河南省重点中学郑州外国语学校试卷

合集下载

河南省郑州市外国语中学2025届高三最后一卷数学试卷含解析

河南省郑州市外国语中学2025届高三最后一卷数学试卷含解析

河南省郑州市外国语中学2025届高三最后一卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,若复数103m i ++(m R ∈)是纯虚数,则m 的值为( ) A .3- B .1- C .1 D .32.已知1F 、2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过2F 作双曲线C 的一条渐近线的垂线,分别交两条渐近线于点A 、B ,过点B 作x 轴的垂线,垂足恰为1F ,则双曲线C 的离心率为( )A .2B .3C .23D .53.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<4.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .2235.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( ) A .5 B .10 C .15D .20 6.设实数满足条件则的最大值为( ) A .1 B .2 C .3D .4 7.已知函数()(0)f x x x x =->,()x g x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( )A .123x x x <<B .213x x x <<C .231x x x <<D .312x x x <<8.设()'f x 函数()()0f x x >的导函数,且满足()()2'f x f x x >,若在ABC ∆中,34A π∠=,则( ) A .()()22sin sin sin sin f A B f B A < B .()()22sinC sin sin sin f B f B C< C .()()22cos sin sin cos f A B f B A > D .()()22cosC sin sin cos f B f B C > 9.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( )A .m ∥n m n ,,αβ⊂⊂B .m ∥n m n ,,αβ⊥⊥C .m n m ,⊥∥,n α∥βD .m n m ,⊥n ,αβ⊥⊥10.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( )A .2B .4C .23D .27 11.某公园新购进3盆锦紫苏、2盆虞美人、1盆郁金香,6盆盆栽,现将这6盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种A .96B .120C .48D .7212.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为( )A .13B .12C .23D .34二、填空题:本题共4小题,每小题5分,共20分。

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

郑州外国语学校2024-2025学年高二上期月考语文参考答案一、现代文阅读(16分)(一)现代文阅读Ⅰ(本题共5小题,16分)1.【答案】B【解析】“会做出错误的定义或划分使推理出现瑕疵”错,材料一第一段“人类理性的活动是推演性的,而推演活动又是一种生产性的或构造性的,理性并不保证它在生产或构造或构成中不会出错,相反,它可能会做出错误的定义或划分,推理会出现瑕疵,思想会产生混乱”,可看出原文是“可能会”。

故选:B。

2.【答案】C【解析】“为了正面证明‘无理而妙’的艺术效果已经得到了学者的认可和重视”错。

引用鲁迅的话是为了从反面论证单靠逻辑和理性不能正确有效地品读鉴赏诗歌的语言,即“诗人的语言不能用常理来衡量”。

故选:C。

3.【答案】D【解析】先看“无理而妙”。

材料二第一段“语言运用的艺术,在某些情况下,又是可以突破逻辑规律的框框的,这不仅无碍于语言运用的正确,而且反而使得语言运用收到更好的艺术效果,这就是‘无理而妙’”。

A.“春风”不知离别之苦,也不能决定柳条是否发青。

李白却赋予春风以人的情感,春风不让柳条发青,怕离别之人又饱受别离的苦楚,从物的角度表现“无理而妙”。

B.不忿:恼恨、嫌恶。

思妇久盼归人,出门眺望,未见亲人,把失望迁怒于啼叫的喜鹊,表现其盼归之苦,无理而妙。

C.花不能“弄”影,此处用拟人手法,暗示有风。

一个“弄”字,生动细致地写出晚风吹拂时花影晃动之态,无理而妙。

D.是现实主义表达,没有突破思维逻辑的语言表达,不能体现“无理而妙”的艺术效果。

故选:D。

4.【答案】①材料一从逻辑内涵的角度强调逻辑是一门科学,又是一门艺术,还是一种理性精神。

②材料二从逻辑运用的角度强调语言艺术可以突破逻辑规律,达到“无理而妙”的效果,而“无理而妙”是建立在深邃的逻辑基础上的智慧和能力。

5.【答案】大前提:一个身在最高层的人是不害怕浮云挡住视线的。

小前提:我是一个身在最高层的人。

结论:我是不害怕浮云挡住视线的。

河南省郑州市外国语学校2024-2025学年高一上学期期中考试物理试卷(含答案)

河南省郑州市外国语学校2024-2025学年高一上学期期中考试物理试卷(含答案)

郑州外国语学校2024—2025学年高一上期期中考试试卷物理(75分钟100分)一、单项选择题(本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项符合题目要求,选对的得4分,选错得0分)1.自然界中某量D 的变化可记为,发生这个变化所用的时间间隔可以记为,两者之比就是这个量对时间的变化率,简称变化率。

则对于此定义的理解,下列说法正确的是()A .变化率是描述相关量变化快慢的物理量B .某量D越大,则其变化率也越大C .由可知,位移变化越大,则速度v 越大D .由可知,加速度即为速度变化率,故加速度越大,则速度变化越大2.“雪龙2号”是我国第一艘自主建造的极地破冰船,能在1.5米厚的冰层中连续破冰前行。

破冰船前行过程中,碎冰块对船体弹力和摩擦力的示意图正确的是()A .B .C .D .3.一质量为m 的“心形”吊坠穿在一根不计重力的光滑细线上,吊坠可沿细线自由滑动。

某人手持细线两端,让吊坠静止在空中,如图所示,已知细线与竖直方向夹角为,重力加速度为g ,则细线上的拉力大小为()A .B .C .D .D ∆t ∆D t ∆∆D t ∆∆x v t∆=∆x ∆v a t∆=∆θ2sin mgθ2cos mgθsin 2mg θcos 2mg θ4.一汽车从静止开始做匀加速直线运动,然后刹车做匀减速直线运动,直到停止。

下列速度v 和位移x 的关系图象中,能描述该过程的是()A .B .C .D .5.一个做匀加速直线运动的物体,先后经过a 、b 两点时的速度分别为v 和,通过段的时间是t ,则下列说法错误的是()A .经过中间时刻的速度是B.前时间通过的位移与后时间通过的位移之比为C .前时间通过的位移比后时间通过的位移少D .经过中间位置的速度是6.如图所示,竖直固定放置的光滑大圆环,其最高点为P ,最低点为Q 。

现有两个轻弹簧1、2的一端均栓接在大圆环P点,另一端分别栓接M 、N 两小球,两小球均处于平衡态。

河南省郑州外国语学校2024-2025学年高一上学期第一次月考英语试卷

河南省郑州外国语学校2024-2025学年高一上学期第一次月考英语试卷

河南省郑州外国语学校2024-2025学年高一上学期第一次月考英语试卷一、阅读理解Amsterdam is one of the most popular travel destinations in the world, famous for its beautiful canals, top art museums, cycling culture and so on. It is the capital city of the Netherlands and often referred to as the “Venice of the North” because of its expansive system of bridges and canals. Here are some of the key points to remember as you plan your trip to Amsterdam.Must-See AttractionsMost visitors begin their Amsterdam adventure in the Old Centre, which is full of traditional architecture, shopping centers, and coffee shops. You’ll also want to check out Amsterdam’s Museum Quarter in the South District, which is great for shopping at the Albert Cuyp Market and having a picnic in the V ondelpark. The top museums to visit there are the Rijksmusuem, the Ann Frank House, and the Van Gogh Museum.If You Have TimeThere are several other unique districts in Amsterdam, and you should try to explore as many of them as time allows. The Canal Ring is a UNESCO World Heritage Site that was originally built to attract wealthy home owners and is a center for celebrity spotting and nightlife today. The Plantage area has most of the city’s museums and the botanical gardens.Money Saving Tips●Unless you really want to see the tulips(郁金香) blooming, avoid booking between mid-March and mid-May. This is when hotel and flight prices rise.●Look for accommodations in Amsterdam’s South District, where rates are generally cheaper than in the city center.●Buy train tickets at the machine instead of the counter to save a bit of money.●Instead of hiring a tour guide, hop on a canal boat. They’re inexpensive and will give youa unique point of view of the city.Check out our homepage to view price comparisons for flights, hotels, and rental cars beforeyou book.1.What can be learned about Amsterdam from this passage?A.The Van Gogh Museum lies in the South District.B.The Canal Ring is a place to attract garden lovers.C.The Old Centre is a UNESCO World Heritage Site.D.Amsterdam is called the “Venice of the North” because of its location.2.In order to save money in Amsterdam, you can ________.A.arrange a guided tour B.buy train tickets at the counterC.reserve a hotel in the South District D.book flights between mid-March andmid-May3.Where is the passage most probably taken from?A.A magazine.B.An essay.C.A report.D.A website.While famous foreign architects are invited to lead the designs of landmark buildings in China such as the new CCTV tower and the National Center for the Performing Arts, many excellent Chinese architects are making great efforts to take the center stage.Their efforts have been proven fruitful. Wang Shu, a 49-year-old Chinese architect, won the 2012 Pritzker Architecture Prize — which is often referred to as the Nobel Prize in architecture — on February 28. He is the first Chinese citizen to win this award.As head of the Architecture Department at the China Academy of Art (CAA), Wang has an office at the Xiangshan campus of the university in Hangzhou. Many buildings on the campus are his original creations. The style of the campus is quite different from that of most Chinese universities. Many visitors are amazed by the complex architectural space and different building types. The curves (曲线) of the buildings perfectly match the rise and fall of hills, forming a unique view.Wang collected more than 7 million abandoned bricks of different ages. He asked the workers to use traditional ways to make the bricks into walls, roofs and corridors. This creation attracted a lot of attention thanks to its mixture of modern and traditional Chinese elements (元素).Wang’s works show a deep understanding of modern architecture and a good knowledge oftraditions. Through such a balance, he had created a new type of Chinese architecture.Wang believes traditions should not be sealed in glass boxes at museums. “That is only evidence that traditions once existed. Many Chinese people have a misunderstanding of traditions. They think tradition means old things from the past. In fact, tradition also refers to the things that have been developing and that are still being created,” he said.The study of traditions should be combined with, practice. Otherwise, the recreation of traditions would be artificial and empty, he said.4.Wang’s winning of the prize means that Chinese architects are ________.A.following the latest world trend B.getting international recognitionC.working harder than ever before D.relying on foreign architects5.What impressed visitors to the CAA Xiangshan campus most?A.Its hilly environment.B.Its large size.C.Its unique style.D.Its diverse functions.6.What made Wang’s architectural design a success?A.The mixture of different shapes.B.The balance of East and West.C.The use of popular techniques.D.The harmony of old and new.7.What should we do about Chinese traditions according to Wang?A.Spread them to the world.B.Protect them at museums.C.Teach them in universities.D.Recreate them in practice.Bed rotting — the practice of spending long periods of time just staying under the covers with snacks, screens and other creature comforts — is gaining popularity on social media. Some Generation Z trend followers are now considering it as a form of self-care, but doctors warn too much could be “sign of depression”. Are these extended breaks really wise for one’s mental health — or could they be a cause for concern?Dr. Ryan Sultan, a professor treating many young people, called the bed rotting trend attractive. “In our culture today, with too much to do, too many expectations and too much productivity, many young individuals (个人) are feeling tired and often aren’t getting enough sleep. It’s easy to see why taking time off to lie around is attractive,” Sultan said. “In many ways, this is beneficial. It’s a chance to get away from real-life problems and clear your head beforereturning to life in a better state of mind,” he added.For the downside, however, he said a long-term need or desire for bed rotting could do harm to one’s physical health. Spending too many daytime hours in bed — awake or not — could destroy sleep schedules. Our brains are fine-tuned for sleep in darkness and alertness in light. Lying in bed half-asleep during the day will worsen sleep schedules — once that happens, it is a challenge to fix. It could also lead to blood pressure problems and obesity (肥胖).Long-term need or desire for bed rotting could also be a warning sign of depression, according to a mental health expert. Dr. Marc Siegel, professor of medicine, agreed that while some downtime can be useful in terms of de-stressing and rejuvenation (更新), too much bed rotting is bad. In addition to increasing the risk of depression, it contributes to decreased motivation (动力) as well.Instead of bed rotting, Siegel recommends regular exercise as a better form of de-stressing. While the occasional lazy day can be beneficial, too much could have the opposite effect. If it happens every day, that’s a fairly sensitive test for depression. Those who lack the motivation to get out of bed could also try calling or texting a family member for support, socializing with close friends, finding a small task to complete, or reaching out to a medical professional for help. 8.According to Dr. Ryan Sultan, why do young people like bed rotting?A.Bed rotting is a way to escape stress.B.Bed rotting helps fix sleep schedules.C.They are unwilling to socialize with friends.D.They are fond of what is popular on social media.9.What does the word “fine-tuned” underlined in Paragraph 3 probably mean?A.Quickly-started.B.Well-trained.C.Badly-needed.D.Ill-equipped. 10.What can we learn from the passage?A.Feeling down leads to decreased motivation.B.Sleeping in light can increase the risk of depression.C.Young individuals meet expectations through bed rotting.D.Being lazy from time to time can be good for individuals.11.What is the passage mainly talking about?A.Different opinions on how to become motivated.B.Main causes of the long-term need for bed rotting.C.Practical suggestions for young people to deal with stress.D.Possible problems from lying in bed for extended periods of time.Sportsmanship is the cornerstone of competitive sports, representing the principles of fair play, respect and honesty. It goes beyond winning and losing, emphasizing the importance of moral behavior, respecting each other, and fellowship.At the heart of sportsmanship lies the concept of fair play. It fosters (培养) a culture of rule-following, fair judgment, and equal opportunities for all participants. Fair play encourages athletes to compete with integrity, showing honesty and accepting the outcomes gracefully. It fosters an environment where cheating, unsportsmanlike and rude behavior are discouraged. By upholding fair play, athletes develop a sense of morality (道德) and a strong character that extends beyond the field of sports.Sportsmanship also includes respect and empathy (共情), creating an environment that encourages understanding and camaraderie. Athletes show respect for opponents, officials, and teammates, recognizing their contributions and valuing their abilities. They appreciate the various backgrounds, skills and perspectives that athletes from different teams bring to the game. Through respect and empathy, sportsmanship bridges gaps, promotes inclusivity and fosters a sense of unity among athletes and fans alike.Sportsmanship is shown by athletes who act as role models, inspiring others with their conduct on and off the field. When athletes display sportsmanship, they send a powerful message to young fans, teaching them the importance of fair play, respect and moral behavior. This positive influence extends to society as a whole, where sportsmanship can shape attitudes, values and behaviors beyond the field of sports. By upholding the principles of sportsmanship, athletes contribute to a healthier, more caring society.Sports organizations, coaches and educators play an important role in promoting sportsmanship. They should foster an environment that encourages fair play, respect and honesty. Emphasizing sportsmanship in training programs and competitions helps athletes develop a strong moral compass,empowering them to make moral choices both in sports and in life. Furthermore, fans and audience should also welcome sportsmanship, creating a positive atmosphere thatencourages fair competition and respect for all participants.Sportsmanship is the bedrock of competitive sports, emphasizing the values of fair play and respect. It improves the sporting experience, fosters unity and shapes athletes into responsible and caring individuals. By promoting sportsmanship, we can create a sporting culture where victories are celebrated but fairness, respect and the spirit of the game take center stage.12.What does the underlined word “camaraderie” mean in Paragraph 3?A.Friendship.B.Leadership.C.Contribution.D.Competition. 13.What are Paragraphs 2 and 3 mainly about?A.How sportsmanship is understood.B.Why sportsmanship is stressed.C.When sportsmanship is shaped.D.Where sportsmanship is treasured. 14.What can be learned from Paragraph 5?A.Athletes should be trained to make moral choices.B.Audience could influence athletes’ performance in sports.C.Promoting sportsmanship requires everyone’s contribution.D.Officials should take a lead in creating a positive atmosphere.15.What is the best title for this passage?A.Sportsmanship:Advantages of Doing SportsB.Sportsmanship:Spirit of Fair Play and RespectC.Showing Sportsmanship:Qualities of a Good PlayerD.Teaching Sportsmanship:Values of Honesty and CourageIn our modern economy, accelerated learning can be crucial for success. Learning faster means gaining more knowledge—quicker than others. 16 Anyone can learn from them and accelerate their learning process with the following techniques. Combine Learning Styles That Play to Your StrengthsWhen you aim to accelerate your learning, what you choose to learn should not be limited to a curriculum or classroom structure. 17 Different materials along with your learning style can accelerate or slow down your comprehension process. The best learning style is the one that makes it easier to process, or comprehend ideas, and subjects faster. Once you know your learning strengths and weaknesses, you can choose learning strategies that play to your strengths. SeekFirst to Understand The Basic Structure of The Topic You Choose18 So you need to seek first to understand the basics. In other words, you have to get to know the tree’s root, trunk, then branch out from there. Don’t start from the branches or the leaves, pursue the root and work your way to the topic. Therefore, whatever topic you choose to learn or study, just start with the basics. Give Yourself Plenty of Time in Both “Focused” And “Diffused”(分散的)ModesNormally, the human brain is not meant to stay in “focused” mode for hours at a time.19 Consequently, when your brain is active for a very long time, you’re actually blocking your access to the diffused mode — a more relaxed state.Therefore, diffused mode is just as valuable as the focused mode. So — just take breaks, let your mind wander, think about other things, and give your brain plenty of time to make better connections. 20A.You can benefit a lot from staying focused.B.Smart learners don’t have any special secrets.C.You should try to choose whatever you like best.D.Every topic or subject has a logical structure to it.E.Then you can learn better by imposing breaks on yourself.F.Long-lasting attention to a single task can block memory and recall.G.You can practically choose content from many sources, experts, and authors.二、完形填空For me, nothing is more satisfying than discovering hidden treasure in secondhand shops.21 , one person’s trash is another person’s 22 .Two years ago, I 23 a collection of old, dusty photos. I thought: if these were mine, or my family’s, I’d want someone to 24 them to me. So I made it my goal to do so for others.I’ve since visited secondhand shops weekly, and have 25 more than 50,000 of these items. Photos, home movies, undeveloped film — you name it, I’ve got it.I’ve also set up a social media account to help reunite items with their 26 . The firstitem I 27 was a tape of a family holiday that I digitized. It was a video of two parents and a son of 28 age on a trip in the 90s — the son was wearing a T-shirt with the words “Wesleyan swimming” on it. My followers asked university swimming coaches across the US if they knew the student. After just a few days, someone recognized him and we found him on social media. He couldn’t believe it and was extremely excited to get the tape.The 29 we’ve taken to find someone is four months, but I’m proud that we still 30 to do it. There are thousands of photos that have yet to be reunited. 31 social media, this project would be next to impossible. Of course, I have some 32 , including not sharing sensitive photos and removing posts if the family does not want their memories online.Nowadays, we seldom think before we take pictures with camera phones, but back then someone had made a conscious effort to keep that memory. Therefore, I want to 33 people to take care of their own family history and memorabilia (纪念品) 34 they don’t end up getting lost. Now, I’m putting together a team to 35 and return the photos. People get hooked on the feel-good stories that come out of this and I do, too. 21.A.After all B.First of all C.In all D.Most of all 22.A.trick B.trouble C.treasure D.treatment 23.A.came across B.came up with C.came out D.came along 24.A.donate B.offer C.present D.return 25.A.charged B.created C.completed D.collected 26.A.sellers B.owners C.users D.makers 27.A.checked B.exchanged C.posted D.contacted 28.A.middle B.college C.working D.kindergarten 29.A.easiest B.oldest C.longest D.greatest 30.A.meant B.failed C.managed D.happened 31.A.Besides B.Beyond C.Through D.Without 32.A.examples B.rules C.requests D.suggestions 33.A.introduce B.include C.inspire D.inform 34.A.even if B.as though C.in case D.so that 35.A.leave out B.give away C.make up D.care for三、单项选择36.He worked as a kitchen boy for a restaurant ________ accommodation.A.in need of B.in exchange for C.in preference to D.in contact with 37.As a ________ who has left college for over half a year, Marry finds it ________ to get a good job.A.graduate; challenged B.graduation; challengingC.graduation; challenged D.graduate; challenging38.Having worked as a doctor for so many years, Mr. White has ________ rich experience in battling with various diseases.A.accumulated B.accommodated C.accompanied D.accomplished 39.Now I can admit that I am ________ to the Internet. I spend hours of my free time online.A.applied B.contributed C.addicted D.devoted 40.They prefer ________ off the birthday party till next Sunday rather than ________ it without the presence of their manager.A.putting; hold B.putting; holding C.to put; holding D.to put; hold 41.Inca builders cut stones to exact sizes so that nothing was needed to hold walls together________ the perfect fit of the stones.A.apart from B.other than C.regardless of D.far from 42.Because of his laziness, he has only a ________ chance of passing the exam.A.slim B.thin C.light D.rare43.The charity’s annual event aims to ________ money for poor children, providing them with educational resources and opportunities.A.credit B.earn C.raise D.exchange 44.From the teacher’s ________ look, we could see that he hadn’t expected that we could raise such a ________ question to him.A.confused; confusing B.confusing; confusionC.confusing; confused D.confused; confusion45.I haven’t seen Sara since she was a little girl, and she has changed ________.A.within recognization B.beyond recognizationC.beyond recognition D.within recognition46.The book provides an introduction to artificial intelligence and its ________ to healthcare and medicine.A.adaptation B.accommodation C.arrangement D.application47.If you ________ fat and sugar in your foods, you will be much healthier.A.cut off B.cut up C.cut out D.cut across 48.Take-off and landing procedures have been tightened after two planes ________ escaped disaster.A.actually B.narrowly C.obviously D.closely49.________ her great age, she was very graceful indeed, standing with her hands ________ on her hip.A.Though; rest B.Although; resting C.Despite; rest D.Despite; resting 50.Such is human nature, that a great many people are often willing to ________ higher pay for the ________ of becoming white-collar workers.A.worship; honor B.sacrifice; privilege C.request; privilege D.survive; honor四、语法填空阅读下面材料,在空白处填入适当的内容(1个单词)或括号内单词的正确形式。

河南省郑州市郑州外国语学校2023-2024学年高一上学期第二次月考数学试卷 -

河南省郑州市郑州外国语学校2023-2024学年高一上学期第二次月考数学试卷 -

郑州外国语学校2023-2024学年高一上期月考2试卷数学(100分钟100分)一.选择题(共8题,每题4分,共32分)1.集合{|}A x y lnx ==,2{|1}B y y x ==+,则(R A B = ð)A .[0,1]B .(0,1)C .(,1)-∞D .[1,)+∞2.命题“(1,2)x ∀∈,223x x +>”的否定是()A .(1,2)x ∃∈,223x x +>B .(1,2)x ∃∉,223x x +C .(1,2)x ∃∈,223x x + D .(1,2)x ∀∈,223x x + 3.已知扇形的周长为20cm ,当扇形的面积最大值时,扇形圆心角为()A .1.5B .2C .2.5D .34.已知函数(21)f x -的定义域为(1,9)-,则函数(31)f x +的定义域为()A .14(,)33-B .416(,)33-C .28(,)33-D .(2,28)-5.在平面直角坐标系中,点(tan 2022,sin 2022)P ︒︒位于第()象限.A .一B .二C .三D .四6M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.已知0.477130.4772lg <<,则下列各数中与MN最接近的是()A .3310B .5310C .7310D .93107.定义在区间(0,2π上的函数3cos y x =与8tan y x =的图象交点为0(P x ,0)y ,则0sin x 的值为()A .13B .3C .23D .38.函数[]y x =为数学家高斯创造的取整函数.[]x 表示不超过x 的最大整数,如[3.1]4-=-,[2.1]2=,已知函数28()349x f x x x =+++,则函数[()]y f x =的值域是()A .{1-,1,2}B .{1-,0,1}C .{0,1,2}D .{1-,0,1,2}二、多选题(共4小题,每题4分,共16分.全部选对得4分,部分选对得2分,有选错的0分)9.若a ,b ,c R ∈,则下列命题中为真命题的是()A .若a b >,c d >,则ac bd >B .若||||a b >,则22a b >C .若2()0a b c ->,则a b>D .若11||b a >,则a b >10.已知正数a ,b 满足33ab a b =+,则()A .3a b +的最小值为163B .ab 的最小值为43C .229a b +的最小值为8D .12b >11.设函数()sin()(0)6f x x πωω=->,则下列说法正确的是()A .若()f x 的最小正周期为π,则2ω=B .若1ω=,则()f x 的图象关于点2(,0)3π对称C .若()f x 在区间[0,2π上单调递增,则403ω<<D .若()f x 在区间[0,2]π上恰有2个零点,则7131212ω< 12.已知函数()f x 的定义域是(0,)+∞,对x ∀,(0,)y ∈+∞都有()()()f x y f x f y ⋅=+,且当1x >时,()0f x >,且1()13f =-,下列说法正确的是()A .f (1)0=B .函数()f x 在(0,)+∞上单调递减C .1111(2)((3)()(2022)((2023)()02320222023f f f f f f f f ++++⋯++++=D .满足不等式()(2)2f x f x -- 的x 的取值范围为9(2,]4三、填空题(共4小题,每题4分,共16分)13.函数y =的递增区间为________14.函数1()sin()212f x x π=+的图象的对称轴中,离y 轴最近的对称轴方程为x =.15.已知函数2(1)y lg ax ax =++,若函数的定义域是R ,则实数a 的取值范围是.16.已知函数22|log (1)|,1,()(1),1,x x f x x x ->⎧=⎨+⎩若关于x 的方程()f x m =有4个不相等的实数根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是.四、解答题(共4小题,共36分)17.(8分)已知3sin()cos()tan()22()cos(3)sin()x x x f x x x πππππ-+-=-+.(1)化简函数()f x ;(2)若()3f α=,求sin 2cos 2sin cos αααα+-和sin cos αα的值.18.(8分)已知函数2()(23)6f x ax a x =-++.(1)当1a =时,求函数()f x 的零点;(2)当0a 时,求不等式()0f x >的的解集.19.(10分)已知函数()2sin(23f x x π=+.(1)求()f x 的单调递增区间;(2)若()f x 在区间[m ,0]上的值域为[-,求m 的取值范围.20.(10分)已知定义在R 上的函数()f x 满足()()0f x f x --=且2()log (21)x f x kx =++,()()g x f x x =+.(1)求()f x 的解析式;(2)若不等式(421)(3)x x g a g -⋅+>-恒成立,求实数a 取值范围;(3)设2()21h x x mx =-+,若对任意的1[0x ∈,3],存在2[1x ∈,3],使得12()()g x h x ,求实数m 取值范围.。

河南省郑州外国语中学2023-2024学年七年级上学期期末英语试题(含答案,无听力音频及原文)

河南省郑州外国语中学2023-2024学年七年级上学期期末英语试题(含答案,无听力音频及原文)

郑州外国语中学2023-2024学年上学期七年级期末考试英语试卷(适用于本部1A-5A和莲湖A班)考试时间:90分钟分值:90分一、听力理解(15小题,每小题1分,共15分)第一节听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。

每段对话读两遍。

1. What does the boy want to be in the future?A. A doctor.B. A writer.C. A teacher.2. What’s the weather like now?A. Windy.B. Sunny.C. Snowy.3. How often does the woman go shopping?A. Once a week.B. Once a monthC. Every day.4. When will the concert start?A.8:30B.9:00C.11:005. What are the speakers talking about?A. The school rule.B. The school subject.C. The school club.第二节听下面两段对话。

每个对话后有几个小题,从题中所给的.A、B、C三个选项中选出最佳答案。

每段对话读两遍。

听下面一段对话,回答第6第7两个小题。

6. Who plans to have a birthday party?A. Daniel.B. Anna.C. Monica.7. What gift is the girl going to take?A. Some flowers.B. Some books.C. Some cookies.听下面一段对话,回答第8至第10三个小题。

8. What’s Dave doing?A. Selling his old books.B. Putting his old books together.C. Reading an interesting book.9. What does Lisa plan to use money to do at first (起初)?A. She plans to buy a new bikeB. She plans to buy some school things.C. She plans to give the money to the poor children.10. What does Dave think of helping others in need?A. Proud.B. Interesting.C. Meaningful.第三节听下面一篇短文。

河南省郑州外国语学校2024-2025学年高二上学期10月月考数学试卷

河南省郑州外国语学校2024-2025学年高二上学期10月月考数学试卷

河南省郑州外国语学校2024-2025学年高二上学期10月月考数学试卷一、单选题1.若直线l 的一个方向向量为(,则它的倾斜角为( ) A .150︒B .120︒C .60︒D .30︒2.圆心为()1,2--,且与y 轴相切的圆的方程是( ) A .22(1)(2)4x y -+-= B .22(1)(2)1x y -+-= C .22(1)(2)1x y +++=D .22(1)(2)4x y +++=3.已知()()()1231,9,1,,3,2,0,2,1n n m n =-=-=u r u u r u u r,若{}123,,n n n u r u u r u u r 不能构成空间的一个基底,则m =( )A .3B .1C .5D .74.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点(3,4)A -的直线l 的一个法向量为(1,3)-,则直线l 的点法式方程为:1(3)(3)(4)0x y ⨯++-⨯-=,化简得3150x y -+=.类比以上做法,在空间直角坐标系中,经过点(1,2,3)M 的平面的一个法向量为(1,2,4)m =-,则该平面的方程为( ) A .2470x y z --+= B .2470x y z +-+= C .2470x y z +++=D .2470x y z +--=5.台风中心从M 地以每小时30km 的速度向西北方向移动,离台风中心内的地区为危险地区,城市N 在M 地正西方向60km 处,则城市N 处于危险区内的时长为( )A .1hBC .2hD6.如图,平面ABCD ⊥平面ABEF ,四边形ABEF 为正方形,四边形ABCD 为菱形,60DAB ∠=︒,则直线,AC FB 所成角的余弦值为( )A .BC D7.直线y x b =+与曲线x =1个公共点,则实数b 的取值范围是( )A .11b -<≤B .1b ≤C .1b ≤-D .11b -<≤或b =8.在正三棱柱111ABC A B C -中,2AB =,1AA 2BC BO =u u u r u u u r,M 为棱11B C 上的动点,N为线段AM 上的动点,且MN MOMO MA=,则线段MN 长度的最小值为( )A .2BC D二、多选题9.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .直线()cos 20x θθ+=∈R 的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭UC .已知()4,1B -,()4,6C ,则BC 边的中垂线所在的直线的方程为250y -=D .直线230x y +-=关于()1,0A 对称的直线方程为210x y ++=10.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中有这样一个命题:平面内与两定点的距离的比为常数k (0k >且1k ≠)的点的轨迹为圆,后人将这个圆称为阿波罗尼斯圆,已知()0,0O ,()3,0A ,圆()()222:20C x y r r -+=>上有且只有一个点P 满足2PA PO =,则r 的取值可以是( )A .1B .4C .3D .511.已知正方体1111ABCD A B C D -的棱长为3,E ,F 分别为棱,BC CD 上的动点.若直线1CC 与平面1EFC 所成角为π6,则下列说法正确的是( )A .任意点E ,F ,二面角1C EF C --的大小为π3B .任意点E ,F ,点C 到面1EFC 的距离为32 C .存在点E ,F ,使得直线1C E 与AD 所成角为π3D .存在点E ,F ,使得线段EF 长度为三、填空题12.已知点()2,3A 到直线1:20l kx y -+=和直线2:10l x ky ++=的距离相等,则k =. 13.如图,在棱长为1的正方体1AC 中,点P Q 、分别是棱11AD A B 、上的动点.若异面直线1BD PQ 、互相垂直,则1AP AQ +=.14.已知实数1212x x y y 、、、满足22111x y +=,22221x y +=,121212x x y y +=,则的最大值为.四、解答题15.已知ABC V 的顶点()()()0,4,2,0,5,A B C m -,线段AB 的中点为D ,且CD AB ⊥. (1)求m 的值;(2)求BC 边上的中线所在直线的方程.16.如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为梯形,AD BC ∥,2AB AD ==,BD =4BC =.(1)证明:111A B AD ⊥;(2)若12AA =,求点B 到平面11B CD 的距离.17.已知圆22:1O x y +=,直线:(3)0()l x m y m m +--=∈R . (1)若直线l 与圆O 相切,求m 的值;(2)当4m =时,已知P 为直线l 上的动点,过P 作圆O 的两条切线,切点分别为A ,B ,当切线长最短时,求弦AB 所在直线的方程. 18.在四棱锥P ABCD -中,PD ⊥平面ABCD ,1//,1,452AB DC AB AD CD AD AB PAD ⊥===∠=︒,,E 是PA 的中点,G 在线段AB 上,且满足CG BD ⊥.(1)求证://DE 平面PBC ;(2)求平面PGC 与平面BPC 夹角的余弦值.(3)在线段PA 上是否存在点H ,使得GH 与平面PGC AH 的长;若不存在,请说明理由.19.一个几何系统的“区径”是指几何系统中的两个点距离的最大值,如圆的区径即为它的直径长度.(1)已知ABC V 为直角边为1的等腰直角三角形,其中AB AC ⊥,求分别以ABC V 三边为直径的三个圆构成的几何系统的区径;(2)已知正方体1111ABCD A B C D -的棱长为2,求正方体的棱切球(与各棱相切的球)和1ACB V 外接圆构成的几何系统的区径;(3)已知正方体1111ABCD A B C D -的棱长为2,求正方形ABCD 内切圆和正方形11ADD A 内切圆构成的几何系统的区径.。

2023-2024学年河南省郑州外国语学校高二(上)期中数学试卷【答案版】

2023-2024学年河南省郑州外国语学校高二(上)期中数学试卷【答案版】

2023-2024学年河南省郑州外国语学校高二(上)期中数学试卷一、选择题(每题5分,1-10题为单选;11、12为多选,少选得2分,多选、错选得0分,共60分) 1.已知曲线x 22m−3+y 2m−5=1表示双曲线,则实数m 的取值范围是( )A .(−∞,32)∪(5,+∞)B .(5,+∞)C .(−∞,32)D .(32,5)2.若m ,n 满足m +2n ﹣1=0,则直线mx +3y +n =0过定点( ) A .(12,16)B .(12,−16)C .(16,−12)D .(−16,12)3.已知F 1,F 2分别是双曲线C :x 24−y 24=1的左、右焦点,P 是C 上位于第一象限的一点,且PF 1→⋅PF 2→=0,则△PF 1F 2的面积为( ) A .2 B .4C .2√2D .2√34.若双曲线x 2a−y 2b=1(a >0,b >0)和椭圆x 2m+y 2n=1(m >n >0)有共同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|•|PF 2|=( ) A .m 2﹣a 2B .√m −√aC .12(m −a)D .(m ﹣a )5.若过点A (a ,a )可作圆x 2+y 2﹣2ax +a 2+2a ﹣3=0的两条切线,则实数a 的取值范围是( ) A .(﹣∞,﹣3)B .(﹣3,1)C .(﹣∞,﹣3)∪(1,32)D .(﹣∞,﹣3)∪(1,+∞)6.动点P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上异于椭圆顶点A (a ,0),B (﹣a ,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P 、F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( ) A .抛物线 B .椭圆C .双曲线的右支D .一条直线7.点A 是圆C 1:(x ﹣2)²+y 2=1上的任一点,圆C 2是过点(5,4)且半径为1的动圆,点B 是圆C 2上的任一点,则AB 长度的最小值为( ) A .1B .2C .3D .48.已知双曲线C :x 23−y 2=1的左右两个顶点分别为A 、B ,点M 1,M 2,⋯,M n 为双曲线右支上的n 个点,N 1,N 2,⋯,N n 分别与M 1,M 2,⋯,M n 关于原点对称,则直线AM 1,AM 2,⋯,AM n ,AN 1,AN 2,⋯,AN n ,这2n 条直线的斜率乘积为( ) A .(13)nB .(12)nC .﹣3nD .﹣2n9.倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)右焦点F ,与椭圆交于A 、B 两点,且AF →=2FB →,则该椭圆的离心率为( ) A .√23B .√22C .√33D .√3210.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,G 分别在棱BB 1,BC ,BA 上,且满足BE →=34BB 1→,BF →=12BC →,BG →=12BA →,O 是平面B 1GF ,平面ACE 与平面B 1BDD 1的一个公共点,设BO →=xBG →+yBF →+zBE →,则x +y +z =( ) A .45B .65C .75D .85(多选)11.已知圆C :(x ﹣6)2+y 2=9,点M 的坐标为(2,4),过点N (4,0)作直线l 交圆C 于A 、B 两点,则|MA →+MB →|的可能取值为( ) A .6B .8C .10D .1212.已知△ABC 中,AC +BC =4,AB =2√3,O 为AB 的中点,P 为AB 的垂直平分线上一点.且OP =12,则CP 的最大值为( ) A .12B .√172C .√393D .4二、填空题(每题5分,共20分)13.设集合A ={(x ,y )|(x ﹣4)2+y 2=r 2,r >0},B ={(x ,y )|x 2+(y ﹣3)2=36},若A ∩B 中有且只有一个元素,则r 的取值集合为 .14.已知直线l 的方向向量a →=(1,0,−2)且过点P (﹣1,1,1),则点A (3,0,﹣2)到直线l 的距离为 . 15.设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为 . 16.如图,点F 1、F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左右焦点,点A 、B 、C 分别为双曲线上三个不同的点,且AC 经过坐标原点O ,并满足AF 2→=12F 2B →,AB →⋅CF 2→=0,则双曲线的离心率为 .三、解答题(写清楚必要的解题步骤、文字说明以及计算过程,17题10分,18-22题每题12分,共70分)17.(10分)直线l :3x ﹣y ﹣1=0,在l 上求一点P ,使得. (1)P 到A (4,1)和B (0,4)的距离之差的绝对值最大; (2)P 到A (4,1),C (3,4)的距离之和最小. 18.(12分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中, (1)求证:AB ∥平面A 1B 1CD ;(2)求直线A 1B 和平面A 1B 1CD 所成的角.19.(12分)在平面直角坐标系xOy 中,圆C 的方程为(x ﹣m )2+[y ﹣(2m ﹣3)]2=1,m ∈R . (1)当m =﹣1时,过原点O 作直线l 与圆C 相切,求直线l 的方程;(2)对于P (﹣2,2),若圆C 上存在点M ,使|MP |=|MO |,求实数m 的取值范围. 20.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为2,直线y =√3x 为C 的一条渐近线.(1)求C 的方程;(2)若过点(2,0)的直线与C 交于P ,Q 两点,在x 轴上是否存在定点M ,使得MP →⋅MQ →为定值?若存在,求出点M 的坐标;若不存在,请说明理由. 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2√3,点Q (√3,−12)在椭圆C 上.(1)P 是C 上一动点,求PF 1→•PF 2→的范围;(2)过C 的右焦点F 2,且斜率不为零的直线l 交C 于M ,N 两点,求△F 1MN 的内切圆面积的最大值. 22.(12分)如图,已知四棱锥P ﹣ABCD 的底面为菱形,且∠ABC =60°,AB =PC =2,PA =PB =√2.M 是棱PD 上的点,且四面体MPBC 的体积为√36. (1)证明:PM =MD ;(2)若过点C ,M 的平面α与BD 平行,且交P A 于点Q ,求平面BCQ 与平面ABCD 夹角的余弦值.2023-2024学年河南省郑州外国语学校高二(上)期中数学试卷参考答案与试题解析一、选择题(每题5分,1-10题为单选;11、12为多选,少选得2分,多选、错选得0分,共60分) 1.已知曲线x 22m−3+y 2m−5=1表示双曲线,则实数m 的取值范围是( )A .(−∞,32)∪(5,+∞)B .(5,+∞)C .(−∞,32)D .(32,5)解:由题意知,(2m ﹣3)(m ﹣5)<0,解得32<m <5,所以实数m 的取值范围是(32,5). 故选:D .2.若m ,n 满足m +2n ﹣1=0,则直线mx +3y +n =0过定点( ) A .(12,16)B .(12,−16)C .(16,−12)D .(−16,12)解:∵m +2n ﹣1=0,∴m =1﹣2n ,代入直线mx +3y +n =0方程得,n (1﹣2x )+(x +3y )=0, 它经过1﹣2x =0 和x +3y =0 的交点(12,−16), 故选:B .3.已知F 1,F 2分别是双曲线C :x 24−y 24=1的左、右焦点,P 是C 上位于第一象限的一点,且PF 1→⋅PF 2→=0,则△PF 1F 2的面积为( ) A .2B .4C .2√2D .2√3解:由双曲线C :x 24−y 24=1,可得a =2=b ,c =√a 2+b 2=2√2,设|PF 1|=m ,|PF 2|=n , ∵PF 1→⋅PF 2→=0,∴PF 1⊥PF 2, 则m ﹣n =2a =4,m 2+n 2=(2c )2=32,∴mn =m 2+n 2−(m−n)22=8,∴△PF 1F 2的面积S =12mn =4, 故选:B . 4.若双曲线x 2a−y 2b=1(a >0,b >0)和椭圆x 2m+y 2n=1(m >n >0)有共同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|•|PF 2|=( ) A .m 2﹣a 2B .√m −√aC .12(m −a)D .(m ﹣a )解:依题意,作图如下:不妨设点P 为第一象限的交点,则|PF 1|+|PF 2|=2√m ,① |PF 1|﹣|PF 2|=2√a ,②①2﹣②2得:4|PF 1|•|PF 2|=4(m ﹣a ), ∴|PF 1|•|PF 2|=m ﹣a , 故选:D .5.若过点A (a ,a )可作圆x 2+y 2﹣2ax +a 2+2a ﹣3=0的两条切线,则实数a 的取值范围是( ) A .(﹣∞,﹣3)B .(﹣3,1)C .(﹣∞,﹣3)∪(1,32)D .(﹣∞,﹣3)∪(1,+∞)解:把圆的方程化为标准方程是:(x ﹣a )2+y 2=3﹣2a ,可得圆心P 坐标为(a ,0),半径r =√3−2a ,且3﹣2a >0,即a <32; 由题意可得点A 在圆外, 即|AP |=√(a −a)2+(a −0)2>r , 即a 2>3﹣2a , 整理得:a 2+2a ﹣3>0, 即(a +3)(a ﹣1)>0, 解得:a <﹣3或a >1, 又a <32,可得a <﹣3或1<a <32,即实数a 的取值范围是(﹣∞,﹣3)∪(1,32).故选:C . 6.动点P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上异于椭圆顶点A (a ,0),B (﹣a ,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P 、F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( ) A .抛物线 B .椭圆C .双曲线的右支D .一条直线解:如图画出圆M ,切点分别为E 、D 、G ,由切线长相等定理知F 1G =F 1E ,PD =PE ,F 2D =F 2G , 根据椭圆的定义知PF 1+PF 2=2a , 即有PF 1+PF 2=F 1E +DF 2(由于PD =PE ) =F 1G +F 2D (由于F 1G =F 1E ) =F 1G +F 2G =2a ,即为2F 2G =2a ﹣2c ,F 2G =a ﹣c , 即点G 与点A 重合,即有点M 在x 轴上的射影是长轴端点A ,M 点的轨迹是垂直于x 轴的一条直线(除去A 点). 故选:D .7.点A 是圆C 1:(x ﹣2)²+y 2=1上的任一点,圆C 2是过点(5,4)且半径为1的动圆,点B 是圆C 2上的任一点,则AB 长度的最小值为( ) A .1B .2C .3D .4解:设圆C 2的圆心为(a ,b ),则(a ﹣5)2+(b ﹣4)2=1.圆C 2的圆心轨迹是以(5,4)为圆心,以1为半径的圆,∴当C 1(2,0),C 2,(5,4)三点共线时,AB 的长度有最小值, 最小值为√(5−2)2+(4−0)2−3=5−3=2. 故选:B . 8.已知双曲线C :x 23−y 2=1的左右两个顶点分别为A 、B ,点M 1,M 2,⋯,M n 为双曲线右支上的n 个点,N 1,N 2,⋯,N n 分别与M 1,M 2,⋯,M n 关于原点对称,则直线AM 1,AM 2,⋯,AM n ,AN 1,AN 2,⋯,AN n这2n 条直线的斜率乘积为( ) A .(13)nB .(12)nC .﹣3nD .﹣2n解:已知双曲线C :x 23−y 2=1的左右两个顶点分别为A 、B ,则A(−√3,0), 设M k (x 0,y 0),则N k (﹣x 0,﹣y 0),且x 023−y 02=1,即直线AM k 与AN k 的斜率乘积为0x 0+√3×−x 0+√3=y 023−x 02=13,则直线AM 1,AM 2,⋯,AM n ,AN 1,AN 2,⋯,AN n 这2n 条直线的斜率乘积为(13)n . 故选:A .9.倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)右焦点F ,与椭圆交于A 、B 两点,且AF →=2FB →,则该椭圆的离心率为( )A .√23B .√22C .√33D .√32解:设直线AB 的方程:y =x ﹣c ,A (x 1,y 1),B (x 2,y 2), 联立{y =x −c b 2x 2+a 2y 2=a 2b2,整理得:(a 2+b 2)x 2﹣2a 2cx +a 2c 2﹣a 2b 2=0x 1+x 2=2a 2c a 2+b2,①,x 1x 2=a 2(c 2−b 2)a 2+b2,②由AF →=2FB →,即(c ﹣x 1,﹣y 1)=2(x 2﹣c ,y 2),则2x 2+x 1=3c ,③ 解得:x 1=a 2c−3b 2c a 2+b2,x 2=a 2c+3b 2c a 2+b2,则a 2c−3b 2c a 2+b 2×a 2c+3b 2c a 2+b 2=a 2(c 2−b 2)a 2+b 2,整理得:2a 2=9c 2,椭圆的离心率e =c a =√23, 方法二:设直线AB 的方程为:x =y +c ,A (x 1,y 1),B (x 2,y 2), 联立{x =y +cb 2x 2+a 2y 2=a 2b 2,整理得:(a 2+b 2)y 2+2b 2cy ﹣b 4=0, y 1+y 2=−2b 2c a 2+b2,①,y 1y 2=−b4a 2+b2,②由AF →=2FB →,即(c ﹣x 1,﹣y 1)=2(x 2﹣c ,y 2),则﹣y 1=2y 2,③ 解得:y 1=−4b 2c a 2+b2,y 2=2b 2ca 2+b 2,则−4b 2ca 2+b2×2b 2c a 2+b2=−b4a 2+b2,整理得:8c 2=a 2+b 2,∴2a 2=9c 2, 椭圆的离心率e =c a =√23, 方法三:由AF →=2FB →,分别过A ,B 作准线l 的垂线,垂足分别为A 1,B 1,过B 作BD ⊥AA 1, 设|AF |=2m ,则|FB |=m ,B 到准线的距离d 1,A 到准线的距离为d 2, 由椭圆的第二定义可知:|BF|d 2=e ,|AF|d 1=e ,e 为椭圆的离心率,d 2=m e ,d 1=2me, 直线AB 的倾斜角为π4,则∠BAD =π4,所以|AD |=3√22m ,所以d 1+|AD |=d 2,则3√22m =m e ,e =√23, 故选:A .10.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,G 分别在棱BB 1,BC ,BA 上,且满足BE →=34BB 1→,BF →=12BC →,BG →=12BA →,O 是平面B 1GF ,平面ACE 与平面B 1BDD 1的一个公共点,设BO →=xBG →+yBF →+zBE →,则x +y +z =( ) A .45B .65C .75D .85解:如图所示,正方体ABCD ﹣A 1B 1C 1D 1中,BE →=34BB 1→,BF →=12BC →,BG →=12BA →,BO →=xBG →+yBF →+zBE →=12x BA →+12y BC →+z BE →=x BG →+y BF →+34z BB 1→,∵O ,A ,C ,E 四点共面,O ,G ,F ,B 1四点共面,∴{12x +12y +z =1x +y +34z =1,解得x +y =25,z =45;∴x +y +z =65. 故选:B .(多选)11.已知圆C :(x ﹣6)2+y 2=9,点M 的坐标为(2,4),过点N (4,0)作直线l 交圆C 于A 、B 两点,则|MA →+MB →|的可能取值为( ) A .6B .8C .10D .12解:取AB 的中点H ,连接CH ,可得CH ⊥AB ,H 的轨迹为以CN 为直径的圆, 圆心为(5,0),半径r =1, 则MA →+MB →|=2|MH →|, 可得|MH →|的最小值为√(5−2)2+(0−4)2−1=5﹣1=4,即有|MA →+MB →|的最小值为8. 可得|MH →|的最大值为√(5−2)2+(0−4)2+1=5+1=6,即有|MA →+MB →|的最大值为12.故选:BCD .12.已知△ABC 中,AC +BC =4,AB =2√3,O 为AB 的中点,P 为AB 的垂直平分线上一点.且OP =12,则CP 的最大值为( ) A .12B .√172C .√393D .4解:以AB 的中点O 为原点,AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,如图所示:由椭圆的定义知,点C 的轨迹是以A ,B 为左、右焦点的椭圆(不含长轴两端点), 所以2a =4,2c =2√3,b 2=22−(√3)2=1, 所以标准方程为x 24+y 2=1(y ≠0),设P(0,12),C(x ,y),y ≠0,则|CP|=√x 2+(y −12)2=√4(1−y 2)+(y −12)2=√−3(y +16)2+133, 因为﹣1≤y ≤1,且y ≠0, 所以当y =−16时,|CP |的最大值为√393. 故选:C .二、填空题(每题5分,共20分)13.设集合A ={(x ,y )|(x ﹣4)2+y 2=r 2,r >0},B ={(x ,y )|x 2+(y ﹣3)2=36},若A ∩B 中有且只有一个元素,则r 的取值集合为 {1,11} .解:∵集合A ={(x ,y )|(x ﹣4)2+y 2=r 2,r >0},B ={(x ,y )|x 2+(y ﹣3)2=36}, 其中r >0,且A ∩B 有且仅有一个元素,∴圆(x ﹣4)2+y 2=r 2与圆x 2+(y ﹣3)2=36相切, 圆心距为d =√42+32=5若两圆外切,R +r =d ,即5=6+r ,此时r =﹣1(舍去) 若两圆内切,R ﹣r =d ,即5=|r ﹣6|,此时r =1或r =11 综上,r 的取值集合为{1,11}, 故答案为:{1,11}14.已知直线l 的方向向量a →=(1,0,−2)且过点P (﹣1,1,1),则点A (3,0,﹣2)到直线l 的距离为 √6 .解:∵点A (3,0,﹣2),点P (﹣1,1,1),∴AP →=(﹣4,1,3), ∴|AP →|=√16+1+9=√26,又∵直线l 的方向向量为量a →=(1,0,−2),∴AP →在a →方向上的投影为AP →⋅a →|a →|=√1+4=−2√5,∴点A (3,0,﹣2)到l 的距离d =√(√26)2−(−2√5)2=√6, 故答案为:√6. 15.设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为 23.解:△F 1PF 2的外接圆的半径R ,由正弦定理2R =|F 1F 2|sin∠F 1PF 2=2csin π3,所以R =2√33c , 又由于R =4r ,所以r =√36c ,在△F 1PF 2中,由余弦定理可得|F 1F 2|2=|PF 1|2+|PF 2|2﹣2|PF 1||PF 2|•cos ∠F 1PF 2,而∠F 1PF 2=π3,所以4c 2=4a 2﹣3|PF 1||PF 2|, 所以可得:|PF 1||PF 2|=43(a 2﹣c 2),由三角形的面积相等可得:12(|PF 1|+|PF 2|+|F 1F 2|)•r =12|PF 1||PF 2|sin ∠F 1PF 2,所以(2a +2c )r =43(a 2﹣c 2)•√32, 所以2(a +c )√36c =43(a 2﹣c 2)•√32, 整理可得:c =2(a ﹣c )=0,即3c =2a , 解得e =23, 故答案为:23.16.如图,点F 1、F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左右焦点,点A 、B 、C 分别为双曲线上三个不同的点,且AC 经过坐标原点O ,并满足AF 2→=12F 2B →,AB →⋅CF 2→=0,则双曲线的离心率为 √173.解:令|AF 2|=m ,则|BF 2|=2m ,|AB |=3m , 由CO →=OA →及AB →⋅CF 2→=0, 可得,四边形AF 1CF 2为矩形, 所以有{|AF 1|=2a +m|BF 1|=2a +2m,而在Rt △AF 1B 中,(2a +m )2+(3m )2=(2a +2m )2, 化简可得:m =23a ,故有|AF 1|=83a ,|AF 2|=23a , 即4c 2=(83a)2+(23a)2, 化简可得:c =√173a ,即e =√173.故答案为:√173.三、解答题(写清楚必要的解题步骤、文字说明以及计算过程,17题10分,18-22题每题12分,共70分)17.(10分)直线l :3x ﹣y ﹣1=0,在l 上求一点P ,使得. (1)P 到A (4,1)和B (0,4)的距离之差的绝对值最大; (2)P 到A (4,1),C (3,4)的距离之和最小. 解:在直线L :3x ﹣y ﹣1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大, 显然A 、B 位于直线L 两侧,作B 关于直线L 的对称点B ',连接B 'A , 则B 'A 所在直线与直线L 交点即为P , 此时,|P A ﹣PB |的差值最大,最大值就是B 'A ,设B 点关于L 对称点B ’(a .b ),(b ﹣4)×3=﹣(a ﹣0), 3a ﹣(b +4)﹣2=0得a =3,b =3,AB 的直线方程为2x +y ﹣9=0解方程2x +y ﹣9=0, 与3x ﹣y ﹣1=0可得(2,5)是距离之差最大的点. (2)P 到A (4,1)和C (3,4)的距离之和最小, 显然,A 、B 位于直线L 同侧,作点C 关于直线L 对称点C ',连接C 'A , 则C 'A 与直线L 的交点就是点P , 此时,P A +PB 之和最小,最小值为C 'A ,设C 关于l 的对称点为C ′,求出C ′的坐标为(35,245).∴AC ′所在直线的方程为19x +17y ﹣93=0. AC ′和l 交点的坐标为Q (117,267).∴点Q 的坐标为(117,267).18.(12分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中, (1)求证:AB ∥平面A 1B 1CD ;(2)求直线A 1B 和平面A 1B 1CD 所成的角.(1)证明:∵AB ∥A 1B 1,AB ⊄平面A 1B 1CD ,A 1B 1⊂平面A 1B 1CD , ∴AB ∥平面A 1B 1CD .(2)解:连接BC 1交B 1C 于O ,连接OA 1, ∵四边形BCC 1B 1是正方形,∴OB ⊥B 1C , ∵A 1B 1⊥B 1C 1,A 1B 1⊥B 1B ,B 1C 1∩B 1B =B 1, ∴A 1B 1⊥平面BCC 1B 1, ∴A 1B 1⊥OB , 又A 1B 1∩B 1C =B 1, ∴OB ⊥平面A 1B 1CD ,∴∠OA 1B 为直线A 1B 和平面A 1B 1CD 所成的角,设正方体棱长为1,则A1B=√2,OB=√22,∴sin∠OA1B=OBA1B =12,∴∠OA1B=30°,∴直线A1B和平面A1B1CD所成的角为30°.19.(12分)在平面直角坐标系xOy中,圆C的方程为(x﹣m)2+[y﹣(2m﹣3)]2=1,m∈R.(1)当m=﹣1时,过原点O作直线l与圆C相切,求直线l的方程;(2)对于P(﹣2,2),若圆C上存在点M,使|MP|=|MO|,求实数m的取值范围.解:(1)当m=﹣1时,圆C的方程为(x+1)2+(y+5)2=1,圆心C(﹣1,﹣5),半径r=1,①当直线l的斜率不存在时,直线l的方程为x=0,满足条件;②当直线l的斜率存在时,设直线l的方程为y=kx,由直线l与圆C相切,则√k2+1=1,解得k=125,所以l的方程为y=125x,即12x﹣5y=0,综上得,直线l的方程为x=0或12x﹣5y=0;(2)圆心C(m,2m﹣3),k OP=﹣1,则线段OP的中垂线的方程为y﹣1=x+1,即y=x+2,要使得|MP|=|MO|,则M在线段OP的中垂线上,所以存在点M既要在y=x+2上,又要在圆C上,所以直线y=x+2与圆C有公共点,所以√2≤1,解得5−√2≤m≤5+√2,所以m∈[5−√2,5+√2].20.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为2,直线y =√3x 为C 的一条渐近线.(1)求C 的方程;(2)若过点(2,0)的直线与C 交于P ,Q 两点,在x 轴上是否存在定点M ,使得MP →⋅MQ →为定值?若存在,求出点M 的坐标;若不存在,请说明理由. 解:(1)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的实轴长为2,直线y =√3x 为C 的一条渐近线,则{a =1ba=√3,即{a =1b =√3, 即C 的方程为x 2−y 23=1;(2)设在x 轴上存在定点M (t ,0),使得MP →⋅MQ →为定值, ①当直线PQ 与x 轴不重合时, 设直线PQ 的方程为x =my +2, 联立{x =my +2x 2−y 23=1,消x 可得(3m 2﹣1)y 2+12my +9=0, 则{3m 2−1≠0(12m)2−36(3m 2−1)>0, 设P (x 1,y 1),Q (x 2,y 2), 则y 1+y 2=−12m 3m 2−1,y 1y 2=93m 2−1, 则MP →⋅MQ →=(x 1﹣t )(x 2﹣t )+y 1y 2=(my 1+2﹣t )(my 2+2﹣t )+y 1y 2=(m 2+1)y 1y 2+m (2﹣t )(y 1+y 2)+(2﹣t )2=4(t+1)3m 2−1+t 2−1, 又MP →⋅MQ →为定值, 则t +1=0,即t =﹣1,即存在M (﹣1,0),使得MP →⋅MQ →为定值0, ②当直线PQ 与x 轴重合时,P (﹣1,0),Q (1,0), 当M 的坐标为(﹣1,0)时,MP →⋅MQ →=0, 综合①②可得:存在点M (﹣1,0),使得MP →⋅MQ →为定值. 21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2√3,点Q (√3,−12)在椭圆C 上.(1)P 是C 上一动点,求PF 1→•PF 2→的范围;(2)过C 的右焦点F 2,且斜率不为零的直线l 交C 于M ,N 两点,求△F 1MN 的内切圆面积的最大值. 解:(1)由题间知c =√3,∴a 2=b 2+3,将Q (√3,−12)代入x 2b 2+3+y 2b 2=1,解得b =1,∴椭圆C 的方程为:x 24+y 2=1,设点P (x ,y ),则PF 1→•PF 2→=(−√3−x ,﹣y )•(√3−x ,﹣y )=x 2﹣3+y 2=34x 2﹣2, 又∵x ∈[﹣2,2],∴PF 1→•PF 2→的取值范围是[﹣2,1].(2)依题意可设直线l 的方程为x =my +√3,M (x 1,y 1),N (x 2,y 2), 联立{x =my +√3x 24+y 2=1,得(14m 2+1)y 2+√32my −14=0,∴y 1+y 2=−2√3m m 2+4,y 1y 2=−1m 2+4, ∴S △F 1MN =12×2√3•|y 1﹣y 2|=√3•√12m 2(m 2+4)2+4m 2+4=4√3•√m 2+1(m 2+4)2, 又∵m 2+1(m 2+4)2=m 2+1(m 2+1)2+6(m 2+1)+9=1(m 2+1)+9m 2+1+6≤112,当且仅当m =±√2时等号成立,∴S △F 1MN ≤4√3•√112=2, 设△F 1MN 的内切圆半径为r ,则r =2S △F 1MN 4a ≤48=12, ∴△F 1MN 的内切圆面积的最大值为π4.22.(12分)如图,已知四棱锥P ﹣ABCD 的底面为菱形,且∠ABC =60°,AB =PC =2,PA =PB =√2.M 是棱PD 上的点,且四面体MPBC 的体积为√36. (1)证明:PM =MD ;(2)若过点C ,M 的平面α与BD 平行,且交P A 于点Q ,求平面BCQ 与平面ABCD 夹角的余弦值.解:(1)证明:如图1,取AB 中点O ,连接PO ,CO , 因为PA =PB =√2,AB =2,所以PO ⊥AB ,PO =1,BO =1. 又因为ABCD 是菱形,∠ABC =60°,所以CO ⊥AB ,CO =√3. 因为PC =2,所以PC 2=PO 2+CO 2,所以PO ⊥CO , 又因为AB ⊂平面ABCD ,CO ⊂平面ABCD ,AB ∩CO =O , 所以PO ⊥平面ABCD ,因为AD ∥BC ,BC ⊂平面PBC ,AD ⊄平面PBC , 所以AD ∥平面PBC ,所以V D−PBC =V A−PBC =V P−ABC =13PO ⋅S △ABC =13×1×√34×4=√33, 因为V M−PBC =√36=12V D−PBC ,所以点M 到平面PBC 的距离是点D 到平面PBC 的距离的12,所以PM =MD ;(2)在平面ABCD 内,过C 作EF ∥BD 交AD 延长线于点E ,交AB 延长线于点F , 因为ABCD 是菱形,所以AD =DE .如图4,在平面P AD 内,作PP 1∥AE 交EM 的延长线于点P 1,设EP 1交AP 于点Q . 所以,四边形EDP 1P 是平行四边形,PP 1=DE ,PP 1∥DE . 所以△QPP 1∽△QAE ,所以PQ AQ=PP 1AE=12,所以点Q 是线段P A 上靠近P 的三等分点. 如图5,在平面P AB 内,作QT ∥PO ,交AB 于T ,因为PO ⊥平面ABCD ,所以QT ⊥平面ABCD ,所以QT ⊥BC , 因为PO =1,QT =23PO =23,在平面ABCD 内,作TN ⊥BC ,交BC 于点N ,连接QN ,过A 作AK ∥TN 交BC 于K , 在△ABK 中,AB =2,∠ABK =60°,所以AK =√32AB =√3, 所以TN =23AK =23√3,因为QT ⊥BC ,TN ⊥BC ,QT ∩TN =T ,且两直线在平面内,所以BC ⊥平面QTN , 因为QN ⊂平面QTN ,所以BC ⊥QN . 所以∠QNT 是二面角A ﹣BC ﹣Q 的平面角.在Rt △QTN 中,tan ∠QNT =QTNT =√33,所以cos ∠QNT =√32. 所以平面BCQ 与平面ABCD 夹角的余弦值是√32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中语文试卷马鸣风萧萧2016年河南省重点中学郑州外国语学校试卷语文注意:本试卷分试题卷和答题卡两部分,考试时间120分钟,满分120分。

考生应首先阅读试题卷上的文字信息.然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡。

一、积累与运用(28分)1.下列每对词语中加点字读音有不同的一项是()(2分)A.垂涎./娴.熟吊唁./艳.丽缉.毒/无稽.之谈B.须臾./舆.论踉.跄/酝酿.零.落/瘦骨嶙.峋C.昳.丽/呓.语穷匮.//馈.赠讪.笑/苫.蔽成丘D.遒.劲/虬.须泥泞./宁.可措.施/错.落有致2.下殉词语币书写完全正确的一项是()(2分)A.寂寥遗误鄙夷相题并论B.锁屑颓唐拮据痛心疾手C.和蔼蜷曲剽悍神采奕奕D.殉职黯然造诣人情事故3.依次填人下面文段横线处的词语最恰当的一组是( )(2分)小巷越是久远,越幽深,越蜿蜒,越斑驳,历史的就越深,文化的底蕴就得越厚重。

把小城比作一本线装书,那么这一条条小巷就是书中那一行行的文字,需慢慢才能其深邃的内涵,也正因为有了这些小巷,江南的小城才生动起来,情趣盎然起来。

A.积淀沉淀既然美轮美奂体味品味B.沉淀积累如果优美绝伦品味玩味C.积累积淀既然美轮美奂玩味品味D.沉淀积淀如果优美绝伦品味体味4.下面的句子排序正确的一项是(2分)①刚建网时,一部分从上往下织,一部分从下往上织,不久,一张巨大的天网便完成了。

②平时,红蜘蛛把网建在树上。

③如此巨大的网,昆虫一旦被网住,众多蜘蛛便会一哄而上,把毒液注进体内,昆虫很快便会一命呜呼。

④南美洲有一种红蜘蛛,他们上万只生活在一起,共同织网,合作狩猎,共同分享食物。

⑤然后,它们开始分享大餐。

A.①②③④⑤B.④②①③⑤C.③④①②⑤D.②①④③⑤5.古诗文默写。

(8分,每空I分)(1)潮平两岸阔,。

(王湾《次北固山下》)(2)学而不思则阁,。

(《论语》)(3)诗人刘禹锡虽遭贬滴,却仍积极乐观。

他的诗句“(《酬乐天扬州初逢席上见赠》常被后人用来说明新事物必将取代旧事物的道理。

(4)“一切景语皆情语”,一切环境描写的文字都是作者表情寄意的载体。

徜徉于文学海洋,情景交融的佳句比比皆是:王维《使至塞上》“”描绘了塞外大漠苍凉雄浑之壮美;龚自珍借落花心系故枝表达自己高度爱国热忱的句子是“”6.名著阅读。

(5分)(1)(西游记》中孙悟空偷吃蟠桃、盗饮御酒、窃走仙丹被捉住之后,又发生了哪些事他才被降伏的?(2分)(2)阅读材料,回答问题。

(3分)……当日将了宝刀,括了草标儿,上市去卖。

走到马行街内,立了两个时辰,并无一个人问。

将立到晌午时分,转来到天汉州桥热闹处去卖。

A立未久,只见两边的人都跑入河下巷内去躲。

A看时,只见都乱捧,口里说道:“快躲了!大虫来也!”(《水浒传》) 选段中A指代的人物是,出自名著中的精彩故事,这个故事的结局是。

7.综合性学习。

(7分)去年,央视播出特别节目《大国工匠》,引起热议。

某校开展“大国工匠进校园”系列活动,请你参与,并完成以下各题。

【提信息】(1)以下是同学们收集到的三则相关材料,请从中提取至少两条信息。

(2分)材料一提到优质制造,人们立刻想到:控制误差不超毫秒的瑞士钟表匠、仅拧各种螺丝就要学习几个月的德国工人、捏寿司都要捏成极致艺术品的日本手艺人……但对于更多的中国制造来说,我们仍然缺乏响当当的“中国名片”,如手机、冰箱甚至是前段时间引发抢购风潮的马捅盖等。

材料二在今年的两会上,李克强总理曾说:“我们要用大批的技术人才作为支撑,让享誉全球的‘中国制造’升级为‘优质制造’。

”材料三我国数千年历史中,出现过香班这样的大师级工匠,也有修造出故宫这种世界奇观建筑的工匠,这说明中华民族的基因里,的确有工匠精神。

《大国工匠》讲述的8个工匠,正是传承了中华民族的工匠精神,才蜂造了工匠的神话:鉴刻师孟剑锋为北京人PEC会议创作国礼“和美”纯银丝巾,坪工高风林为火箭焊“心脏”,柑工顾秋亮为“蛟龙号”装配载人深潜器……【品对联】(2)某校邀请大国工匠孟剑锋来校做演讲,书法社结合孟剑锋的事迹拟写了一副“宝剑锋从磨砺出,和美精自细琢来”的对联。

请结合材料三分析这副对联的妙处。

(答出两点即可)(3分)【言心声】(3)听了孟剑锋的演讲后.李文同学产生了学一门技艺的想法,但他的父毋极力反对。

假如你支持李文,你会如何劝说他的父母?请写出你要说的话。

(2分)二、现代文阅读(28分)(一】阅读下文,完成8一12题。

(共16分)一种真实查一路①深秋时节,我忆起在故乡的道路上行走。

清晨,白露为霜,被霜私贴的衰草,似乎成了道路衰白的茸毛。

随之,狂风劲扫,树叶落尽。

我家门前有一排柿子树,落尽绿叶,如生命脱下了华丽的袍,只剩斑驳黝黑的躯干与枯枝。

②心随之苍凉。

大地呈现出贫疥,却也在此时,一种真实显露出来,一种简陋甚至丑陋的真实—这是删繁就简之后,再也无法删除的存在。

无遮无拦,也无论你的好恶。

③渐渐地,学会去适应它,进而欣赏它。

④其实,我同样欣赏生命的裸露。

当那些被隐藏的真相,像泛黄的书卷被打开,心中或许滚过一阵惊雷.随之似乎预告这个世界的箴言被揭开—总有这样先惊后喜的感觉。

⑤读过日本小说家村上春树一篇写杰克·伦敦的短文。

⑥杰克·伦救声名鹤起之后,作为日俄战争的记者来到朝鲜半岛。

当他去往一个村庄,当地的官员到他的驻地,请求他去一个万人广场,那里有无数的民众在等待他,期待一睹他的尊容。

⑦这令杰克·伦敦颇感意外,他没有想到自己的名声不只横贯了欧美,且响遍了亚洲。

然而,他更没有想到的是,民众注意力似乎不在于他对文学的真知灼见,以及他头顶上的光环。

官吏抱歉地跟他说:对不起,我们都想看您的假牙,您能否取下您的假牙让大家看一看?⑧在村民热烈的掌声中,杰克·伦敦不怒不哄,取下假牙,向民众展示自己的假牙,时间长达30分钟。

无论此刻杰克·伦敦内心有怎样的想法,事实上,他在寒风呼啸的广场上,手拿自己的假牙向民众展示了30分钟。

⑨朴实到极致的村民,自有判别虚实的独特手段,他们用“人”的角度来观察人,想见的是作为自然人的杰克·伦敦,这就得撇开星光照耀,去端详一位名人隐藏的疤痕。

⑩换上另外一个人,这样的场景,无论如何都让人难免有些尴尬。

某个领域的光环,并不能遮掩另一方面的缺憾。

真实,必然包含着这种缺憾。

杰克·伦敦是伟大的,尊享殊荣的同时,他觉得也有义务去公布不太如意的隐私。

当然,他也有更多的理由对此讳莫如深。

(11)像深秋的大地一样坦诚,才有勇气、诚恳和担当,去揭示被自己深藏的另一面。

这种真实,挤去了泡沫、娇饰、虚华,留下无可置疑的格局、本质和分量。

或许并无美感,却有价值。

(12)深秋时节,我喜欢走在旷野.看湖水澄碧,看万木萧瑟,感受自己内心的清凉。

声气内敛的大自然沉静空旷,这样的氛围,我感知到一种回归本质的精神贯穿万物,取代繁华:一种真实—无遮无拦,不计荣辱。

8.阅读全文,请说说你对“真实”含义的理解。

(4分)9.文章开头和结尾都描写了“深秋时节”的景物,这些景物描写有什么作用?(3分)10.结合全文,品味下面句中加点词的含义。

(2分)他们用“人”的角度来观察人……11.文章花大量笔墨讲述了杰克·伦敦的故事,请简要分析这个故事在文中的作用。

(4分)12.文章第⑧段中说,“或许并无美感,却有价值。

”请结合生活实际,谈谈你对“真实价值”的认识。

(3分)(二)阅读下文,完成13-16题。

(共12分)唯有淡定才能强大无比①生活在快节奏、高频率的现代社会,我们都有一个感觉:累。

我们需要承受重重压力:学业的压力,工作的压力、生活的压力等等。

所以,时下有一句流行的话:累并痛苦着。

我们为什么会觉得痛苦,感到活得很累?因为我们有太多的欲求,太多的愿望,太多的梦想,什么都想得到,什么都不想放弃,什么都要拥有,什么都不愿舍去。

患得患失,贪得无厌,当然就很累,当然就痛苦。

②美国现代成人教育之父卡耐基在《淡定—做内心强大的自己》一书中告诉我们:唯有淡定,我们才能强大无比;唯有淡定,我们才能静观花开花落,笑看云卷云舒;唯有淡定,我们才能尽情享受生活的踢予,获得人生的幸福。

③什么是淡定?作者告诉我们,淡定就是对名利荣辱的淡然,就是对爱恨情仇的超脱,是对世态炎凉的看破。

它能让浮躁的人们学会放下,告诉人们一切顺其自然便能宁静致远;它让人们在淡定中滋养心灵,在智慧中升华人生。

心怀淡定之心的人,必将是最坦然、最和平、最洒脱的人。

④古往今来,凡是有所成就者无不具有“宠辱不惊”的宝贵品格。

莫言在获得诺贝尔文学奖后.各种评论纷至杏来。

莫言超然地说:“起初,我还以为大家争议的对象是我,渐渐地,我感到这个被争议的对象,是一个与我毫不相关的人。

我如同一个看戏的人,看着众人表演,我看到那个得奖的人身上落满了花朵,也被掷上了石块.泼上了污水,我生怕他被打垮,但他微笑着从花朵和石块中钻出来,擦干净身上的脏水,坦然地站在一边。

”这就是淡定,处世的智慧。

⑤怎样才能保持淡定,做有智慧的人呢?有智慧的人能够正确面对宠辱得失,无论世间如何变化,无论人生经历怎样的风雨,内心总能风平浪静。

有智慧的人,是懂得生活辫证法的人,知道有所得必有所失,拥有的同时也会失去,必须学会放弃。

有智慧的人,是自信的人,相信“天生我材必有用”,能够自己掌拉自己,不会被别人的议论所左右。

有智慧的人,懂得调节自己的心情,保持良好的心态,不会因打翻牛奶而影响好心情。

有智慧的人,也是懂得宽容的人,既宽容自己,宽容失致,也宽容别人,宽容错误,深知原惊别人就是解脱自己。

⑥世间一切烦恼都是自找的。

一个人能否成功,并不取决于别人怎样看待自己,而在于自己怎样看待自己。

无论面对怎样的生活景况,无论生活带给我们什么样的痛苦,必须始终记住:影响我们生活的不是处晚,不是身份,而是我们的心垅。

一定要让自己的心情保持永远的杨快。

“淡定”被手为洗涤内心污秽,解除心灵束缚,自我救助,还原幸福的心灵修行宝典。

⑦总之,淡定,是一种生活态度,一种思想境界,一种豁达人生一种成熟心态。

唯有内心淡定,我们才能强大无比,让我们学会淡定吧,珍惜人生,享受快乐,追求幸福。

13.请分析第①段在文中的作用。

(3分)14.为什么在第④段写莫言获诺贝尔奖后说的话?(3分)15.成为有智慈的人,需要做到哪几方面?请根据文意分点概括。

(4分)16.请你将本文的论证思路补充完整。

(2分)以社会现象引出有关淡定的论点—( A )-( B )—总结全文,内心淡定才能强大。

三、古诗文阅读(14分)(一)阅读下面两个语段.完成17一20题。

(共II 分)【甲】环滁皆山也。

其西南诸峰,林壑尤美,望之漪然而深秀者,琅琊也。

山行六七里,渐闻水声潺潺而泻出于两峰之间者,酿泉也。

峰回路转,有亭翼然临于泉上者,醉翁亭也。

相关文档
最新文档