直接法、代入法、定义法、公式法、几何法、参数法、参数方程法、极坐标法、向量法5、本节课重点复习:(1)直接法 (2)代入法 (3)定义法 (4)几何法 (5)参数法选讲例题:(1)直接法例1. 两根木棒在平面内绕着相距2a 的A 、B 两点旋转,求适合下列条件的P 的轨迹方程(1)PB PA ⊥(2)PAB PBA ∠=∠2(3)3π=∠+∠PBA PAB (2)代入法例2. ∆ABC 的两顶点坐标为A (-2,0),B (2,0),第三个顶点C 在抛物线12+=x y 上移动,求这个三角形重心的轨迹方程。

例3. AB 是半径为R 的圆的直径,动弦AB MN⊥,求直线AN 与MB 的交点P 的轨迹方程。

(3)定义法 (4)例4. 求椭圆 12222=+b y a x 的右焦点F 2以椭圆的一条切线为对称轴的对称点P 的轨迹方程.例5. 已知B 、C 是∆ABC 的两个顶点,AB 、AC 边上的中线长之和为30,求此三角形的重心G 和顶点A 的轨迹方程。

(4)几何法例6. 已知点A(a,b) (a,b 不为零),过A 任作两条互相垂直的直L 1 和L 2,直线L 1、L 2与x 轴、y 轴分别交于点N 和M ,求线段MN的中点P 的轨迹方程。

例7. 已知P (1,2)圆c: x 2+y 2=25内的一个定点,圆上的动点A 、B 满足∠APB=900求弦AB 的中点Q 的轨迹方程.例8. 已知定点A (0,2)及⊙o :x 2+y 2=4过A 作MA 切⊙o 于A ,M 为切线上的一动点,MQ 切⊙o 于点Q ,求△MAQ 的垂心H 的轨迹方程。

(5)参数法例9. 三角形的顶点A 固定,BC 在X 轴上且BC=2a,当BC 沿着x 轴移动,求△ABC 外心的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点轨迹方程的求法
一、直接法
按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.
例1(1994年全国)已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.
解:设M (x ,y ),直线MN 切圆C 于N ,
则有 λ=MQ MN

即 λ=-MQ
ON MO 2
2, λ=+--+2222)2(1
y x y x .
整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程. 若1=λ,方程化为45=x ,它表示过点)0,4
5(和x 轴垂直的一条直线; 若λ≠1,方程化为222
2222
)
1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122
-+λλ为半径的圆.
二、代入法
若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.
例2 (1986年全国)已知抛物线12+=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.
解:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2==
PB AP λ, ∴ .2
121,212311++=++=y y x x
解得2
123,232311-=-=y y x x . 又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,
∴ .1)2
323()2123(2+-=-x y 整理得点P 的轨迹方程为
),3
1(32)31(2-=-x y 其轨迹为抛物线.
三、定义法
若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.
例3 (1986年广东)若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是
(A )012122=+-x y
(B )012122=-+x y
(C )082=+x y
(D )082=-x y
解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).
例4 (1993年全国)一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为
(A )抛物线 (B )圆
(C )双曲线的一支 (D )椭圆
解:如图,设动圆圆心为M ,半径为r ,则有
.
1,
2,
1=-+=+=MO MC r MC r MO
动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ).
四、参数法
若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制
约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.
例5 (1994年上海)设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .
(A )求椭圆的方程;
(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且12-=t t OQ OP
,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.
解:(1)设所求椭圆方程为
).0(12
2
22>>b a b x a y =+ 由题意得⎪⎩⎪⎨⎧==-,,122t b
a b a
解得 ⎪⎪⎩
⎪⎪⎨⎧-=-=.11.12222
2t b t t a 所以椭圆方程为
222222)1()1(t y t x t t =-+-.
(2)设点),,(),,(11y x Q y x P 解方程组
⎩⎨⎧==-+-,,)1()1(11
22122122tx y t y t x t t 得 ⎪⎪⎩
⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ
OP
=得 ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,
2,
2,2222t y t
x t y t x 或 其中t >1.
消去t ,得点P 轨迹方程为
)2
2(222>=x y x 和)2
2(222-<-=x y x . 其轨迹为抛物线y x 222=在直线2
2=x 右侧的部分和抛物线y x 222-=在直线2
2-=x 在侧的部分. 五、交轨法
一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.
例6 (1985年全国)已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.
解:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则
PA :),2)(2(2
22-≠++-=
-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x
当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是 .0822222=+--+-y x x y x
以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.。

相关文档
最新文档