300MW水氢氢汽轮发电机定子线棒堵塞的处理
2024年汽轮发电机组的常见故障及处理

2024年汽轮发电机组的常见故障及处理2024年汽轮发电机组常见故障分类:1.装置故障,2.电气故障,3.机械故障,4.润滑油和冷却水质量问题,5.其他问题。
1. 装置故障:1.1 锅炉问题:包括炉渣成分异常、炉膛结焦、过热器脱漆、管子泄漏等。
处理方法:及时清理炉渣、防止结焦、定期检查过热器和管道等。
1.2 百叶窗堵塞:百叶窗是汽轮发电机组的关键部件,如果堵塞会导致进气量减少,影响燃烧效果。
处理方法:定期清理百叶窗,保持畅通。
1.3 燃烧器问题:燃烧器堵塞、喷嘴损坏等会影响燃烧效果。
处理方法:定期检查清理燃烧器,更换损坏喷嘴。
1.4 煤粉喷射器故障:煤粉喷射器堵塞、喷射不稳定等问题会影响燃烧效果。
处理方法:定期检查清洁煤粉喷射器,调整喷射稳定性。
2. 电气故障:2.1 发电机线圈绝缘老化: 发电机是汽轮发电机组的核心设备,线圈绝缘老化会导致绝缘损坏,影响发电效率。
处理方法:定期进行绝缘检测,发现问题及时更换损坏线圈。
2.2 断路器故障:断路器是电气保护装置,如果故障会导致发电机组停机。
处理方法:定期检查断路器,及时更换故障断路器。
2.3 控制系统故障:控制系统是汽轮发电机组的核心部件,如果故障会导致发电机组无法正常启动或运行。
处理方法:定期检查控制系统,及时修复故障。
3. 机械故障:3.1 汽轮机叶片损坏:汽轮机叶片损坏会降低功率输出,影响发电效率。
处理方法:定期检查叶片磨损情况,及时更换损坏叶片。
3.2 水泵故障: 水泵是汽轮发电机组的关键组件,如果故障会导致冷却水流量不足,影响发电效率。
处理方法:定期检查水泵,及时更换故障水泵。
3.3 齿轮箱故障:齿轮箱是汽轮发电机组的传动装置,如果故障会导致转速不稳定,影响发电效率。
处理方法:定期检查齿轮箱,及时更换故障部件。
3.4 轴承故障:轴承是汽轮发电机组的关键部件,如果故障会导致摩擦增加,影响发电效率。
处理方法:定期检查轴承,及时更换故障轴承。
4. 润滑油和冷却水质量问题:4.1 润滑油污染:润滑油污染会导致润滑效果减少,增加摩擦,影响设备寿命。
2024年发电机定子压圈冷却水管故障处理及预防

2024年发电机定子压圈冷却水管故障处理及预防以下是2024年发电机定子压圈冷却水管故障处理及预防的解决方案:
1. 故障处理:
a. 首先,立即停止发电机,并断开电源供应。
b. 检查压圈冷却水管是否存在破裂、漏水或其他损坏情况。
如果发现问题,立即更换受损管道。
c. 检查其他相关部件,如冷却水泵、冷却系统管道等,确保无其他故障。
d. 启动发电机,并检查冷却系统是否正常工作。
2. 预防措施:
a. 定期检查压圈冷却水管的状态,特别关注是否存在腐蚀、破裂、漏水等问题。
对于有问题的水管,及时更换。
b. 定期维护冷却系统,包括排出冷却系统中的空气和杂质,确保冷却水的循环畅通。
c. 确保冷却水的水质符合要求,定期检测水质,并进行必要的处理和清洗。
d. 定期检查和维护冷却水泵,确保其正常工作。
e. 注意定子压圈冷却水管的温度,如果超过正常范围,应立即检查和修复。
通过以上措施,可以及时处理和预防发电机定子压圈冷却水管故障,确保发电机的正常运行和安全性。
第 1 页共 1 页。
发电机定子压圈冷却水管故障处理及预防(4篇)

发电机定子压圈冷却水管故障处理及预防一、背景发电机定子压圈冷却水管是发电机中进行冷却的重要部件之一。
其主要功能是通过水冷却,维持发电机正常运行时的温度,保证发电机的稳定性和寿命。
然而,在长期的运行过程中,发电机定子压圈冷却水管可能会出现故障,导致发电机的冷却效果减弱甚至完全失效。
因此,及时处理和预防这些故障对于发电机的正常运行至关重要。
二、故障处理1. 故障现象:发电机定子压圈冷却水管出现渗漏、堵塞或断裂等故障。
这些故障会导致冷却水无法正常流动,进而影响发电机的散热效果。
2. 处理方法:a. 渗漏故障:当发现冷却水管有渗漏现象时,应先停机并切断电源,然后用毛巾等吸取漏水,找到漏水的具体位置。
如果是由于连接处松动导致的渗漏,只需重新拧紧连接。
如果是冷却水管本身出现破损导致的渗漏,则需要更换新的冷却水管。
b. 堵塞故障:当发现冷却水管出现堵塞时,应先停机并切断电源,然后用高压水枪或软管将水管进行清洗,清除管道内的杂物和积垢。
如果堵塞严重无法清除,则需要更换新的冷却水管。
c. 断裂故障:当发现冷却水管出现断裂时,应先停机并切断电源,然后将断裂处清理干净,用专用的胶带或水管接头进行连接。
但这只是临时措施,为了确保发电机的安全运行,还需要及时更换新的冷却水管。
三、故障预防1. 定期检查:对发电机定子压圈冷却水管进行定期的检查,发现问题及时进行处理,避免小问题演变成大故障。
2. 清洁保养:保持发电机定子压圈冷却水管的清洁,定期清除管道内的杂物和积垢,防止堵塞产生。
3. 耐久性材料:在选择冷却水管时,应选择耐久性较好的材料,能够抗腐蚀、高温和高压的材料,增加冷却水管的寿命。
4. 加强维护:发电机定子压圈冷却水管是发电机中的重要组成部分,应加强维护工作,定期检查冷却水管的连接状态和磨损程度,并及时进行维修或更换。
总结:发电机定子压圈冷却水管故障处理及预防对于发电机的正常运行至关重要。
及时处理渗漏、堵塞或断裂等故障,可以保证发电机的冷却效果,延长发电机的使用寿命。
引进型300MW发电机密封油系统常见问题及处理

第11卷(2009年第11期)电力安全技术〔摘要〕目前国内引进型300M W 汽轮发电机大都采用水氢氢冷却方式,其氢气的密封采用双流环式氢油密封系统。
虽然该系统是一个比较完善的系统,但如果在安装、调试及运行过程中操作不当,仍然会出现一些问题,诸如漏氢量大、氢气纯度低、差压阀及平衡阀工作失常、发电机进油等,对这些问题进行了分析并提出了处理建议。
〔关键词〕发电机;密封油系统;故障;分析处理1引进型300M W 机组密封油系统简介上海电机厂生产的引进优化型QFSN-300-2发电机,采用水氢氢冷却方式,即定子绕组水内冷,转子绕组氢内冷,定子铁芯氢冷。
为此,机组配备了发电机氢、油、水系统。
氢系统用于冷却发电机转子绕组及定子铁芯;定子冷却水系统用于冷却发电机定子绕组;而密封油系统是为了防止外界空气进入发电机内部及阻止发电机内氢气漏出,以保证气体置换过程中,发电机内不形成易爆的氢气、空气混合物。
正常运行中,发电机内氢气具有一定的纯度和压力。
Q FSN -300-2型发电机密封油系统采用双流环式密封瓦结构。
密封瓦内有空、氢侧2个环状配油槽。
氢侧密封油流向氢侧配油槽,空侧密封油流向空侧配油槽,然后沿转轴轴向穿过密封瓦内径与转轴之间的间隙流出。
如果空、氢侧油路的供油压力在密封瓦处恰好相等,油就不会在两条配油槽之间的间隙中窜流,且只要密封油压始终高于机内气体压力,便可防止发电机内的氢气从机内逸出。
2常见故障的分析和处理2.1发电机进油(1)双流环式氢油密封系统分为空侧密封油系统和氢侧密封油系统,它们是2个相互独立的系统。
氢侧油箱是氢侧油路的油源,在运行中必须维持一定的油位,油位高时排油浮子会自动打开,将油排往空侧油泵的入口。
其排油的动力为发电机内氢气力与空侧油泵入口的压差,如氢压过低(通常小于M ),氢侧油箱的油就不容易被排出,久而久牛志成(国电靖远第二发电有限公司,甘肃白银730919)引进型300M W 发电机密封油系统常见问题及处理之,油箱油位就会升高,最终通过消泡箱进入发电机。
300MW发电机定子端部绑绳松动处理及防范措施

300MW发电机定子端部绑绳松动处理及防范措施摘要】针对300MW发电机的定子端部绑绳时常发生松动的情况,从端部绑绳的结构与固定方式进行了松动原因的分析,并列出了磨损严重的处理方案及防范措施,确保了火力发电厂发电机的安全、稳定运行。
【关键词】发电机线棒端部绑绳松动处理防范措施1、引言发电机是发电厂的主要设备,若运行中出现定子端部绑绳松动,将严重威胁到发电厂及电网的安全、稳定运行。
2008年1月,贵州西电电力股份有限公司黔北发电厂300MW1号发电机进行投产后第一次大修,电机检修人员进入发电机镗内常规检查发现发电机定子汽、励两侧端部绑绳出现大面积松动,部分线棒已被松动后的绑环将绝缘磨损大约2-4mm,几乎已看到铜导线裸露部分,如该发电机未及时发现仍然继续运行下去,将可能导致发电机发生匝间短路或相间短路爆炸,彻底烧毁发电机。
经汇报相关技术部门、厂领导并经多次讨论,及时上报集团公司决定立即联系制造厂家对该严重缺陷进行彻底处理。
整个处理过程共历时70余天,期间耗用了大量的人力和物力。
2、设备概况:该发电机型号为QFSN-300-2-20B,系国内三大发电机制造厂之一生产,冷却方式为水氢氢;定子线棒槽内固定采用以径向为主,切向为辅的紧固方式,即楔下波纹板,铁芯侧面扩槽对头槽楔和槽底、层间适形毡的复合固定结构;端部用涤玻绳绑扎在由玻璃钢支架和绑环组成的端部固定件上, L形的玻璃钢支架与压圈联接,使整个端部可以自由的在轴向位移,适应调峰运行的要求,固定和绑扎完后再整个定子进行烘焙固化的。
该发电机自2003年4月投产运行。
在2005年度进行常规电气预试时,发现励侧汇水管绝缘为零,检修人员从人孔门进入励侧,检查发电机定子端部汇水管连接部分以及测温元件时,发现定子线圈端部引出线大绑绳有松动,松动处已磨檫出黄粉,测温元件铜引线紧靠接地铜管,后经进入励侧内外端盖,对测温元件接地及引出线大绑绳松动进行临时处理后恢复运行。
发电机定子线棒堵塞故障处理

发电机定子线棒堵塞故障处理摘要:某电站发电机定子线棒第16槽下层线棒出水温度骤升,汽轮发电机组紧急打闸停机,停机后对16槽下层线棒进、出口绝缘引水管内窥检查,发现出口绝缘引水管内存在异物,对该定子线棒进行气、水两相冲洗,取出异物,冷却水流量试验、内冷水水质检测合格后,发电机重新并网运行。
关键词:线棒;绝缘引水管;异物;堵塞0引言2016年12月16日,某电站发电机定子16槽下层线棒出水温度骤升,主控操作员按照预案打闸停机。
针对这一事件,通过梳理事件时序,设备运行检修信息,分析故障原因,评估故障影响。
1故障发生过程该电站发电机定子16槽下层线棒出水温度骤升发生过程可分成4个阶段,具体如下:1.1 第一阶段2013年6月-2015年3月,机组投运满载运行至机组第二次大修的两个运行循环,机组运行状态一直是稳定的。
经监测,投运伊始,第16槽下层线棒出水温度比下层线棒出水平均温度高约2℃(同时还有几根线棒的出水温度也略高),由于厂家技术规范中规定,允许各线棒通水流量偏差±20%,故误认为是线棒制造时的股线“罗贝尔”换位等因素引起,没有怀疑到不锈钢空心股线及绝缘引水管出口可能存在异物堵塞。
机组首次满功率至首次大修期间,第16槽下层线棒出水温度(红线)与下层线棒出水平均温度(黄线)的温差曲线如图1所示,此时温差为2.3℃,且趋势稳定。
1.3 第三阶段2016年12月7日至12月16日,第四个运行循环中机组恢复满功率运行,16槽下层线棒出水温度升至75℃。
2016年12月7日,机组在860MW运行六天后开始升功率,随着机组功率的提升,16槽下层线棒出水温度与下层线棒出水平均温度的温差同步上升;当机组负荷到满功率时,16槽下层线棒出水温度为72.02℃,下层线棒出水平均温度为61.04℃,其温差为11℃(执行预案进行相关检查),经调整冷却水进口温度(下降1℃)后,16槽下层线棒出水温度与下层线棒出水平均温度随之下降但其温差未变;12月16日,其温差开始缓慢上升,10时40分16槽下层线棒出水温度达75℃,机组下调负荷控制温度(如图3所示)。
东汽300MW机组氢密封油系统常见故障分析与处理

东汽300MW机组氢密封油系统常见故障分析与处理发电机密封油系统虽经多年运行已是一个非常完善的系统,但如果在安装、调试及运行过程中操作不当,仍然会出现一些问题,譬如漏氢量大、发电机进油、差压阀及平衡阀工作失常等。
本文针对发电机密封油系统出现的常见问题进行了全面深入的分析与处理。
标签:密封油系统发电机进油发电机漏氢差压阀平衡阀前言目前國内汽轮发电机大都采用水氢氢冷却方式,氢气的密封采用双流环式氢油密封系统。
其系统由双流环式密封瓦、密封油泵、冷油器、过滤器、油封箱、氢油压差阀、油压平衡阀及连接管道、阀门等构成。
虽然该系统经多年运行已是一个非常完善的系统,但如果在安装、调试及运行过程中操作不当,仍然会出現一些问题,诸如漏氢量大、发电机进油、差压阀及平衡阀工作失常等一系列问题。
一、原因分析1.发电机进油1.1 由于发电机下空间狭小,管道不便于布置,安装单位往往将氢侧回油管向油箱的坡度不够。
结果造成回油不畅,使得消泡箱内的油位过高而进入发电机内。
1.2 发电机端盖靠近密封瓦处结合面由于加工精度不够或螺栓紧力不够,造成密封油沿发电机端盖进入发电机内。
1.3 两侧油流密封瓦,分为空侧密封油系统与氢侧密封油系统;在这两个单独的的系统中氢侧密封油箱为氢侧密封油提供压力用油,在密封油系统正常工作中,保证运行油位,防止氢气进入氢侧密封油泵,当密封油箱油位上涨时,排油电磁阀自动动作,将油排至润滑油管路,所排放的油量与密封油箱内的氢气压力有关,但是氢气压力偏低,直接影响密封油箱的排油量,如果监视不及时,直接导致密封油通过回油管道进入发电机内部,造成发电机线圈被油腐蚀,影响发电机绝缘性能降低。
这种现象大多发生在启动初期或盘车状态,尤其在调试阶段最容易发生。
因为此时发电机不充氢气。
1.4 密封瓦间隙或密封瓦内侧油档间隙超标,极易造成发电机进油。
1.5 正常运行时补、排油电磁阀失灵,当氢侧回油箱油位过高时,将造成发电机进油。
2.发电机漏氢发电机漏氢量大的原因除与发电机本体及其相连接的管道关联外,基本上都是通过密封油系统泄漏出去。
48.运河电厂300MW水氢氢发电机线棒温差大缺陷分析与处理3

运河电厂300MW 水氢氢发电机线棒温差大缺陷分析与处理 132运河电厂300MW 水氢氢发电机线棒温差大缺陷分析与处理侯占华 史 娟(华能济宁运河发电有限公司)摘 要:对运河电厂#5发电机线圈温差大的原因进行了分析,查明了故障原因,采取了一系列处理的措施,经过试验数据比较及发电机运行后的观察,彻底消除了故障点,确保了机组的安全经济运行。
关键词:发电机线棒 定子线棒堵塞 防范措施引 言山东运河发电有限公司#5发电机组使用上海电机厂型号为QFSN-330-2型机组,发电机采用定子线圈水内冷,转子线圈氢内冷方式、定子铁芯及结构件氢气冷却的水氢氢冷却方式。
发电机运行中当负荷等于或大于75%额定值时,定子绕组同一种水路其层间测温元件或出水元件相互温度读数最大差异达10℃时,则表明温差高的这条水流支路存在不正常现象,如果温度继续上升,差别达到14℃时,为避免发生重大事故,则应立即停机检修。
1 缺陷发生运河电厂#5发电机于2006年9月26日移交试生产,至2007年8月份开始,#5发电机线棒温差逐渐增大,2007年8月13日,线棒温差达到报警值10℃,定子#10槽线棒层间温度、#10出水管温度最高,定子#28槽线棒层间温度、#28出水管温度稍高,其它线棒温度基本一致。
根据该发电机运行工况要求,线棒温差≥10℃时应降负荷或停机检查,线棒温差≥14℃时发电机跳闸,因此发电机被迫降负荷运行。
2 原因分析 2.1 确定故障点为了确定是线棒确实存在较大的温差还是测温元件、测温线路有问题造成假象的高温差,专门对测温元件及其线路进行了检查未发现异常,且测温元件读数在负荷变化时呈现有规律变化,发电机停机后所有测温元件读数基本一致,排除了发电机测温元件及测温线路的问题,说明温度高的线圈水路有故障。
2.2 原因探析发电机#10槽、#28槽线棒为上下两层,由于#10槽、#28槽线棒层间温度最高,与上层线棒连接的#10、#28出水管温度也最高,而与下层线棒连接的#42、#6出水管温度则正常,因此是#10槽、#28槽上层线棒水路存在故障引起线棒发热、发电机线棒温差大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
300MW水氢氢汽轮发电机定子线棒堵塞的处理
通第2、第4根空心导线,并且不损坏线棒,进一步采
用柠檬酸溶液进行酸洗去垢。
使用l:1的比例配制柠
檬酸溶液,PH值在6到7之问(使用PH试纸测定),为
保持溶液浓度整个冲洗过程采用循环方式进行。
使用
试压泵加压,保持0.2MPa压力,连续冲洗两个小时,
在此期间正反冲洗各一次。
经过酸洗去垢后,进行流
量试验,52槽上层线棒流量达到正常水平。
(3)线棒堵塞处理的注意点。
首先在定子线棒空
心导线}焊接空心铜管时应十分小心。
由于空心导线
壁较薄,因此气枪火焰不能太靠近导线,在焊接前须用
湿石棉绳包扎靠近定子线棒绝缘处,以免烧坏绝缘。
在脱焊和修后焊接紫铜烟斗状铜接头,也应十分注意
这一点。
焊接使用Beu80PAg(料204)银磷铜焊条,焊
接后必须用柠檬酸溶液清洗焊缝,以免铜线腐蚀。
焊
接:[作由厂家提供技术支持。
其次试压泵压力应控制
好,以免压力过高损坏线棒。
第三,所有工作完成之后
应进行泵压试验,以保证焊接部位不漏水。
4结论
为保证发电机的安全运行,水路畅通,必须结合检
修对定子水路进行冲洗。
冲洗前,先将总进、出水管放
水阀开启,排出线棒内的积水,并用O.3—0.5MPa的压
缩空气把剩水全部吹干,再通入清洁的定子冷却水,冲
洗到出水口无黄色杂质污水,再接人压缩空气冲出剩
qPbppp≯p、p≯o÷、;Ppp、≯、p口p、poPpp口^
(上接第18页)
负载电流(,/“)2
图2用三次等效负载试验确定绕组温升
通过对4000kW、5750kW两台大电流电动机的温
升试验数据的分析,哈电公司与日本日立公司合作生
产的马钢冷轧变频电动机中的两台大电流电动机的温2004N01
水。
水及压缩空气每次从总进、出水管轮流交替冲洗,一般情况冲洗3至4次即可。
当发现个别线棒有堵塞现象时,则应拆下线棒两端的聚四氟乙烯绝缘引水管与总进、出水管连接的接头,用压缩空气和水反复单独进行冲洗。
必要时对堵塞的线棒按本文所提供的方法进行处理。
另外,在水冷发电机的水系统外部管道的设计中一般都有反冲洗的管道连接,因此每逢停机,应立即进行反冲洗,这是避免定子水路结垢的一种简便、有效方法。
这・操作应写入运行规程中,要引起足够的重视。
还应注意到,在反冲洗操作完成之后,一定要确认阀门已恢复到正常运行状态,以保证发电机的安全运行。
[参考文献】
[1]沈粱伟.大型汽轮发电机故障模式分析及时策[J].大电机技术,1998,(6).
[收稿日期]2003—01—20
[作者简介]
陈卫勇(1973一),男,福建龙岩人,1995年毕
业于西安交通大学电气工程系电机专业,长
期从事汽轮发电机检修、试验工作,工程师。
(编辑:邹淑英)≯pppwp、口o、口’p、p∞MMp、p口p#o升试验是成功的。
试验结果表明:温升试验数据都符合技术标准,为国内同类电机的制造提供了可靠依据,同时,也为改进异步电机试验方法提供了有效的数据。
收稿日期J2003—05—10
[作者简介]
周宝仁(1965一),男,黑龙江肇东人,1990年
毕业于哈尔滨理工大学电机制造专业,一直
从事电机产品检验和试验研究工作,工程
师。
王岩(1973~),女,黑龙江哈尔滨人,1998年
7月毕业于俄罗斯库班国立工业大学,许理
学硕士研究生,一直在哈尔滨理工大学从事
科研管理工作,助理工程师。
(编辑:冷晓梅)。