2019-2020河南省实验中学中考数学试卷及答案

合集下载

2019-2020年河南省实验中学九年级(下)第一次月考数学试卷 解析版

2019-2020年河南省实验中学九年级(下)第一次月考数学试卷  解析版

2019-2020学年九年级(下)第一次月考数学试卷一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣2020B.2020C.D.2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣73.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°4.如图所示几何体的左视图正确的是()A.B.C.D.5.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣16.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣27.商家常将单价不同的两种糖混合成“什锦糖”出售,“什锦糖”的单价为:两种糖的总价与两种糖的总质量的比.A种糖的单价为40元/千克,B种糖的单价为30元/千克;现将2千克A种糖和3千克B种糖混合,则“什锦糖”的单价为()A.40元/千克B.34元/千克C.30元/千克D.45元/千克8.如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.B.C.D.9.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm10.如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x 的函数关系如图2所示,则BC的长为()A.B.C.D.二.填空题(共5小题)11.(﹣2019)0﹣sin30°++2﹣1=.12.不等式组的解集是.13.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为.15.如图,已知△ABC中,CA=CB=4,∠C=45°,D是线段AC上一点(不与A,C重合),连接BD,将△ABD沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F.若△BEF是直角三角形,则AF的长为.三.解答题(共8小题)16.化简求值:,其中,x=2+.17.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A,B,C,D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.19.如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF =70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)20.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?21.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c<x﹣3的解集:.22.背景知识:如图,在Rt△ABC中,∠ACB=90°,若AC=BC,则:AB=AC=BC.(1)解决问题:如图(1),∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB,现尝试探究线段BA、BC、BD之间的数量关系:过点C作CE⊥CB,与MN 交于点E,易发现图中出现了一对全等三角形,即≌,由此可得线段BA、BC、BD之间的数量关系是:;(2)类比探究:将图(1)中的MN绕点A旋转到图(2)的位置,其它条件不变,试探究线段BA、BC、BD之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN绕点A旋转到图(3)的位置,其它条件不变,若BD=2,BC=,则AB的长为(直接写结果).23.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下列各数中,最小的数是()A.﹣2020B.2020C.D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2020<﹣<<2020,∴所给的各数中,最小的数是﹣2020.故选:A.2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000065=6.5×10﹣7.故选:D.3.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°【分析】根据两条直线平行,同位角相等可得∠DMF=60°,再根据三角形内角和即可求解.【解答】解:∵DE∥AB∴∠A=∠CED=60°,∵DM∥AC∴∠DMF=∠A=60°,∵DF⊥AB∠DFM=90°,∴∠MDF=90°﹣60°=30°.故选:C.4.如图所示几何体的左视图正确的是()A.B.C.D.【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从几何体的左面看所得到的图形是:故选:A.5.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D、原式变形后,利用完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式=﹣a2+ab,错误;B、原式=4a2b2÷a2b=4b,错误;C、原式=6a2b,正确;D、原式=﹣(a﹣1)2=﹣a2+2a﹣1,错误,故选:C.6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.7.商家常将单价不同的两种糖混合成“什锦糖”出售,“什锦糖”的单价为:两种糖的总价与两种糖的总质量的比.A种糖的单价为40元/千克,B种糖的单价为30元/千克;现将2千克A种糖和3千克B种糖混合,则“什锦糖”的单价为()A.40元/千克B.34元/千克C.30元/千克D.45元/千克【分析】先求出A种糖和B种糖的总价,再根据“什锦糖”的单价=总价÷数量,即可得出答案.【解答】解:根据题意得:=34(元/千克),答:“什锦糖”的单价为34元/千克;故选:B.8.如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.B.C.D.【分析】根据矩形的面积为10,设OA=a,根据AD=2BD,表示出点D的坐标,代入即可求出k的值.【解答】解:设OA=a,矩形OABC的面积为10,所以AB=,∵AD=2BD,∴AD=AB=,因此点D(,a),代入反比例函数关系式得,k=,故选:C.9.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm【分析】根据线段垂直平分线的性质即可求解.【解答】解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.10.如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x 的函数关系如图2所示,则BC的长为()A.B.C.D.【分析】当x=0时,y=PC=PD=2,则AC=4,当x=2+,则AP=x﹣AD=2﹣2=,cos A==,则tan A=,BC=AC•tan A,即可求解.【解答】解:当x=0时,y=PC=PD=2,则AC=4,当x=2+,PC⊥AB,则AP=x﹣AD=2﹣2=,cos A==,则tan A=,∴BC=AC•tan A=4×=,故选:C.二.填空题(共5小题)11.(﹣2019)0﹣sin30°++2﹣1=1+2.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2019)0﹣sin30°++2﹣1=1﹣+2+=1+2,故答案为:1+2.12.不等式组的解集是x<﹣7.【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:,由①得x≤1,由②得x<﹣7,故此不等式组的解集为x<﹣7.故答案为:x<﹣7.13.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球号之和大于5的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答】解:根据题意画图如下:∵共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴摸出的小球号之和大于5的概率为=.故答案为:.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为.【分析】如图,连接BD,BF.根据S阴=S扇形BDF+S△BEF﹣S△BDC﹣S扇形BCE=S扇形BDF ﹣S扇形BCE计算即可.【解答】解:如图,连接BD,BF.由题意S阴=S扇形BDF+S△BEF﹣S△BDC﹣S扇形BCE=S扇形BDF﹣S扇形BCE=﹣=π,故答案为π.15.如图,已知△ABC中,CA=CB=4,∠C=45°,D是线段AC上一点(不与A,C重合),连接BD,将△ABD沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F.若△BEF是直角三角形,则AF的长为4或4﹣4.【分析】如图1,当∠EBF=90°时,根据折叠的性质得到∠EBA=∠DBA=45°,推出点F在以C为圆心,AC为半径的圆上,连接CF,根据等腰直角三角形的性质得到结论;如图2,当∠BEF=90°,根据折叠的性质得到∠BDA=∠BEA=90°,∠EAB=∠DAB =67.5°,推出△ADF和△BDC是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:∵CA=CB=4,∠C=45°,∴∠CAB=∠CBA=67.5°,如图1,当∠EBF=90°时,∵将△ABD沿AB翻折,使点D落在点E处,∴∠EBA=∠DBA=45°,∴∠ADB=180°﹣45°﹣67.5°=67.5°,∴∠AFB=90°﹣∠E=90°﹣67.5°=22.5°,∴点F在以C为圆心,AC为半径的圆上,连接CF,∴∠ACF=2∠ABF=90°,∴AC=CF=4,∴AF=AC=4;如图2,当∠BEF=90°,∵将△ABD沿AB翻折,使点D落在点E处,∴∠BDA=∠BEA=90°,∠EAB=∠DAB=67.5°,∴∠F AD=45°,∴∠F AD=∠C=45°,∴AF∥BC,△ADF和△BDC是等腰直角三角形,∴CD=BC=2,∴AD=AC﹣CD=4﹣2,∴AF=AD=4﹣4,综上所述,若△BEF是直角三角形,则AF的长为4或4﹣4,故答案为:4或4﹣4.三.解答题(共8小题)16.化简求值:,其中,x=2+.【分析】直接利用分式的性质分别化简进而把已知数据代入求出答案.【解答】解:原式=•﹣=﹣==,当x=2+时,原式==.17.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A,B,C,D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了50名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是36°;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?【分析】(1)利用A组人数除以所占百分比进而得出答案;(2)先求出样本中D等级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%,进而得出D组所占圆心角度数;(3)根据(1)中所求得出测试全体人数,以及D级所在的扇形的圆心角度数得出答案;(4)根据A级的学生人数所占比例求出该县九年级有500名学生所占人数.【解答】解:(1)由题意可得,七年级各班共随机调查了:10÷20%=50(人),故答案为:50;(2)D级所在的扇形圆心角的度数是:(1﹣46%﹣24%﹣20%)×360°=36°;故答案为:36°;(3)补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A级学生人数约为100名.18.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB 长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB =60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.19.如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF =70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)【分析】过点C作CE∥AD,交AB于点E,则四边形AECD是平行四边形,利用平行四边形的性质可得出AE、EB及∠CEF的值,通过解直角三角形可得出EF,BF的长,结合EF﹣BF=50,即可求出CF的长,此题得解.【解答】解:过点C作CE∥AD,交AB于点E,如图所示.∵CD∥AE,CE∥AD,∴四边形AECD是平行四边形,∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.在Rt△ECF中,EF==CF,在Rt△BCF中,BF=.∵EF﹣BF=50,∴CF﹣=50,∴CF≈37m.答:河流的宽度CF的值约为37m.20.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?【分析】(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,根据“2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型汽车m辆,购进B型汽车n辆,根据总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出结论;(3)利用总价=单价×数量,即可求出三种购车方案获得的利润,比较后即可得出结论.【解答】解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:.答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,依题意,得:25m+10n=200,解得:m=8﹣n.∵m,n均为正整数,∴,,,∴共3种购买方案,方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆.(3)方案一获得利润:8000×6+5000×5=73000(元);方案二获得利润:8000×4+5000×10=82000(元);方案三获得利润:8000×2+5000×15=91000(元).∵73000<82000<91000,∴购进A型车2辆,B型车15辆获利最大,最大利润是91000元.21.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为y=|x2﹣4x|﹣3;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:函数关于直线x=2对称;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=1;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c <x﹣3的解集:3<x<5.【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3<x﹣3的解集为3<x<5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a ≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为y=|x2﹣4x|﹣3.(2)如图:函数关于直线x=2对称,故答案为函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3<x﹣3的解集为3<x<5,故答案为3<x<5.22.背景知识:如图,在Rt△ABC中,∠ACB=90°,若AC=BC,则:AB=AC=BC.(1)解决问题:如图(1),∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB,现尝试探究线段BA、BC、BD之间的数量关系:过点C作CE⊥CB,与MN 交于点E,易发现图中出现了一对全等三角形,即△ACE≌△DCB,由此可得线段BA、BC、BD之间的数量关系是:AB+BD=BC;(2)类比探究:将图(1)中的MN绕点A旋转到图(2)的位置,其它条件不变,试探究线段BA、BC、BD之间的数量关系,并证明;(3)拓展应用:将图(1)中的MN绕点A旋转到图(3)的位置,其它条件不变,若BD=2,BC=,则AB的长为4(直接写结果).【分析】(1)过点C作CE⊥CB,得到∠BCD=∠ACE,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形即可.(2)过点C作CE⊥CB于点C,判断出△ACE≌△DCB,确定△ECB为等腰直角三角形,即可得出结论;(3)先判断出△ACE≌△BCD,CE=BC,得到△BCE为等腰直角三角形,得到AB=BD+BC,即可得出结论.【解答】解:(1)如图1,过点C作CE⊥CB,与MN交于点E,∴∠BCE=90°=∠ACD,∴∠ACE=∠DCB,∠CEB+∠CBE=90°,∵BD⊥MN,∴∠ABD=90°,∴∠CBE+∠CBD=90°,∴∠CEB=∠CBD,∵AC=DC,∴△ACE≌△DCB(AAS),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AE+AB=BD+AB,∴AB+BD=BC,故答案为:△ACE,△DCB,AB+BD=BC;(2)BD﹣AB=BC,理由:如图(2),过点C作CE⊥CB,与MN交于点E,同(1)的方法得,△ACE≌△DCB(AAS),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AE﹣AB=BD﹣AB,∴BD﹣AB=BC;(3)如图(3),过点C作CE⊥CB,与MN交于点E,∴∠BCE=90°=∠ACD,∵BD⊥MN,∴∠ABD=90°=∠ACD,∵∠AOC=∠DOB,∴∠BAC=∠CDB,∵AC=DC,∴△ACE≌△DCB(ASA),∴CE=BC,AE=BD,∵∠BCE=90°,∴BE=BC,∵BE=AB﹣AE=AB﹣BD,∴AB﹣BD=BC,∵BD=2,BC=,∴AB=BD+BC=4,故答案为4.23.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.【分析】(1)将点A,C的坐标代入y=ax2+2x+c即可;(2)求出点E坐标,如图1,当点Q在x轴上时,设Q(m,0),由QA=QE可列出关于m的方程,解方程即可;当点Q在y轴上时,设Q(0,n),则QA=QE可列出关于n的方程,解方程即可;(3)如图2,过点E作EH⊥x轴于点H,求出∠BAE=45°,所以可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,设P(t,0),分别利用相似三角形的性质可求出t的值,即可写出点P的坐标.【解答】解:(1)将A(﹣1,0),C(0,3)代入y=ax2+2x+c,得,解得,,∴抛物线的解析式为:y=﹣x2+2x+3;(2)联立,解得,或,∴E(4,﹣5),如图1,当点Q在x轴上时,设Q(m,0),∵AE为底边,∴QA=QE,∴QA2=QE2,即(m+1)2=52+(m﹣4)2,解得,m=4,∴Q1(4,0);当点Q在y轴上时,设Q(0,n),∵AE为底边,∴QA=QE,∴QA2=QE2,即n2+12=42+(n+5)2,解得,n=﹣4,∴Q2(0,﹣4);综上所述,Q1(4,0),Q2(0,﹣4);(3)如图2,过点E作EH⊥x轴于点H,∵A(﹣1,0),E(4,﹣5),∴AH=EH=5,AE==5,∠BAE=45°,又OB=OC=3,∴∠ABC=45°,AB=4,BC==3,设P(t,0),则BP=3﹣t,∵∠BAE=∠ABC=45°,∴只可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,当△PBC∽△BAE时,,∴=,∴t=,∴P1(,0);当△PBC∽△EAB时,,∴=,∴t=﹣,∴P2(﹣,0),综上所述,点P的坐标为(,0)或(﹣,0).。

2019年河南省中考数学试卷含答案解析

2019年河南省中考数学试卷含答案解析

2019年河南省中考数学试卷含答案解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2D.﹣22.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.49.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。

2020年河南省中考数学试卷(含答案解析)

2020年河南省中考数学试卷(含答案解析)

2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.−12C.12D.22.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y17.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A .5000(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009. 如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10. 如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数 .12. 已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .14.如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515机器甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.平均数中位数方差不合格率统计量机器甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.Array某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G 为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延如图,点D是BC长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几(1)根据点D在BC组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:̂的中点时,BD=5.0cm”.则上表中a的值是;①“当点D为BC②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 ,连接BD ,可求出BB′CE的值为 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.−12C.12D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.2.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是可能是正方形,也可能是长方形,故本选项符合题意;故选:D.【点评】本题考查了简单几何体的三视图,确定三视图是关键.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【分析】列出算式,进行计算即可.【解答】解:由题意得:1GB=210×210×210B=210+10+10B=230B,故选:A.【点评】本题考查同底数幂的乘法,底数不变,指数相加是计算法则.6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.7.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7,则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据新定义运算法则以及即可求出答案.【解答】解:由题意可知:1☆x=x2﹣x﹣1=0,∴Δ=1﹣4×1×(﹣1)=5>0,∴有两个不相等的实数根故选:A.【点评】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 9. 如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【分析】根据已知条件得到AC =6,OC =2,OB =7,求得BC =9,根据正方形的性质得到DE =OC =OE =2,求得O ′E ′=O ′C ′=2,根据相似三角形的性质得到BO ′=3,于是得到结论. 【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形, ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 方法二:设直线AB 的解析式为y =kx +b , ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0). ∴{−2k +b =67k +b =0,∴{k=−32b=143,∴y=−23x+143,∵∠ACB=90°,边BC在x轴上,∴C点的坐标为(﹣2,0),∴正方形OCDE的边长为2,∴E(0,2),设点E沿x轴平移后落在AB边上的坐标为(a,2),由y=−23x+143得,2=−23a+143,∴a=4,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形性质,相似三角形的判定和性质,正确的识别图形是解题的关键.10.如图,在△ABC中,AB=BC=√3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6√3B.9C.6D.3√3【分析】连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=√3AB=3,于是得到结论.【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB =BC ,∴∠ACB =∠BAC =30°, ∵AC =AD =CD , ∴△ACD 是等边三角形, ∴∠DAC =∠DCA =60°,∴∠BAD =∠BCD =90°,∠ADB =∠CDB =30°, ∵AB =BC =√3, ∴AD =CD =√3AB =3,∴四边形ABCD 的面积=2×12×3×√3=3√3, 故选:D .【点评】本题考查了含30°角的直角三角形,等腰三角形的性质,等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键. 二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数 √3 .【分析】由于所求无理数大于1且小于2,则该数的平方大于1小于4,所以可选其中的任意一个数开平方即可.【解答】解:大于1且小于2的无理数是√3,答案不唯一. 故答案为:√3.【点评】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12. 已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 x>a .【分析】根据关于x 的不等式组的解集表示在数轴上表示方法求出x 的取值范围即可. 【解答】解:∵b <0<a ,∴关于x 的不等式组{x >a ,x >b ,的解集为:x >a ,故答案为:x >a .【点评】本题考查的是在数轴上表示不等式组的解集和一元一次不等式组求解,先根据题意得出不等式组的解集是解答此题的关键.13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率. 【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种等可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.【点评】考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键. 14. 如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【分析】方法一:连接CH 并延长交AD 于P ,连接PE ,根据正方形的性质得到∠A =90°,AD ∥BC ,AB =AD =BC =2√2,根据全等三角形的性质得到PD =CF =√2,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF=√(2√2)2+(√2)2=√10,点G,H分别是EC,PC的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2√2,∵E,F分别是边AB,BC的中点,∴AE=CF=12×2√2=√2,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),∴PD=CF=√2,∴AP=AD﹣PD=√2,∴PE=√AP2+AE2=√(√2)2+(√2)2=2,∵点G,H分别是EC,CP的中点,∴GH=12EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°, ∴DF ⊥CE ,∴CE =DF =√(2√2)2+(√2)2=√10, ∵点G ,H 分别是EC ,PC 的中点, ∴CG =FH =√102,∵∠DCF =90°,CO ⊥DF ,∴∠DCO +∠FCO =∠DCO +∠CDO =90°, ∴∠FCO =∠CDO , ∵∠DCF =∠COF =90°, ∴△COF ∽△DOC , ∴CF DF=OF CF,∴CF 2=OF •DF ,∴OF =CF 2DF =(√2)2√10=√105,∴OH =3√1010,OD =4√105, ∵∠COF =∠COD =90°, ∴△COF ∽△DCF , ∴OF OC=OC OD,∴OC 2=OF •OD , ∴OC =√√105×4√105=2√105, ∴OG =CG ﹣OC =√102−2√105=√1010,∴HG =√OG 2+OH 2=√110+910=1, 故答案为:1.【点评】本题考查了勾股定理,正方形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.15. 如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC ̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为6√2+π3.【分析】利用轴对称的性质,得出当点E 移动到点E ′时,阴影部分的周长最小,此时的最小值为弧CD 的长与CD ′的长度和,分别进行计算即可.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′, 由题意得,∠COD =∠DOB =∠BOD ′=30°, ∴∠COD ′=90°,∴CD ′=√OC 2+OD′2=√22+22=2√2, CD̂的长l =30π×2180=π3, ∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.【点评】本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:(1−1a+1)÷aa2−1=a+1−1a+1×(a−1)(a+1)a=a﹣1,把a=√5+1代入a﹣1=√5+1﹣1=√5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=15%;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.【分析】(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的有2个,调查总数为20,可求出不合格率,从而确定a、b的值;(2)从平均数、中位数、方差几个方面综合来说明并进行判断.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=3÷20=15%,故答案为:501,15%;(2)选择乙机器,理由:甲与乙的平均数相同,中位数相差不大,乙的方差较小且不合格率较小,所以乙机器的分装合格率更高,且稳定性更好,【点评】本题考查中位数、众数、平均数的意义和计算方法,理解中位数、众数、平均数的意义是正确解答的关键.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【分析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;(2)建议为:为了减小误差可以通过多次测量取平均值的方法.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AEC=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴AE=BE•tan22°,即x=(16+x)×0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3(m),减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【分析】(1)把点(0,30),(10,180)代入y 1=k 1x +b ,得到关于k 1和b 的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k 2的值;(3)将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可. 【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.【点评】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分.【分析】根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.M、A、E三点共线.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙O的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.【点评】本题考查了切线的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G 为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延如图,点D是BC长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几(1)根据点D在BC组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:̂的中点时,BD=5.0cm”.则上表中a的值是 5.0;①“当点D为BC②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).。

2020年河南省中考数学试卷及答案

2020年河南省中考数学试卷及答案

2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1 7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 . 12.(3分)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.(3分)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出BB′CE的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.(3分)电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆x =x 2﹣x ﹣1=0, ∴△=1﹣4×1×(﹣1)=5>0, 故选:A .8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500 B .5000×2(1+x )=7500 C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x , 由题意得:5000(1+x )2=7500, 故选:C .9.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形,∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2, ∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3【解答】解:连接BD 交AC 于O , ∵AD =CD ,AB =BC , ∴BD 垂直平分AC , ∴BD ⊥AC ,AO =CO ,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=√3,∴AD=CD=√3AB=3,∴四边形ABCD的面积=2×12×3×√3=3√3,故选:D.二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数√3.【解答】解:大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.12.(3分)已知关于x的不等式组{x>a,x>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组{x>a,x>b,的解集为:x>a,故答案为:x>a.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.14.(3分)如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【解答】解:设DF ,CE 交于O , ∵四边形ABCD 是正方形,∴∠B =∠DCF =90°,BC =CD =AB , ∵点E ,F 分别是边AB ,BC 的中点, ∴BE =CF ,∴△CBE ≌△DCF (SAS ), ∴CE =DF ,∠BCE =∠CDF , ∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°,∴DF⊥CE,∴CE=DF=√(2√2)2+(√2)2=√10,∵点G,H分别是EC,FD的中点,∴CG=FH=√10 2,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF=CF2DF=√2)2√10=√105,∴OH=3√1010,OD=4√105,∵OC2=OF•OD,∴OC=√√105×4√105=2√105,∴OG=CG﹣OC=√102−2√105=√1010,∴HG=√OG2+OH2=√110+910=1,故答案为:1.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+π3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD̂的长l =30π×2180=π3, ∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:(1−1a+1)÷aa 2−1,其中a =√5+1. 【解答】解:(1−1a+1)÷aa 2−1=a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x (g )的频数分布表.质量485≤x <490≤x <495≤x <500≤x <505≤x <510≤x <频数 机器 490 495 500 505 510 515甲 2 2 4 7 4 1 乙135731[分析数据]根据以上数据,得到以下统计量. 统计量 机器 平均数中位数方差不合格率甲 499.7 501.5 42.01 b 乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a = 501 ,b = 15% ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501, b =3➗20=15%, 故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m . (1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=x16+x=0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN 的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO 就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN 切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB =OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,如图,点D是BC交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,(1)根据点D在BC得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).̂的中点,【解答】解:(1)∵点D为BĈ=CD̂,∴BD∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 等腰直角三角形 ,连接BD ,可求出BB′CE的值为 √2 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.【解答】解:(1)∵AB 绕点A 逆时针旋转至AB ′, ∴AB =AB ',∠BAB '=60°, ∴△ABB '是等边三角形, ∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°, ∵AB '=AB =AD , ∴∠AB 'D =∠ADB ', ∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°, ∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°, ∴△DEB '是等腰直角三角形. ∵四边形ABCD 是正方形, ∴∠BDC =45°, ∴BD DC=√2,同理B′D DE=√2,∴BD DC=B′D DE,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°, ∴BDB '=∠EDC , ∴△BDB '∽△CDE , ∴BB′CE=BD DC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)①两结论仍然成立. 证明:连接BD ,∵AB =AB ',∠BAB '=α, ∴∠AB 'B =90°−α2,∵∠B 'AD =α﹣90°,AD =AB ', ∴∠AB 'D =135°−α2,∴∠EB 'D =∠AB 'D ﹣∠AB 'B =135°−α2−(90°−α2)=45°, ∵DE ⊥BB ',∴∠EDB '=∠EB 'D =45°, ∴△DEB '是等腰直角三角形, ∴DB′DE=√2,∵四边形ABCD 是正方形, ∴BD CD =√2,∠BDC =45°,∴BD CD=DB′DE,∵∠EDB '=∠BDC ,∴∠EDB '+∠EDB =∠BDC +∠EDB , 即∠B 'DB =∠EDC , ∴△B 'DB ∽△EDC , ∴BB′CE =BD CD=√2.②BE B′E=3或1.若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交⊙A 于点B ', 过点D 作DE ⊥BB '交BB '的延长线于点E ,由(1)可知△B 'ED 是等腰直角三角形, ∴B 'D =√2B 'E ,由(2)①可知△BDB '∽△CDE ,且BB '=√2CE . ∴BE B′E=B′B+B′E B′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD 为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E =3或1.。

2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省中考数学试卷及答案(Word解析版)

2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。

参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。

中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。

结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。

本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。

因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

2020年河南省中考数学试卷(含详细解析)

2020年河南省中考数学试卷(含详细解析)
A. B. C. D.
7.定义运算: .例如 .则方程 的根的情况为()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.只有一个实数根
8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由 亿元增加到 亿元.设我国2017年至2019年快递业务收入的年平均增长率为 .则可列方程为( )
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道 上架设测角仪,先在点 处测得观星台最高点 的仰角为 ,然后沿 方向前进 到达点 处,测得点 的仰角为 .测角仪的高度为 ,
求观星台最高点 距离地面的高度(结果精确到 .参考数据: );
“景点简介”显示,观星台的高度为 ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
保密★启用前
2020年河南省中考数学试卷
题号
一பைடு நூலகம்


总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.2的相反数是()
A. B. C. D.
2.如下摆放的几何体中,主视图与左视图有可能不同的是()
A. B.
C. D.
3.要调查下列问题,适合采用全面调查(普查)的是()
A.
B.
C.
D.
9.如图,在 中, .边 在 轴上,顶点 的坐标分别为 和 .将正方形 沿 轴向右平移当点 落在 边上时,点 的坐标为()
A. B. C. D.
10.如图,在 中, ,分别以点 为圆心, 的长为半径作弧,两弧交于点 ,连接 则四边形 的面积为()

精品解析:河南省实验中学2019-2020学年八年级上学期期中考试数学试题(解析版)

精品解析:河南省实验中学2019-2020学年八年级上学期期中考试数学试题(解析版)

2019-2020学年八年级上学期期中考试数学试题一、选择题(每小题3分,共30分)1.下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,因此是轴对称图形的有2个,故选B.2.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【答案】D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.3.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°【答案】C【解析】因为∠ADE是△DEB的外角,所以∠ADE=∠DEB+∠EBD=45°+90°=135°,故选C.4.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SASB.ASAC.AASD.SSS【答案】D【解析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.5.已知点P(-6,3)关于x轴的对称点Q的坐标(a,b),则M(-a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵点P(-6,3)关于x轴的对称点Q的坐标(a,b),∴a=-6,b=-3,∴M(-a,b)为M(6,-3),在第四象限,故选D.6.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.①②⑤B.①②③C.①④⑥D.②③④【答案】D【解析】在A选项中,根据SAS可证明△ABC≌△DEF;在B选项中,根据SSS可证明△ABC≌△DEF;在C选项中,根据AAS可证明△ABC≌△DEF;在D选项中,只满足SSA,而SSA不能判定两个三角形全等,所以以D选项中的三个已知条件,不能判定△ABC和△DEF全等,故选D.7.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.8.已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A.10B.6C.4或6D.6或10【答案】A【解析】设腰长为a,则底边长为a+6或a-6,若底边长为a+6,则有2a+a+6=24,a=6,此时底边长为12,6+6=12,构不成三角形;若底边长为a-6,则有2a+a-6=24,a=10,综上,所以三角形的腰长为10,故选A.9.如图,在正方形网格中,网格线的交点称为格点.已知A,B是两格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合题意的点C有()A.6个B.7个C.8个D.9个【答案】C【解析】试题分析:如图:分情况讨论①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选A.考点:1.等腰直角三角形;2.勾股定理.【此处有视频,请去附件查看】10.如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A.5B.4C.3D.2【答案】B【解析】考点:全等三角形的判定。

2020年河南省中考数学试题(含答案)

2020年河南省中考数学试题(含答案)

2020年河南省中考数学试卷(含答案)(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1. 2的相反数是( ) A .-2B .12C .12D .22. 如下摆放的几何体中,主视图与左视图有可能不同的是( )ABD .3. 要调查下列问题,适合采用全面调查(普查)的是( ) A .中央电视台《开学第一课》的收视率 B .某城市居民6月份人均网上购物的次数 C .即将发射的气象卫星的零部件质量 D .某品牌新能源汽车的最大续航里程4. 如图,l 1∥l 2,l 3∥l 4,若∠1=70°,则∠2的度数为( ) A .100°B .110°C .120°D .130°5. 电子文件的大小常用B ,KB ,MB ,GB 等作为单位,其中1 GB=210 MB ,1MB=210 KB ,1 KB=210 B .某视频文件的大小约为1 GB ,1 GB 等于( )2l 1l 2l 3l 41A.230 B B.830 B C.8×1010 B D.2×1030 B 6.若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数6yx=-的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2 D.y3>y2>y17.定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5 000亿元增加到7 500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5 000(1+2x)=7 500 B.5 000×2(1+x)=7 500C.5 000(1+x)2=7 500 D.5 000+5 000(1+x)+5000(1+x)2=7 5009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(32,2)B.(2,2)C.(114,2)D.(4,2)10. 如图,在△ABC 中,AB =BC,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( ) A.B .9C .6D.二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数___________. 12. 已知关于x的不等式组x ax b >⎧⎨>⎩,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为___________.13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是_____.A BCDa14.如图,在边长为ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为____________.15. 如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC ︵于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为_________.三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:21(1)11aa a -÷+-,其中1a =.ABCDEFGH17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500 g,与之相差大于10 g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:【收集数据】从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501【整理数据】整理以上数据,得到每袋质量x(g)的频数分布表.根据以上信息,回答下列问题:(1)表格中的a=_________,b=_________;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16 m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6 m.(1)求观星台最高点A 距离地面的高度(结果精确到0.1 m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40≈1.41);(2)“景点简介”显示,观星台的高度为12.6 m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19. (9分)暑假将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下:方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑假专享卡,每次健身费用按八折优惠. 设某学生暑期健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x+b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义; (2)求打折前的每次健身费用和k 2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.NAB C 22°45°20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB和AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN 三等分,只需适当放置三分角器,使DB 经过∠MEN 的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则EB ,EO 就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A ,B ,O ,C 在同一直线上,EB ⊥AC ,垂足为点B ,______. 求证:___________.图1NM21.(10分)如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q 的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1) 根据点D 在BC ︵上的不同位置,画出相应的图形,测量线段BD ,CD ,FD 的长度,得到下表的几组对应值.操作中发现:①“当点D 为BC ︵的中点时,BD =5.0 cm ”,则上表中a 的值是_________;②“线段CF 的长度无需测量即可得到”,请简要说明理由. (2)将线段BD 的长度作为自变量x ,CD 和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三角形时,线段BD 长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为__________,连的值为________;接BD,可求出BBCE(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B E的值.ABCDE B'图1ABCDEB'图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧 的长为cm.
19.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:
(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;
(2)根据手中剩余线的长度出风筝线BC的长度为70米;
A. B. C. D.
10.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
A.1个B.2个C.3个D.4个
11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
是( )
A. B.
C. D.
二、填空题
13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
14.已知关于x的方程 的解是负数,则n的取值范围为.
点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.
6.A
解析:A
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
11.B
解析:B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
2019-2020河南省实验中学中考数学试卷及答案
一、选择题
1.在数轴上,与表示 的点距离最近的整数点所表示的数是
A.1B.2C.3D.4
2.定义一种新运算: ,例如: ,若 ,则 ()
A.-2B. C.2D.
3.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是中心对称图形,不是轴对称图形,故该选项不符合题意,
15.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
16.不等式组 有3个整数解,则a的取值范围是_____.
17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
利用平方根定义估算 的大小,即可得到结果.
【详解】


则在数轴上,与表示 的点距离最近的整数点所表示的数是2,
2400
24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
(3)量出测倾器的高度AB=1.5米.
根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米, ≈1.73).
20.计算: _______________.
三、解答题
21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:
【详解】
A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;
B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;
C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;
A.7分B.8分C.9分D.10分
4.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是( )
A. B. C. D.
5.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是( )
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
12.B
解析:B
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元
(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?
抽取的200名学生海选成绩分组表
组别
海选成绩x
A组
50≤x<60
B组
60≤x<70
C组
70≤x<80
D组
80≤x<90
E组
90≤x<100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;
填写下表:
中位数
众数
随机抽取的50人的社会实践活动成绩 单位:分
估计光明中学全体学生社会实践活动成绩的总分.
22.已知:如图,在 中, , , 为 外角 的平分线, .
(1)求证:四边形 为矩形;
(2)当 与 满足什么数量关系时,四边形 是正方形?并给予证明
23.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0
6.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
9.D
解析:D
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个圆形,圆形内部是一个虚线的正方形.
故选:D.
【点睛】
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
10.C
解析:C
【解析】
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如下表:
A型车
B型车
进货价格(元/辆)
1100
1400
销售价格(元/辆)
今年的销售价格
【分析】
根据平均数的定义进行求解即可得.
【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6,
所以该球员平均每节得分= =8,
故选B.
【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
4.B
解析:B
【解析】
【分析】
若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.
A.①②④B.①②⑤C.②③④D.③④⑤
7.估计 +1的值应在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
8.下列计算错误的是( )
相关文档
最新文档