电容传感器测量电路
电容传感器桥式电路介绍PPT课件

目录
一、电容式传感器的工作原理及分类 二、电容式传感器的测量电路 三、电容式传感器在应用中的注意事项 四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C
为
C 0 A
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起
虽然面积变化型电容传感器在理想情况下灵敏度为常 数,不存在非线性误差,但实际上因为电场边缘效应 的影响仍存在一定的非线性误差,且灵敏度较低。
面积变化型一般用于测量角位移或较大的线位移。
11
1.3 介质变化型电容传感
器
对于图所示的液位测量用介质变化型
电容传感器,传感器的总电容C等于
上、下两部分电容C 和C 的并联,即
1
2
C
ห้องสมุดไป่ตู้C1
C2
20 l h
ln
D d
2 x0l
ln
D d
a
bh
灵敏度S C b 2 x 10 =常数
h
ln
D d
由上式可知,这种传感器的灵敏度为常数,电容C理论上与液位h
成线性关系,只要测出传感器电容C的大小,就可得到液位h的值。
介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 12
13
二、电容式传感器的测量电路
电容传感器将被测物理量转换为电容量的变化后, 由后续电路转换为电压、电流或频率信号。
14
2.1 电桥型电路
将电容传感器作为桥路的一部分,由电容变化转换为 电桥的电压输出,通常采用电阻、电容或电感、电容 组成的交流电桥。
图所示的电桥型电路,是一种电感、电容组成的桥 路,电桥的输出为一调幅波,经放大、相敏解调、 滤波后获得输出,再推动显示仪表。
电容式传感器的等效电路

1 变压器式交流电桥
图4-6 变压器式电桥线路方框图 图4-7 变压器式电桥等效电路图
2 紧耦合比率臂交流电桥
图4-8 紧耦合电感比率臂电桥
图4-9 紧耦合电感比率臂电桥等效电路
图4-8与图4-9电路参数之间的对应关系为
Z12 Zs Z p jL
ZZps
jM
Z12
jKL KZ12
d0
d0 d0
C
S d0
C
C
C0
S
d0
很明显,这种形式的传感器其电容量C与水平位移Δx呈线性关系。
a
d
x S
b
动极板 定极板
x
变面积型电容传感器原理图 电容式角位移传感器原理图
4.2.3 变介质式电容式传感器
面积S与介电常数的位置是等价的,因此当介电常数的变化量为△ε时,电容量的变 化量为
灵敏度为
4.1.2 基本结构 电容式传感器可分为变间隙式、 变面积式和变介电常数式三种。
图4-2 变间隙式电容传感器
图4-3变面积式电容传感器示意图
图4-4 变介电常数式电容传感器示意图
4.2 传感特性
4.2.1 变间隙型电容传感器
当εr和S为常数,初始极距为d0时
C S 0r S
d0
d0
设动极板2位移 x ,参考方向为向 x 0 上运动,即动极板2上移,
A、B两端间的等效电容为
Ce
1
C Cp
2L(C
Cp)
Ce
C
1 2L(C
Cp)
应保证激励频率的稳定性。在较高激励频率下使用电容传感器时,每当改变激励频 率或者更换传输电线时都必须对测量系统重新进行标定。
4.4 电容式传感器的信号调理
电容式传感器PPT课件

l1
C 22 (l l1) 21l1
d
ln( D ) ln( D )
D
d
d
ε1—被测液体介电常数 ε2—空气的介电常数 D、d—两同心圆柱的直径
l—柱体的有效总长度 l1——浸入液体的实际高度
C
2
ln( D
)
(1
2
)l1
d
K C 2 (1 2 )
l1 ln( D d )
第二节 电容传感器测量电路
5、新型电容式指纹传感器
FPS110电容式指纹传感器表面集合了300×300个电容器, 其外面是绝缘表面,当用户的手指放在上面时,由皮肤来组成 电容阵列的另一面。电容器的电容值由于导体间的距离而降低, 这里指的是脊(近的)和谷(远的)相对于另一极之间的距离。 通过读取充、放电之后的电容差值,来获取指纹图像。该传感 器的生产采用标准CMOS技术,大小为15×15mm2,获取 的图像大小为300×300,分辨率为500DPI。FPS110提供有 与8位微处理器相连的接口,并且内置有8位高速A/D转换器, 可直接输出8位灰度图像。FPS110指纹传感器整个芯片的功 耗很低(<200mw),价格也比较便宜(人民币600元以 下)。下图为利用FPS110获取的指纹图象
5、新型电容式指纹传感器
电容传感器系列 创新应用
第五章小结
1、变极距型电容传感器 输出呈非线性关系,灵敏度与极距平方成反比, 适合检测微小位移。
2、变面积型电容传感器
输出与被测量呈线性关系,适合检测较大的位移。 3、变介质型电容传感器
输出与被测量呈线性关系,典型应用是检测液位。 4、检测电路
运算放大器检测电路和电桥检测电路
剂固定两个截面为T型的绝缘体,
电容式传感器的测量电路电桥电路

2023/12/23
39
电容式接近开关
2023/12/23
40
放松一下!
2023/12/23
41
(5) 要求传感器及引线要采用屏蔽措施。目的在于 消除寄生电容的影响,提高灵敏度。
2023/12/23
23
4.4 电容式传感器的应用
电容式传感器不但应用于位移、振动、 角度、加速度及荷重等机械量的精密测 量,还广泛应用于压力、差压力、液位、 料位、湿度、成分含量等参数的测量。
2023/12/23
29
4.4.5 电容式厚度传感器
2.电容式厚度传感器
2023/12/23
30
4.4.6 电容式位移传感器
电容式位移传感器就是通过改变电容器极板间 的距离引起电容量的变化来实现测量的。通常 采用的是一种单极变极距式。
2023/12/23
31
4.5 电容栅式传感器
电容栅式传感器是在电容式传感器基础上发展 起来的一种传感器。它具有电容式传感器的优 点,当然它也有其自身的特点,如抗干扰能力 强、精度高和量程大等特点。
运算放大器的特点就是放大倍数A很大,输入阻抗也很大。理想的运算放 大器的放大倍数和输入阻抗都是无穷大。利用运算放大器的这些特点就可 作为电容式传感器的测量电路,来解决单个变极距式电容器传感器的非线 性问题。运算放大器式测量电路如图所示。图中,C为总的输入电容,Cx 是电容传感器。
2023/12/23
极时,检测板与大地间的电容量C非常小,它
与电感L构成高品质因数(Q)的LC振荡电路,
Q=1(ωCR)。当被检测物体为地电位的导
电体(如与大地有很大分布电容的人体、液体
等)时,检测极板对地电容C增大,LC振荡电 路的Q值将下降,导致振荡器停振。
电容式传感器

2.5 运算放大器电路
由前述已知,极距变化型电容传感器的极距变化 与电容变化量成非线性关系,这一缺点使电容传 感器的应用受到一定限制。为此采用比例运算放 大器电路可以得到输出电压u g 与位移量的线性关系。
C0 ug =-u 0 0 A
输出电压ug与电容传感器间隙 成线性关系。这种电路用于位移测量传感器。
4.温度影响
环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系, 从而引入温度干扰误差。温度影响主要包括温度对结构尺寸和对介质的影响两 方面。
24
四、电容式传感器的研究现状
1.PT800型压力变送器
PT系列产品中的标准型号,内置陶瓷电容式传感器。可以自由选 配模拟、数字现场显示表头。有多种过程连接件,可以现场调零 点、满量程。广泛用于自动化工业中对液体、气体和蒸汽的测量。
27
9
1.2.2 角位移型
当动板转动一角度时,与定板之间的覆盖面积就发生 变化,导致电容量随之改变。
覆盖面积
A
r2
2
其中, 为覆盖面积对应的中心角,r为极板半径。
r 2 所以,电容量为 C 2
C r 2 灵敏度S 常数 2
由上式可知,角位移型电容传感器的输出C与输入也为线性关系。
电容式传感器
目录
一、电容式传感器的工作原理及分类
二、电容式传感器的测量电路
三、电容式传感器在应用中的注意事项
四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C为
0 A C
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起 电容器电容量C的变化,从而达到从被测参数到电容的变换。
电容传感器测量位移电路仿真设计及原理

摘要传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
电容式传感器就是把被测的机械量,如位移、压力等转换为电容量变化的传感器。
它的敏感部分就是具有可变参数的电容器。
其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。
本文设计介绍了一种电容式传感器测量位移的设计结构及其工作原理。
关键字:电容式传感器,平行电极,位移目录摘要。
1 引言。
3 传感器转换电路仿真调试及原理分析。
3 1.同相比例放大电路2.二阶低通滤波器电路电容式传感器测量电路设计及分析。
5 误差分析。
8 学习心得。
8参考文献资料。
9引言传感器是科学仪器、自动控制系统中信息获取的首要环节和关键技术,是先进国家优先发展的重要基础性技术。
传感器与通信技术和计算机技术构成了信息技术的三大支柱。
传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
随着现代科学技术的迅猛发展,非电物理量的测量与控制技术已越来越广泛地应用于航天、交通运输、机械制造、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。
70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。
这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。
电容式传感器是一种用途极广,很有发展潜力的传感器。
典型的电容式传感器由上下电极、绝缘体和衬底构成。
当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。
但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。
传感器转换电路仿真调试及原理分析1.同相比例放大电路同相输入放大电路如图1所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有vN=vP=vS,i1=if于是求得所以该电路实现同相比例运算。
传感器技术 电容式、测量电路

① 驱动电缆法
☻ 原理:驱动电缆法是一种等电位屏蔽法。使用电缆屏蔽 层电位跟踪与电缆相连的传感器电容极板电位,使两电 位的幅值和相位均相同,从而消除电缆分布电容的影响。
11
介质变化型电容传感器
☻ 原理:利用极板间介质的介电常数变化将被测量转换成电
容变化的传感器称为介质变化型电容传感器。 以电介质插
入式为例, C C1 C2
0a
[ r1(
L
x
)
r2x
]
x
L
☻
S dC
应用特性: dx
0a
(
r2
r1
)
① 变介质型电容传感器可用来测量电介质的液位或某些材 料的温度、湿度和厚度等。
② 介质变化型电容传感器常用于非导电液体液位的测量, 其灵敏度与介电常数的差值(ε2-ε1)的值成正比,(ε2-ε1)值 越大灵敏度越高。
2020/6/30
12
应用中存在的问题和改进措施
(1) 等效电路(Equivalent circuit)
☎ 考虑电容传感器在高温、高
湿及高频激励的条件下工作,
而不可忽视其附加损耗和电 效应影响时,其等效电路如
C—传感器电容;RP—低频损耗并联电 阻; RS—串联损耗电阻;L—电容器及
图。
引线电感;CP—寄生电容
☎ 在实际应用中高频激励时,每当改变激励频率或者更换 传输线缆时,会使传感器有效电阻和有效灵敏度都发生 变化,因此必须对测量系统重新进行标定。
2020/6/30
13
应用中存在的问题和改进措施
5-2电容式传感器的测量电路 传感器课件

±UE
D2
D1
iC1 +
C1
R2 R1
iC2
+
+C2 RL U- 0
R1
+ i1 C1
R2
5、调频电路
振荡回路固有电容
f 1
2 LC
引线分布电容
CC1C0Cc
f0
1
2 (
1
( 5 3 2 )
C 1 C 0 C c C L
Cx L
Δu 振荡器
Δf
限幅 Δf 放大器
鉴频器 Δu
图5-18 调频式测量电路原理框图
Q
5.3 电容式传感器的特点及设计 与应用中存在的问题
5.3.1 电容传感器的特点
1.电容式传感器的优点 (1)温度稳定性好
传感器的电容值一般与电极材料无关,仅取 决于电极的几何尺寸,且空气等介质损耗很小, 只要从强度、温度系数等机械特性考虑,合理 选择材料和几何尺寸其他因素(因本身发热极小) 影响甚微。
(2)结构简单,适应性强 电容式传感器结构简单,易于制造。能在高
与T形网络中的电容C1和C2的差值有关。当电源电 压确定后,输出电压只是电容C1和C2 的函数。
4、差动脉宽调制电路
利用对传感器电容的充放电使电路输出脉冲 的宽度随传感器电容量变化而变化。通过低通滤 波器得到对应被测量变化的直流信号。
C1、C2为差动式传感器的
D1
两个电容,若用单组式, 则其中一个为固定电容, 其电容值与传感器电容初 Ur
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、电容式传感器测量电路
由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。
参考文献:
[1]王化群,邵富群,王师.电容层析成像传感器的优化设计[J].仪器仪表学报,2000(14):4-7
[2]强锡富.传感器.(第3版)[M].北京:机械工业出版社,2006. 110-116
[3]谢楠,陈汉量,陈卫民.电容传感器信号调理的新方法[J].自动化仪表,2005(3):31
[4]郭振芹.非电量电测量[M].北京:计量出版社,1984. 182
3、利用闭环运算放大器的测量电路[17]
利用闭环运算放大器对微小电容测量的方法对高频信号发生器有很高的要求,而且器件的杂散电容和寄生电容也被直接放大[18]。
四、总结
目前的微小电容测量技术正处于不断的完善中,还不能满足实际应用发展的需要。从工业角度而言,一个完善的微小电容测量电路应该具备低成本、低漂移、响应速度快、抗杂散性好、高分辨率、高信噪比和适用范围广等特点[19]。
三、发展现状
1、交流锁相放大测量电路
曼彻斯特科学与技术大学(UMIST)成功研制出基于交流的电容检测电路,其特点是可抑制杂散电容、分辨率高、低漂移、高信噪比、无开关电荷注入问题[14]。但电路较复杂,成本高,频率受限[13]。
2、高压双边交流激励电容测量电路[15],[16]
美国能源部的Fasching等人将电容层析成像技术应用于流态床内部粉体动态参数的研究上时,采用了高压双边交流激励的微小电容测量电路。激励电压不但具有较高的幅值,而且频率较高。但该传感器系统还仅用于实验条件下的在线检测,使其推广到实际现场还有一定的困难。
3、双T型充放电网络
这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用于具有度稳定,否则影响灵敏度[2]。
4、运算放大器式电路
该电路的最大特点是能够克服变极距型电容式传感器的非线性,是电容式传感器比较理想的测量电路。但电路要求电源电压稳定,固定电容量稳定,并要求放大倍数与输入阻抗足够大[2],[8]。
二、电容式传感器的性能
和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。
电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。
第一部分引言
本设计是应用于电容传感器微小电容的测量电路。
传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。
电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。
5、电荷法
该电路的主要优点是能有效地抑制杂散电容,而且电路结构简单、成本很低,经过软件补偿后电路稳定性较高,获取数据速度快。其缺点主要为:采用直流放大存在漂移问题;存在CMOS开关引起的电荷注人问题[11],[12],[13]。
6、脉冲调宽型电路
脉冲调宽型电路适用于任何差动式电容式传感器,并具有理论上的线性特性。其优点主要有:采用直流电源,其电压稳定度高,不存在稳频、波形纯度的要求,也不需要相敏检波与解调等;对元件无线性要求,便于集成组件化;经低通滤波器可输出较大的直流电压,对输出矩形波的要求也不高;电路抗干扰性能较强,不仅适于静态测量,也适用于动态测量,并有较大的动态工作范围[2]。此电路对直流电源电压稳定性及电路对称性有较高要求[8]。
[5]Baoliang Wang,Haifeng Ji. A High-Speed Data Acquisition System for ECT Based on the Differential Sampling Method[J]. IEEE SENSORS JOURNAL,No.2,APRIL 2005:308-312
由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。
微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。
2、交流电桥电路
电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。
[6]阎军,王聚福.微小电容变化的测量[J].实验室仪器,1991(4):9
[7]徐建林.非电量电测技术[M].北京:机械工业出版社,2006. 110-111
二、常用电容式传感器测量电路
1、调频电路
这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。