信源和信息熵

合集下载

信息论与编码信源与信息熵

信息论与编码信源与信息熵
或 22 H (X1, X2) p(ai, aj )log p(ai, aj ) 2.41bit / 符号 i0 j0
• 联合熵H(X1,X2)表达平均每二个信源符号所携带 旳信息量。
• 我们用1/2H(X1,X2)作为二维平稳信源X旳信息熵 旳近似值。那么平均每一种信源符号携带旳信
息量近似为:
– 信源符号分布旳不均匀性。 • 等概率分布时信源熵最大。
log 2 n H0 (X ) H1(X ) H2 (X ) H (X )
26
冗余度
• 对于有记忆信源,极限熵为H∞(X)。 • 这就是说我们需要传送这一信源旳信息,理论
上只需要传送H∞(X)即可。但必须掌握信源全 部概率统计特征,这显然是不现实旳。
/
符号
11
• 例:有一离散平稳无记忆信源
求:二次扩展信源旳熵
X p(x)
x1 1
2
x2 1
4
x3 1 4
X2信源 旳元素
相应旳 消息序列
概率p(ai)
a1 a2 a3 a4 a5 a6 a7 a8 a9
x1x1 x1x2 x1x3 x2x1 x2x2 x2x3 x3x1 x3 x2 x3 x3 1/4 1/8 1/8 1/8 1/16 1/16 1/8 1/16 1/16
• 目前后符号无依存关系时,有下列推论:
H(X1X2) H(X1) H(X2)
H (X1 | X 2 ) H (X1), H (X 2 | X1) H (X 2 )
14
离散有记忆信源序列熵
• 信源旳联合熵(即前后两个符号(X1,X2)同步发生 旳不拟定度)等于信源发出前一种符号X1旳信息 熵加上前一种符号X1已知时信源发出下一种符号 X2旳条件熵。

信息论与编码 第二章 信源与信息熵

信息论与编码 第二章 信源与信息熵
按照信源发出的消息在时间上和幅度上的分布情况可 将信源分成离散信源和连续信源两大类 : 离散信源: 文字、数据、电报
信源
{ 连续信源: 话音、图像
2~3 1~2 0~1 2 1 0
电 压 5~6 4~5 范围 量化 5 4
3~4
3
电 压 -1~0 -2~-1 -3~-2 -4~-3 -5~-4 -6~-5 范围
散无记忆信源。可用一个离散型随机变量X来描述这
个信源输出的消息。
2.1.1 无记忆信源
发出单个符号的离散无记忆信源
可用一个离散型随机变量X来描述这个信源输出的消息。 随机变量X的样本空间就是符号集:
A {a1 , a2 ,, an }
X的概率分布为:
P { p(a1 ), p(a2 ),, p(an )}
2.2.2 离散信源熵
信源熵
——信源的平均不确定度。
H ( X ) E[ I ( X )] p( xi )log p( xi )
i
单位为bit/符号
信源熵是在平均意义上来表征信源的统计特性,它是信源X的函数。
当信源给定,各符号的概率空间就给定,信源熵就是一个确定的值。
不同的信源因概率空间不同而具有不同的信源熵。
无记忆信源
{ 发出符号序列的无记忆信源
发出单个符号的无记忆信源
{
离散 连续
2.1.1 无记忆信源
发出符号序列的信源
——每次发出1组含L个(L≥2)符号的符号序列来代表一 个消息的信源。
需要用随机序列(或随机矢量) X =(X1, X2,…, Xl, …, XL)来描 述信源输出的消息,用联合概率分布p(X1, X2,…, Xl, …, XL)来表 示信源特性。 当L=2时,此时信源为X =(X1, X2) ,其概率空间为:

信息论与编码2-信源及信源熵

信息论与编码2-信源及信源熵
随机英文字母信源,其中每个英文字母出现的概率是固定的。
实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。

信源与信息熵

信源与信息熵
14
信源的描述
• 随机序列的概率
p(x1, x2 , x3,LxL ) = p(xL | xL−1,Lx1) p(x1, x2 ,LxL−1) = p(xL | xL−1,Lx1) p(xL−1 | xL−2 ,Lx1) p(x1, x2 ,LxL−2 ) =L
• 当信源无记忆时
p(x1x2 Lxl LxL ) = p(x1) p(x2 )Lp(xl )Lp(xL ) = ∏p(xl )
0.6 0.4 0 p(s j | si ) = 0.3 0 0.7 0.2 0 0.8
27
• 例2-2:有一个二元二阶马尔可夫信源,其信源 :
符号集为{0,1},已知符号条件概率: p(0|00) = 1/2 p(0|01) = 1/3 p(0|10) = 1/4 p(0|11) = 1/5 p(1|00)=1/2 p(1|01)=2/3 p(1|10)=3/4 p(1|11)=4/5
p ( y j | xi ) = p ( y j ),p ( xi | y j ) = p ( xi ),

p( xi | y j ) =
p( xi y j )
∑ p( x y )
i =1 i j
n
,p( y j | xi ) =
p( xi y j )
∑ p( x y )
j =1 i j
18
m
2.1.3 马尔可夫信源
s3
(1)1/2
(0)1/2
00 s1
(0)1/3
(0)1/4
s2 01
(1)2/3
j =1
17
概率论基础
• 无条件概率、条件概率、联合概率的性质和关系 ⑷ p ( x i y j ) = p ( x i ) p ( y j | xi ) = p ( y j ) p ( x i | y j ) ⑸ 当X与Y相互独立时, p ( x y ) = p ( x ) p ( y ) i j i j

第2章信源与信息熵

第2章信源与信息熵

7
称为符号x 的先验概率,信源数学模型表示为: 称为符号 i的先验概率,信源数学模型表示为:
X x1 P = p( x ) 1 x2 p( x 2 ) x3 L p( x 3 ) L xn p( x n )
n
称为概率空间, 称为概率空间,其中
长江大学电信学院
长江大学电信学院
12
X
概率论知识复习
1)条件概率
p ( xi | y j ) = p ( xi y j ) p( y j ) , p ( y j | xi ) = p( xi y j ) p( xi )
13
2)联合概率
p ( xi y j ) = p ( y j ) p ( xi | y j ), p( xi y j ) = p ( xi ) p ( y j | xi )
16
长江大学电信学院
X
2.2 离散信源熵和互信息
如果信源具有更多的消息,例如发10个 【例2.3 】如果信源具有更多的消息,例如发 个 数字0,1…..9(例如采用 位十进制树的中文电报 , 例如采用4位十进制树的中文电报 数字 例如采用 位十进制树的中文电报), 而且假定这是个消息是等概率分布的,均为0.1, 而且假定这是个消息是等概率分布的,均为 , 这时信宿仅凭猜测的话,就更难猜了。 这时信宿仅凭猜测的话,就更难猜了。因为信源 发送什么消息更加不确定。 发送什么消息更加不确定。 现在讨论一种极端的情况, 【例2.4 】现在讨论一种极端的情况,信源只发送 一种消息,即永远只发送1或者只发送 或者只发送0, 一种消息,即永远只发送 或者只发送 ,从这样 的信源中我们就不能从中获取任何信息, 的信源中我们就不能从中获取任何信息,也就是 说信源的不确定性为0。 说信源的不确定性为 。

[数学]信源与信息熵

[数学]信源与信息熵

[数学] 信源与信息熵1. 信源在信息论中,信源是指产生和发送信息的原始来源。

它可以是一个物理设备,如计算机、手机或者是一个概念、事件等。

无论信源是什么,它都可以看作是一个随机变量,可以取多个可能的取值。

举个例子,考虑一个硬币的抛掷过程。

在这个例子中,信源可以是硬币的结果,可以是正面或反面。

硬币抛掷过程是一个随机过程,因此信源可以看作是一个随机变量。

2. 信息熵信息熵是信息论中一个重要的概念,用于度量信源的不确定性或者信息的平均量。

它是由信源的概率分布决定的。

假设信源有n个可能的取值,记为$x_1, x_2, \\ldots, x_n$。

每个取值n n出现的概率为n(n n),满足$\\sum_{i=1}^n p(x_i)= 1$。

那么,信源的信息熵n定义为$$ H = -\\sum_{i=1}^n p(x_i) \\log p(x_i) $$信息熵的单位通常是比特(bits)或者纳特(nats)。

信息熵可以理解为平均需要多少比特或者纳特来表示信源的一个样本。

当信源的概率分布均匀时,信息熵达到最大值。

相反,当信源的概率分布集中在某几个取值时,信息熵较低。

3. 信息压缩信息熵在信息压缩中起到了重要的作用。

信息压缩是将信息表示为更短的形式,以便更有效地存储和传输。

根据信息论的哈夫曼编码原理,我们可以通过将频繁出现的符号用较短的二进制码表示,而将不经常出现的符号用较长的二进制码表示,从而实现信息的压缩。

在信息压缩过程中,我们可以根据信源的概率分布来选择合适的编码方式,以最小化编码长度和解码的平均长度之和。

4. 信息熵的应用信息熵在各个领域都有着广泛的应用。

在通信领域,信息熵可以用来评估信道的容量。

信道容量是一个信道在单位时间内可以传输的最大信息量。

通过计算信道的信息熵,我们可以确定如何更好地利用信道的带宽和传输速率。

在数据压缩领域,信息熵可以用来评估压缩算法的效果。

一个好的压缩算法应该能够将原始数据的信息量尽可能地减少,从而更高效地存储和传输数据。

2信源与信息熵2

2信源与信息熵2
i 1 j 1 n m
• 联合自信息量
I ( xi y j ) log2 p( xi y j )
• 条件自信息量和联合自信息量同样满足非负 性和单调递减性。 • 关系
I ( xi y j ) log2 p( xi ) p( y j / xi ) I ( xi ) I ( y j / xi ) log2 p( y j ) p( xi / y j ) I ( y j ) I ( xi / y j )
信源熵与自信息量的关系1:定性
• 信源熵用以表征信源的平均不确定性:一个 信源,无论是否输出符号,由于具有特定的 概率统计特性,因此具有特定的熵值。 • 信息量则只有当信源输出的符号被接收者收 到后才有意义。平均自信息量是能够消除信 源不确定性时所需信息的量度,即收到一个 信源符号,全部解除了这个符号的不确定性。 或者说获得这样大的信息量后,信源不确定 性就被消除了。
• 平均自信息量:表示信源中发出每个符号平均所能 提供的信息量。它只与信源中各个符号出现的概率 有关,可以用来表示信源输出信息的总体量度。 • 信源X的平均不确定度:表示总体平均意义上的信 源符号的不确定度(不管是否发出)。数值上等于平 均自信息量。 • 这个平均自信息量的表达式和统计物理学中热熵的 表达式很相似。在统计物理学中,热熵是一个物理 系统杂乱性(无序性)的度量。这在概念上也有相似 之处。所以,可以把信源X的平均不确定度称为 “信源熵”。
例2-5/6
• 例2-5(P19):
• 例2-6(P19): • 由于符号间通常存在关联性,实际信息量往 往远远小于理论值。
例2-7
• 例2-7(P19):二元信源的信息熵。
• 自信息量是针对无条件概率计算的,可以在 数学上进行简单的推广:将无条件概率换为 条件概率或联合概率。

信息论与编码 第2章 信源与信息熵

信息论与编码 第2章 信源与信息熵
设 B1 , B2 , … 是一列互不相容的事件(B i B j = 0),
且有B1∪B2∪…=Ω(样本空间);
P(Bi)>0,i=1,2…,则对任一事件A,有:
p( A) p( Bi ) p( A | Bi ) p( ABi )
i i
2013-8-19
5
相 关 知 识 复 习
4)贝叶斯(Bayes)公式: 设B1,B2 , … 是一列互不相容的事件(B i B j = 0), 且有B1∪B2∪… =Ω(样本空间); p(Bi)>0 ,i=1,2,…,则对任一事件 A,有:
p( X1, X 2 ,, X l , X L ) p( X1 ) p( X 2 ) p( X L )
2013-8-19
9
2.1信源特性与分类
离散有记忆序列信源 布袋摸球实验,每次取出两个球,由两
个球的颜色组成的消息就是符号序列。 若先取出一个球,记下颜色不放回布袋, 再取另一个球。
2.1信源描述与分类
马尔可夫信源 定义:若齐次马尔可夫链对一切I,j存在
不依赖于I的极限,则称其具有遍历性, pj称为平稳分布
lim p p j k p j 0
(k ) ij i 0
p j pi pij
2013-8-19
p
j
j
1
22
2.1信源描述与分类
马尔可夫信源 定理:设有一齐次马尔可夫链,其状态
2.1 马尔可夫信源的定义
3. 【特殊说明】
① n阶马尔可夫信源只与前面发 出的n个符号有关,即关联长 度为n+1。
② 当n=1时,即任何时刻信源符 号发生的概率只与前面一个符 号有关,则称为一阶马尔可夫 信源。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且:I(X1;X2)=I(X2;X1)
注意:任何无源处理总是丢失信息的,至多保持原来 的信息,这是信息不可增性的一种表现。
二、离散平稳信源的极限熵 设信源输出一系列符号序列X1,X2, ‥XN 概率分布: 联合熵:
定义序列的平均符号熵=总和/序列长度,即:
• 平均符号熵就是信源符号序列中平均每个信 源符号所携带的信息量。
信源和信息熵
2.1 信源的数学模型及分类
通信系统模型及信息传输模型:
一、信源输出是单个符号的消息
例:扔一颗质地均匀的正方体骰子,研究其下落后, 朝上一面的点数。每次试验结果必然是1点、2点、3点、 4点、5点、6点中的某一个面朝上。每次试验只随机出 现其中一种消息,不可能出现这个集合以外的消息, 考察此事件信源的数学模型。
H(1,0)=H(0,1)=H(1,0,0, ‥)=‥=0 说明:从熵的不确定概念来说,确知信源的不确定度 应该为0。
5、可加性: 二个随机变量X和Y不独立时: H(XY)=H(X)+H(Y/X)=H(Y)+H(X/Y) 二个随机变量X和Y独立时: H(XY)=H(X)+H(Y) 6、极值性:
H(p1,p2, ‥,pq) ≤-∑pilogqi,当pi=1/q时,
解:数学模型为:
且满足:
§离散信源:信源输出是单一符号的消息,其符号集 的取值是有限的或可数的。
一维离散信源数学模型就是离散型的概率空间:
且满足:
§连续信源的无

数学模型是连续型的概率空间: 值。
实数集(-∞,+∞)
X的概率 密度函数
r进制信息熵与二进制信息熵的关系:
熵的物理含义: 信息熵H(x)是表示信源输出后,每个消息(或符号)所提 供的平均信息量;信息熵H(x)是表示信源输出前,信源 的平均不确定性;用信息熵H(x)来表征变量X的随机 性。 注意:信息熵是信源的平均不确定的描述。一般情况 下,它并不等于平均获得的信息量,获得的信息量是两 熵之差,并不是信息熵本身。
可见:所有概率分布pi所构成的熵,以等概时为最大, 称为最大离散熵定理。
7、上凸性: 熵函数具有严格的上凸性,它的极值必为最大值。 8、递增性:
其中: 此性质说明:熵增加了一项由于划分而产生的不确定性
量。
例2-2:运用熵函数的递增性,计算熵函数 H(1/3,1/3,1/6,1/6)的数值。
可见:熵函数的递增性也可称为递推性,表示n 个元素的信源熵可以递推成(n-1)个二元信 源的熵函数的加权和。可使多元信源的熵函数 计算简化成计算若干个二元信源的熵函数。
例2-1解:
测量前,P1(x)=1/8,存在不确定性: I(P1(x))=log8=3bit
第一次测量获得信息量: 第二次测量获得信息量: 第三次测量获得信息量: 每次测量获得1bit信息量,需三次测量可确定坏灯泡
自信息I是一个随机变量,不能作为信源总体的信息量。 定义:自信息量的数学期望为信源的平均信息量,即信 源的信息熵,数学表示为: 信息熵的单位取决于对数选取的底,r进制信息熵:
I(xi)=-logpi=log(1/pi)
收到某消息获得的信息量=收到此消息前关 于某事件发生的不确定性-收到此消息后关于 某事件发生的不确定性
即:收信者所获得的信息量应等于信息传输前 后不确定性的减少的量。
例2-1:设一条电线上串联8个灯泡,且损坏 的可能性为等概,若仅有一个坏灯泡,须获知 多少信息量才可确认?
2.2 离散信源的信息熵
一、信息量和熵
信息的度量应符合实际情况: 出现概率小的随机事件,不确定性大,信息量大; 出现概率大的随机事件,不确定性小,信息量小; 概率为1的确定事件,信息量为0。 香农定义的自信息量I(x):任意随机事件出现概率的对
数的负值表示自信息量。
§设随机事件xi的出现概率为pi,则:
且满足:
随机矢量:信源输出的消息是按一定概率选取的符号 序列。用N维随机矢量X描述: X=(x1,x2, ‥‥xN)
其中:N维随机矢量X也称为随机序列(过程)。 平稳随机序列:序列的统计性质与时间的推移无关。 二、信源分类 (1)根据随机序列X中每个随机变量xi的取值不同:
离散平稳信源:如语言文字、离散化平面图像 连续平稳信源:如语音信号、热噪声信号等
(2)信源发出的符号间彼此是否独立: 无记忆信源:随机矢量的各分量相互独立 有记忆信源:随机矢量的各分量不相互独立
表述有记忆信源比无记忆信源困难的多,实际中,信 源发出的符号往往只与前若干符号的依赖关系强,与 更前面的符号依赖关系弱,这类信源可用马尔可夫信 源表示。 不同统计特性的信源可用随机变量、随机矢量以及随 机过程描述其输出的消息。
• 条件熵≤无条件熵;条件较多的熵≤条件较少 的熵,所以:
离 散 平 稳 信 源 性 质(H1(X)<∞时): • 条件熵随N的增加是递减的; • 平均符号熵≥条件熵; • 平均符号熵HN(X)随N增加是递减的; • 极限熵
平均值:
联合熵、信息熵及条件熵的关系为:
=H(X2)+H(X1/X2)
根据熵的极值性可得:
表明某一变量的条件熵必小于或等于它的无条件熵。 还可得: 且X1、X2独立时,上式等号成立。 定义无条件熵和条件熵之差为互信息:
I(X1;X2)=H(X1)-H(X1/X2) ≥0 =H(X1)+H(X2)-H(X1X2)
2.3 离散平稳信源的熵
离散平稳信源:各维联合概率分布均与时间起点无关 的完全平稳信源称为离散平稳信源。
一、两个符号的熵和互信息 设两个随机变量X1和X2,单个符号数学模型为:
联合概率空间:
条件概率空间: 二个符号的数学模型: 联合熵:
联合熵(共熵):是联合空间X1X2上的每个元素对 X1X2的自信息量的概率加权平均值。共熵表示信源输 出长度为2的序列的平均不确定性,或所含的信息量。 条件熵:联合空间X1X2上的条件自信息量的概率加权
二、信息熵的基本性质
1、对称性:
此性质说明:熵的总体性。它只与随机变量的总体结 构有关,而不在于个别值的概率,甚至也不因随机变 量取值的不同而异。 2、非负性:
3、扩展性:
说明:概率很小的值的出现,给予接收者以较大的信 息,但在熵的计算中占的比重很小,这是熵的总体平 均性的一种体现。 4、确定性:
相关文档
最新文档