高三数学上学期第一次月考综合测试模拟试卷
高三第一次月考(数学)试卷含答案

高三第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.若{}{}2|22,|log (1)M x x N x y x =-≤≤==-,则M N =( )A.{}|20x x -≤<B. ﹛x| -1<x<0﹜C.{}2,0-D.{}21|≤<x x 2.(5分)2.复数imi212+-=A+B i (m 、A 、B ∈R),且A+B=0,则m 的值是 ( ) A. 32- B. 32 C.2 D.23.(5分)3.下列命题中,真命题是 ( )A .,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 4.(5分)4.函数212log 4f xx 的单调递增区间是( )A.(0,+∞)B. (-∞,0)C. (2,+∞)D. (-∞,-2)5.(5分)5.函数f(x)=-1x+log 2x 的一个零点落在下列哪个区间( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.(5分)6.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2-t),那么( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1) 7.(5分)7.函数()3cos 2xxf x x⋅=的部分图象大致是( )A .B .C .D .8.(5分)8.曲线y =e x +1在x =1处的切线与坐标轴所围成的三角形的面积为( )A.12e B .e 2 C .2e 2D .94e 2 9.(5分)9.已知函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(x).当0≤x≤1时,2()f x x =.若直线y =x +a 与函数y =f(x)的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是 ( ) A .0 B .0或-14 C .-14或-12 D.0或-1210.(5分)10.若函数x x f xx2sin 3)(1212++=+-在区间[-k,k](k>0)上的值域为[m,n],则m+n 等于( )A.0B.2C.4D.611.(5分)11.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是 ( )A.y=-2x+3B.y=xC. y=2x-1D.y=3x-212.(5分)12.设定义域为R 的函数2lg (>0)()-2(0)x x f x x x x ⎧=⎨-≤⎩ 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为( )A .3B .7C .5D .6二、 填空题 (本题共计4小题,总分20分)13.(5分)13.函数24ln(1)x y x -=+的定义域为_______________14.(5分)14.函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f (3)=________.15.(5分)15.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为________16.(5分)16.已知定义域为R 的函数f (x )满足f (4)=-3,且对任意x ∈R 总有)('x f <3,则不等式 f (x)<3x -15的解集为________.三、 解答题 (本题共计7小题,总分80分) 17.(12分)17.(本大题满分12分)设p :函数y =log a (x +1)(a >0且a≠1)在(0,+∞)上单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p∧q 为假,p∨q 为真,求实数a 的取值范围.18.(12分)18.(本大题满分12分)已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.19.(12分)19.(本大题满分12分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据: 编号 1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足x≥175且y≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列.20.(12分)20. (本大题满分12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.21.(12分)21. (本大题满分12分)已知函数f(x)=ax -ln x ,a ∈R.(1)求函数f(x)的单调区间; (2)当x ∈(0,e]时,求g (x )=e 2x -ln x 的最小值; (3)当x ∈(0,e]时,证明:e 2x -ln x -x x ln >52.22.(10分)22.(本大题满分10分)选修4-4:坐标系与参数方程已知直线l :⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 213235 (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA|·|MB|的值.23.(10分)23. (本大题满分10分) 选修4-5:不等式选讲已知关于x 的不等式|ax -1|+|ax -a |≥1(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围答案一、单选题(本题共计12小题,总分60分)1.(5分)D2.(5分)A3.(5分)D4.(5分)D5.(5分)B6.(5分)A7.(5分)D8.(5分)A9.(5分)B10.(5分)D11.(5分)C12.(5分)B二、填空题(本题共计4小题,总分20分)13.(5分)13.(-1,0)∪(0,2]14.(5分) 14. 2715.(5分) 15.[-3,1]16.(5分) 16.(4,+∞)三、解答题(本题共计7小题,总分80分)17.(12分)17.1/2≤a<1或a>5/218.(12分)18.(1)f(x)最大值为5,最小值为1;(2)m的取值范围为(-∞,2]∪[6,+∞)19.(12分)19.(1)35件;(2)35×2/5=14件;(3)由题意,ξ的取值有0,1,2,P(ξ=0)=3/10,P(ξ=1)=3/5,P(ξ=2)=1/10,分布列为(2)f(x)的最大值为18,最小值为-8221.(12分)21.(1)综上,a≤0时,f(x)的单调递减区间是(0,+∞),无单调增区间;a>0时,f(x)的单调递减区间是(0,1/a),单调增区间是(1/a,+∞);(2)g(x)最小值为3;(3)略22.(10分)22.(1)x2+y2=2x;(2)|MA|·|MB|=1823.(10分)23.(1)(-∞,1/2]∪[5/2.+∞); (2)[4,+∞)。
高三数学第一学期年级第一次数学月考试卷

第一学期高三年级第一次数学月考试卷高三(第Ⅰ卷 选择题部分) 命题人:唐春兵一、选择题:(本大题每小题5分;共60分.在每小题给出的四个选项中,只有一项是符合要求的)1、设A 、B 、C 是三个集合;则“A ∩B=A ∩C ”是“B=C ”的A 、充分但不必要条件B 、必要但不充分条件C 、充分且必要条件 C 、既不充分也不必要条件 2、已知集合}01211|{2<--=x x x A ;集合}),13(2|{Z n n x x B ∈+==;则B A ⋂等于A 、{2}B 、{2;8}C 、{4;10}D 、{2;4;8;10}3、已知映射f :A →B ;其中A=B=R ;对应法则32:2+-=x x y f ;x A ∈;y B ∈。
对于集合B 中的元素1;下列说法正确的是A 、在A 中有1个原象B 、在A 中有2个原象C 、在A 中有3个原象D 、在A 中无原象4、下列命题:①3π>或3π<;②2,0a R a ∈≥;③x y +为有理数;则x 、y 都是有理数;④A 、0B 、1C 、2D 、35、已知集合{}4,3,2,1=A ;集合{}2,1-=B ;设映射B A f →:;如果集合B 中的元素都是A 中元素的f 下的象;那么这样的映射f 有A .16个B .14个C .12个D .8个6、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0;+∞) D 、),1[+∞7、已知函数ax x y 42-=(1≤x ≤3)是单调递增函数;则实数a 的取值范围是A 、]1,(-∞B 、]21,(-∞C 、]23,21[D 、),23[+∞8、对于定义在R 上的函数f(x);若实数x 0满足f(x 0)=x 0;则称x 0是函数f(x)的一个不动点;函数f(x)=6x —6x 2的不动点是A 、65或0 B 、65 C 、56或0 D 、56 9、已知函数g(x)的图象与函数f(x)=x 2+1的图象关于直线x=1对称;则g(x)等于A 、452+-x x B 、222+-x x C 、222++x x D 、542+-x x 10、设二次函数a x x x f +-=2)(;若0)(<-m f ;则f(m+1)的值是A 、正数 B 、负数 C 、非负数 D 、与m 有关11、已知x 1是方程42=+xx 的根;x 2是方程4log 2=+x x 的根;则x 1+x 2的值所在区间是 A 、(0;1) B 、(1;3) C 、(3;5) D 、(5;+∞)12、已知函数y=f(x)(x ∈R )满足f(x+1)=f(x —1);且x ∈[—1;1]时;f(x)=x 2;则y=f(x)与y=log 5x 的图象的交点个数为A 、2B 、3C 、4D 、5第一次月考试卷 高 三 数 学(第Ⅱ卷 非选择部分)二、填空题:(本大题每小题4分;共16分.把答案填在题中横线上)13、设:01≠≠且p x x ;:≠q x 是p q 的________条件.14、已知函数1()x f x a -=的反函数的图象经过点(4;2);则1(2)f -的值是_________. 15、已知函数f (x )满足:f (p +q ) = f (p ) f (q ) ;且 f (1)=3, 则.)7()8()5()6()3()4()1()2(=+++f f f f f f f f16、已知函数)(|2|)(2R x b ax x x f ∈+-=.给下列命题:①)(x f 必是偶函数;②当)2()0(f f =时;)(x f 的图像必关于直线x =1对称;③若02≤-b a ;则)(x f 在区间[a ;+∞)上是增函数;④)(x f 有最大值||2b a -.其中正确的序号是________. 三、解答题:(本大题第17-21题12分;第22题每题14分;共70分) 17、已知集合99{|},{|}1010A x N N B N x N x x=∈∈=∈∈--;试问集合A 与B 共有几个相同的元素;并写出由这些“相同元素”组成的集合.、解不等式112>-+x x19、已知二次函数y =ax 2+bx +c(a ≠0)的图象与直线y =25有公共点;且二次不等式ax 2+bx +c >0的解集是(-12;13);求实数a 、b 、c 的取值范围.20、已知函数f x ()满足axf x b f x ab ()()()=+≠0;f ()12=,且f x ()+=2--f x ()2对定义域中的任意x 成立;求函数f x ()的解析式.21、服装厂生产一种服装;每件服装的成本为40元;出厂单价定为60元。
2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷(含答案)

2024-2025学年安徽省芜湖市无为中学高三(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|x 2−x−2≤0},B ={x|2x−3<0},则A ∩B =( )A. [−2,1]B. [−1,32)C. (−∞,32)D. (−∞,−1]2.下列函数中,既为偶函数,又在(0,+∞)上为增函数的是( )A. y =x 2+1xB. y =2−x 2C. y =x 2+log 2|x|D. y =2|x|−x 23.已知函数f(x)为定义在R 上的奇函数,对于任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,f(−1)=0,则xf(x)<0的解集为( )A. (−1,0)∪(1,+∞)B. (−1,0)∪[1,+∞)C. (−1,0)∪(0,1]D. (−1,0)∪(0,1)4.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是( )A. 62 B. 2 105 C. 1 D. 35.函数f(x)=3|x|⋅cos2x x的部分图象大致是( )A. B.C. D.6.已知随机变量X ~N(1,σ2).若P(1≤X ≤3)=0.3,设事件A =“X <1”,事件B =“|X|>1”,则P(A|B)=( )A. 38B. 35C. 58D. 277.已知函数f(x)={|log 3x|,x >03x ,x ≤0,若函数g(x)=[f(x)]2−(m +2)f(x)+2m 恰好有5个不同的零点,则实数m 的取值范围是( )A. (0,1]B. (0,1)C. [1,+∞)D. (1,+∞)8.已知f(x)是定义在R 上的函数,且满足f(3x−2)为偶函数,f(2x−1)为奇函数,则下列说法正确的( )①函数f(x)的图象关于直线x =1对称;②函数f(x)的图象关于点(−1,0)中心对称;③函数f(x)的周期为4;④f(2023)=0.A. ①②③B. ①②④C. ②③④D. ①③④二、多选题:本题共3小题,共18分。
天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷

天津市滨海新区塘沽第一中学2024-2025学年高三上学期第一次月考数学试卷一、单选题1.已知集合{}R 13P x x =∈≤≤,{}2R 4Q x x =∈≥,则()R P Q =U ð( )A .{}2x x >B .{}23x x -<≤C .{}12x x ≤<D .{}21x x x ≤-≥或2.设x ∈R ,则“1x <”是“ln 0x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.函数y =2sin 2x x 的图象可能是A .B .C .D .4.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B C D .15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时6.已知()1e ,1x -∈,记ln ln 1ln ,,e 2⎛⎫=== ⎪⎝⎭xx a x b c ,则,,a b c 的大小关系是( )A .a c b <<B .a b c <<C .c b a <<D .b c a <<7.等差数列 a n 的前n 项和为n S ,其中77S =,又2,1b ,2b ,3b ,8成等比数列,则2352b a a +的值是( ) A .4B .4-C .4或4-D .28.已知函数()sin()f x A x B ωϕ=++(0,0,)2A πωϕ>><的部分图象如图所示,则下列正确个数有( )①()f x 关于点π(,3)6对称;②()f x 关于直线π3x =对称; ③()f x 在区间π5π[,]26上单调递减;④()f x 在区间5ππ(,)1212-上的值域为(1,3). A .1个B .2个C .3个D .4个9.如图,在ABC V 中,π3BAC ∠=,2AD DB =u u ur u u u r ,P 为CD 上一点,且满足13AP mAC AB =+u u u r u u u r u u u r,若4AB AC ⋅=u u u r u u u r,则AP u u u r 的最小值为( )A .2B .3 CD .32二、填空题10.已知i 是虚数单位,化简113i12i+-的结果为. 11.8⎛⎫的展开式中22x y 的系数为. 12.已知13a <<,则131a a a +--的最小值是. 13.甲罐中有4个红球、2个白球和2个黑球,乙罐中有4个红球、3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.以1A 表示由甲罐取出的球是红球的事件,以M 表示由乙罐取出的球是红球的事件,则()1P M A =;()P M =. 14.在梯形ABCD 中,AB CD ∥,且3AB C D =,M ,N 分别为线段DC 和AB 的中点,若AB a u u u r r=,AD b u u u r r =,用a r ,b r 表示MN =u u u u r .若MN BC ⊥u u u u r u u u r,则DAB ∠余弦值的最小值为.15.函数(){}2min 2,,2f x x x x =-+,其中{}min ,,x y z 表示x ,y ,z 中的最小者.若函数22()2()9y f x bf x b =-+-有12个零点,则b 的取值范围是.三、解答题16.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos tan b C c B C +=. (1)求角C ;(2)若4b a =,ABC V 的面积为①求c②求()cos 2A C -.17.已知函数()4tan sin cos ππ23f x x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的定义域与最小正周期;(2)讨论()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的单调性.(3)若()065f x =,0π5π,122x ⎡⎤∈⎢⎥⎣⎦,求0sin2x 的值.18.在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB DC ,AB AD ⊥,112CD AD AB ===,45PAD ∠=o ,E 是PA 的中点,G 在线段AB 上,且满足CG BD ⊥.(1)求证://DE 平面PBC ;(2)求平面GPC 与平面PBC 夹角的余弦值.(3)在线段PA 上是否存在点H ,使得GH 与平面PGCAH 的长;若不存在,请说明理由.19.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,*n ∈N .数列{}n b 满足()()111n n nb n b n n +-+=+,*n ∈N ,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若21n n d a -=数列{}n d 的前n 项和为n M ,对任意的*n ∈N ,都有22n3n n M S a >+,求实数a 的取值范围; (3)记11m m c a -=,{}m c 的前m 项和记为m T,是否存在m ,*N t ∈,使得111m m t T t T t c +-=-+成立?若存在,求出m ,t 的值;若不存在,请说明理由.20.已知函数()2e cos222xf x x x x =+++-.()()2ln 2g x a x x a x =+-+,其中R a ∈.(1)求()f x 在0x =处的切线方程,并判断()f x 零点个数. (2)讨论函数()g x 的单调性;(3)求证:()()ln 21f x x ≥+;。
高三数学上学期第一次月考试题含解析

一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。
【详解】因为,所以【点睛】交集是取两集合都有的元素。
是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。
【详解】,因为是纯虚数,所以。
【点睛】假如复数是纯虚数,那么。
3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。
【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。
【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。
的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。
【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。
综上所述,递增区间是。
【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。
5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。
【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。
湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。
2023高三数学第一次月考试题

学校__________________班级__________________姓名__________________座位号__________________第 1 页 共 4 页第 2 页 共 4 页XX 中学2022-2023学年度第一学期高三数学月考试题考试范围:集合与常用逻辑用语;时间:120分钟;命题人:说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答卷前,考生务必将自己的姓名和座位号填写答题卡上;2.回答选择题时,选出给每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷无效;3.考试结束后,将本试卷和带卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.若集合A={x ∈N|x ≤√2 023},a=π,则下列结论正确的是( )A.{a}⊆AB.a ⊆AC.{a}∈AD.a ∉A2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( ) A.不拥有的人们会幸福 B.幸福的人们不都拥有 C.拥有的人们不幸福 D.不拥有的人们不幸福3.已知集合A={1,2,3},B={x|-1<x+1≤3,且x ∈Z},则A ∪B 等于( ) A.{1,2,3} B.{0,1,2,3} C.{-1,0,1,2,3} D.{-1,0,1,2}4.已知A={(x,y)|4x-y=0},B={(x,y)|y=x 2+4},则A ∩B 等于( ) A.{(8,2)} B.{(2,4)} C.{(2,8)} D.{(4,2)}5.已知集合A={x ∈N|x 2≤1},集合B={x ∈Z|-1≤x ≤3},则图中阴影部分表示的集合是( )A.[1,3]B.(1,3]C.{-1,2,3}D.{-1,0,2,3}6.命题“∀x ∈R,x 2-x+2 023>0”的否定是( )A.∃x 0∈R,x 02-x 0+2 023<0B.∃x 0∈R,x 02-x 0+2 023≤0C.∀x ∈R,x 2-x+2 023<0D.∀x ∈R,x 2-x+2 023≤07.已知集合A={1,2,3},B={-1,0,1,2},若M ⊆A,且M ⊆B,则M 的个数为( ) A.1 B.3 C.4 D.68.已知命题p:函数f(x)=2x -2-x 在R 上单调递增,命题q:函数g(x)= sin[2(x+π4)]为奇函数,则下列命题中真命题为( )A.p ∧qB.p ∧﹁qC.﹁p ∧﹁qD.﹁p ∨q 9.下列结论错误的是( )A.“x=1”是“x 2-x=0”的充分不必要条件B.已知命题p:∀x ∈R,x 2+1>0,则﹁p:∃x 0∈R,x 02+1≤0 C.若复合命题p ∧q 是假命题,则p,q 都是假命题D.命题“若x 2-x=0,则x=1”的逆否命题为“若x ≠1,则x 2-x ≠0”10.设全集U={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A,B,我们定义集合运算A-B={x|x ∈A,且x ∉B},A*B=(A-B)∪(B-A).若A={2,3,4,5},B={3,5,6},则A*B 表示的6位字符串是( ) A.101010 B.011001 C.010101 D.00011111.设m,n 为非零向量,则“m ·n>0”是“存在整数λ,使得m=λ n ”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.记不等式组{x +y ≥6,2x -y ≥0表示的平面区域为D,命题p:∃(x,y)∈D,2x+y ≥9;命题q:∀(x,y)∈D,2x+y ≤12.给出了四个命题:①p ∨q;②﹁p ∨q;③p ∧﹁q;④﹁p ∧﹁q,这四个命题中,所有真命题的编号是( )A.①③B.①②C.②③D.③④第Ⅱ卷(非选择题共90分)二.填空题(本大题共4小题,每小题5分,共20分)13.若“∃x 0∈[-1,2],x 02-m>1”为假命题,则实数m 的最小值为 . 14.若集合A={x|8≤2-x2+2x+a≤12}中恰有唯一的元素,则实数a 的值为 .15.已知函数f(x)=ln(x 2+1),g(x)=(12)x -m,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是 .16.下列命题真命题的序号是 . ①∃x 0∈R,sin x 0+cos x 0=√3; ②若p:xx -1<0,则﹁p:xx -1≥0; ③lg x>lg y 是√x >√y 的充要条件;④在△ABC 中,边a>b 是sin A>sin B 的充要条件;⑤“a=2”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的充要条件.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求B及∁U(A∩B);(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值集合.18.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10- x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;(3)由(1)(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论?(要求至少写出两个结论)19.(本小题满分12分)设p:2≤x<4,q:实数x满足x2-2ax-3a2<0(a>0).(1)若a=1,且p,q都为真命题,求x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.20.(本小题满分12分) 已知a≥12,y=-a2x2+ax+c,其中a,c均为实数.证明:对于任意的x∈{x|0≤x≤1},均有y≤1成立的充要条件是c≤34.21.(本小题满分12分)设t∈R,已知命题p:函数f(x)=x2-2tx+1有零点;命题q:∀x∈[1,+∞),1x-x≤4t2-1.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.22.(本小题满分12分)已知不等式5x-3≥-1的解集为A,集合B={x|2ax2+(2-ab)x-b<0}.(1)求集合A;(2)当a>0,b=1时,求集合B;(3)是否存在实数a,b使得x∈A是x∈B的充分条件,若存在,求出实数a,b满足的条件;若不存在,请说明理由.第3 页共4 页第 4 页共4 页。
宁夏回族自治区银川一中2024-2025学年高三上学期第一次月考试题-数学(含答案)

银川一中2025届高三年级第一次月考数 学 试 卷命题教师:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题(共8小题,满分40分,每小题5分)1.命题p :x ∀∈R ,2210x mx -+>的否定是A .x ∀∈R ,2210x mx -+≤B .x ∃∈R ,2210x mx -+<C .x ∃∈R ,2210x mx -+>D .x ∃∈R ,2210x mx -+≤2.已知函数21(1),()2(1).x x f x x x x -+<⎧=⎨-≥⎩则((1))f f -的值为A .﹣2B .﹣1C .0D .33.“3a > ”是“函数2()(2)2f x a x x =-- 在(1,+)∞上单调递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知2081.5.12,,log 42a b c -⎛⎫ ⎝⎭=⎪==,则,,a b c 的大小关系为A .c<a<bB .c b a<<C .b a c <<D .b<c<a 5.在同一个坐标系中,函数()log a f x x =,()x g x a -=,()a h x x =的图象可能是A .B .C .D .6.函数()f x ax x =的图象经过点(1,1)-,则关于x 的不等式29()(40)f x f x +-<解集为 A .(,1)(4,)-∞-+∞ B .(1,4)-C .(,4)(1,)∞∞--⋃+D .(4,1)-7.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为a,b,c的三角形,其面积S 可由公式S =1=)2p a b c ++(,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足14,6a b c +==,则 此三角形面积的最大值为A .6B .C .12D .8.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为A .2B .4C .6D .8二.多项选择题(共3小题,满分18分,每小题6分)9.下列运算正确的是A=B .()326a a =C .42log 32log 3=D .2lg5lg2log 5÷=10. 已知函数()y f x =是定义域为R 上的奇函数,满足(2)()f x f x +=-,下列说法正确的有A .函数()y f x =的周期为4B .(0)0f =C .(2024)1f =D .(1)(1)f x f x -=+11.已知函数()24,0,31,0,x x x x f x x -⎧-≥=⎨-<⎩其中()()()f a f b f c λ===,且a b c <<,则A .()232f f -=-⎡⎤⎣⎦B .函数()()()g x f x f λ=-有2个零点C .314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭D .()34log 5,0abc ∈-三、填空题(共3小题,满分15分,每小题5分)12.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A B 中有且只有一个元素,则实数a 的值为 .13.已知函数()()231m f x m m x +=+-是幂函数,且该函数是偶函数,则f 的值是 .14.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为 .(精确到0.01)四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.16.(15分)已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=. (1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.17.(15分)已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值; (2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.18.(17分)已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得)(1)2(x f x mf -≥成立,求m 的取值范围; (3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 19.(17分)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈2025届高三第一次月考试卷答案一、单选题1. D 2. C 3. A 4. B5. C 6. B 7. B 8. B二、多选题9. BD 10. ABD 11. ACD.三、填空题12.2. 13.4 14.1.56.四、解答题15.已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.【详解】(1)令2461x y z k ===>,则2log x k =,4log y k =,6log z k =,11log 2log 4log 8k k k x y ∴+=+=,1log 6k z=.1k > ,log 8log 6k k ∴>,111x y z∴+>.(2)6log 4z = ,64z ∴=,则244x y ==,2x ∴=,1y =,4664log 4log 256z ∴==.3462566<< ,63log 2564∴<<,342y z x ∴<<.16.已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=.(1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.【详解】(1)()()1212111442x x f x f x m m +=+=++,即()()()()2112242444x x x x m m m m +++=++()()121212242444444x x x x x x m m m +⋅++=+⇒+()()()12122224444442x x x x m m m m ⇒=++=+---,()()()()()121222442024420x x x x m m m m ⇒---+=⇒-++-=,12444x x +≥== ,当且仅当1244x x =,即12x x =取等号,又0m >,124420,2x x m m ∴++->∴=.(2)由()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,得 ()10n n n a f f f n n -⎫⎫⎛⎛=+++ ⎪ ⎪⎝⎝⎭⎭,又当121x x =+时,()()1212f x f x +=所以两式相加可得 ()()1112002n n n n n a f f f f f f n n n n ⎡⎤⎡-⎤⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,所以 14n n a +=17.已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值;(2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.【详解】(1)因为2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=,所以()(e)ln e 3f a -=+=,解得2a =;(2)由(1)可得22ln(),0()23,0x x f x x x x +-<⎧=⎨-++≥⎩,当0x <时()2ln()f x x =+-,函数()f x 在(),0∞-上单调递减,且()R f x ∈;当0x ≥时()22()2314f x x x x =-++=--+,则()f x 在[]0,1上单调递增,在()1,∞+上单调递减,且()14f =,()03f =,即()(],4f x ∞∈-;所以()f x 的图象如下所示:因为函数()()=-g x f x k 在R 上恰有两个零点,即函数()y f x =与y k =在R 上恰有两个交点,由图可知3k <或4k =,即实数k 的取值范围为(){},34∞-⋃.18.已知函数()e x f x =与函数()ln g x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得()()21mf x f x -…成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心. 【详解】(1)由题意可得()()()()()11ln 1ln 1x g x g x x x ϕ=++-=++-.由1010x x +>⎧⎨->⎩,得11x -<<,故()1,1D =-.又()()2ln 1x x ϕ=-,且(]210,1x -∈,()x ϕ∴的值域为(],0-∞;(2)()()21mf x f x -…,即2e 1e x x m -…,则211e e x xm -…. 存在x D ∈,使得()()21mf x f x -…成立,2min 11ee x x m ⎛⎫∴- ⎪⎝⎭….而2211111e e e24x x x ⎛⎫-=-- ⎪⎝⎭,∴当11e 2x =,即ln2x D =∈时,211e ex x -取得最小值14-,故14m -…;(3)设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1e e x a t x b +=-+是奇函数,则()()110e e e e x a x a t x t x b b -++-+=-+-=++恒成立,()()()()1122e e 2e 2e e e e 0e e e e x a x a x a x a a x a x ab +-+-+++-++++-+++∴=++恒成立,所以()()1122e e 2e 2e e e e 0x a x a x a x a a b +-+-+++++-+++=恒成立,所以22(12e)(e e )2(e e e )0x a x a a b b b +-+-++--=,因为上式对任意实数x 恒成立,所以2212e 0e e e 0a b b b -=⎧⎨--=⎩,得12e 1b a ⎧=⎪⎨⎪=⎩,所以函数()1e y f x =+图象的对称中心为11,2e ⎛⎫ ⎪⎝⎭.19.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润为n a (万元),乙方案第n 年的利润为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈【答案】(1)11.3n n a -=,0.50.5n b n =+,N n *∈(2)采用甲方案获得的扣除本息后的净获利更多【详解】(1)对于甲方案,1年后,利润为1(万元).2年后,利润为111(10.3) 1.3+=⨯,3年后,利润为211.3(10.3) 1.3+=⨯(万元),……故n 年后,利润为11.3n -(万元),因此11.3n n a -=,N n *∈对于乙方案,1年后,利润为1(万元).2年后,利润为10.5+,3年后,利润为0.50.510.521++=+⨯(万元),……故n 年后,利润为()10.51n +⨯-(万元),因此()10.510.50.5n b n n =+⨯-=+,N n *∈(2)甲方案十年共获利109(1.3)11(130%)(130%)42.631.31-+++⋯++==-(万元),10年后,到期时银行贷款本息为1010(10.1)25.94+=(万元),故甲方案的净收益为42.6325.9416.7-≈(万元),乙方案十年共获利1 1.5(190.5)32.5++⋯++⨯=(万元),贷款本息为119101111(110%)(110%)(110%)17.530.1⋅-+++⋯++++=≈(万元),故乙方案的净收益为32.517.5315-=(万元),由16.715>,故采用甲方案获得的扣除本息后的净获利更多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏平罗中学高三第一次月考数学 (理科)试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数)13lg(13)(2++-=x xx x f 的定义域是 ( )A.),31(+∞-B.)1,31(- C. )31,31(- D. )31,(--∞ 2.下列函数中,满足对任意,(0,),当<时,都有>的是( )A .= B. = C . = D.3.若条件: -53p x ≤≤,条件: 23q x <<,则p ⌝是q ⌝的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要4.下列命题错误的是 ( ) A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”B .若q p ∧为假命题,则p 、q 均为假命题C .命题p :存在R x ∈0,使得0102<++x x ,则p ⌝:任意R x ∈,都有012≥++x xD .“2>x ”是“0232>+-x x ”的充分不必要条件5..若3()3f x x x a =-+ 有三个不同的零点,则实数a 的取值范围 ( ) A()2,2- B []2,2- C (),1-∞- D ()1,+∞6.已知函数132 (0) ()1)log (1)xx f x x x x ⎧<=>⎪⎩≤≤,当0a <时,则((()))f f f a 的值为( )AB .12-C .2-D .27.已知偶函数在区间单调递增,则满足<的x 取值范围是()f x 1x 2x ∈+∞1x 2x1()f x 2()f x ()f x x e ()f x 2(1)x -()f x 1x ()ln(1)f x x =+()f x [0,)+∞(21)f x -1()3f( )A.(,)B. [,)C.(,)D. [,)8.若关于x 的方程2sin 2sin a x x =--有实数解,则实数a 的范围是( )A .(,1]-∞B .[3,1]--C .[3,1]-D .[1,)+∞ 9.函数()()log 11a y x a =+>的大致图像是( )(A ) (B ) (C ) (D )10.已知函数)()(,)(,22)(22x g y x f y c bx ax x g x x x f ==++=+-=的图象与若的图象关于点(2,0)对称,则c b a ++等于 ( )A .5B .-1C .1D . -511.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( ) A.132323f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B.231323f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.213332f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D.321233f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12. 对于集合M 和N ,定义{}Nx M x x N M ∉∈=-,且,=⊕N M )(N M -)(M N - ,设{}x x y y A 32-==,{}xy y B 2-==,则=⊕B A( )A .)0,49(-B .]0,49[-C .),0[)49,(+∞--∞D .),0()49,(+∞--∞132313*********3二、填空题(每小题5分,共20分)13.石嘴山市某旅行社组团参加香山文化一日游,预测每天游客人数在至人之间,游客人数(人)与游客的消费总额(元)之间近似地满足关系:.那么游客的人均消费额最高为_________ 40元.14.若函数f(x)=a-x-a(a>0且a1)有两个零点,则实数a的取值范围是15.设变量yx,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-121yxyxyx,则目标函数yxz+=5的最大值为______5;16.给出以下命题:①若()f x为奇函数,则(0)0f=;②若函数()f x对任意的x R∈均有(12)(12)f x f x+=-,则函数(2)f x的图像关于直线1x=对称;③.函数()f x对于任意实数x满足条件()()12f xf x+=-,若()15,f=-则()()5f f=-1 5④函数()f x为R上的奇函数,对,x R∈均有13()()22f x f x+=-成立,则()f x是以4为周期的周期函数。
其中正确命题的序号是___________④。
三、解答题(共70分)17. (本小题满分12分)已知函数3()3f x x x=-.(I)求函数()f x在3[3,]2-上的最大值和最小值.(II)过点(2,6)P-作曲线()y f x=的切线,求此切线的方程.解:(I)'()3(1)(1)f x x x=+-,50130x y224010000y x x=-+-x≠}1| {>a a当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间 当(1,1)x ∈-时,'()0f x <, [1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-, 所以当3x =-时,min ()18f x =- 当1x =-时,max ()2f x = ………………6分(II )设切点为3(,3)Q x x x -,则所求切线方程为32(3)3(1)()y x x x x x --=--由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--,解得x =或3x =所以切线方程为3624(2)y x y x =-+=-或即30x y +=或 24540x y --= ……………………12分18.(本小题满分12分)设P :关于x 的y=ax (a>0且a ≠1)是R 上的减函数.Q :函数)lg(2a x ax y +-=的定义域为R. 如果P 和Q 有且仅有一个正确,求a 的取值围. 解:使P 正确的a 的取值范围是:0<a<1(2分)Q 正确02>--⇔a x ax 恒成立.当x a x ax a -=+-=2,0时不能对一切实数恒大于0.故Q 正确2104102>⇔⎩⎨⎧<-=∆>⇔a a a (4分)若P 正确而Q 不正确, 则102a <≤,(6分)若Q 正确而P 不正确,则1a ≥,(10分)故所求的a 的取值范围是:102a <≤或1a ≥ (12分)19. (本小题满分12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数。
(Ⅰ)求b 的值; (Ⅱ)判断函数()f x 的单调性;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 解;(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即111201()2222xx b b f x +--=⇒=∴=++………3分 (Ⅱ)由(Ⅰ)知11211()22221x x x f x +-==-+++, 设12x x <则211212121122()()2121(21)(21)x x x x x x f x f x --=-=++++, 因为函数y=2x在R 上是增函数且12x x < ∴2122x x ->0,又12(21)(21)x x ++>0 ∴12()()f x f x ->0即12()()f x f x >∴()f x 在(,)-∞+∞上为减函数。
(也可以求导数)………………8分(Ⅲ)因()f x 是奇函数,不等式22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f k t -<--=-,又因()f x 为减函数,由上式推得:2222t t k t ->-.即对一切t R ∈有:2320t t k -->,从而判别式14120.3k k ∆=+<⇒<-………………12分 20. (本小题满分12分)已知函数()f x 对任意,x y R ∈,满足条件()()2()f x f y f x y +=++, 且(3)5f =,w.w.w.k.s.5.u.c.o.m (1)求(1)(1)f f +-的值;(2)若()f x 为R 上的增函数,证明:存在唯一的实数t ,使得对任意(0,1)x ∈,都有22(2)3f x t x +<成立。
解:(1)令0,x y ==,得(0)2f =,令1,1x y ==-,得(1)(1)4f f +-=;…………4分 (2)(3)(21)(2)(1)23(1)45f f f f f =+=+-=-=,则(1)3f =,由22(2)3f x t x +<,且()f x 是R 上的增函数,则2221x t x +<, 故21(0,1)22x t x x <-∈对恒成立。
又122x x -在(0,1)上单减,故122x x -11022>-=,所以20t ≤,则0t =,即存在唯一实数t 满足条件。
……………………12分21.(本小题满分12分)已知函数().(1)若的定义域和值域均是,求实数的值;(2)若对任意的,,总有,求实数的取值范围.解:(1)函数(),因为在上是减函数,又定义域和值域均为,所以 , 即, 解得 .………………4分 (2) 若,又,且,所以,.因为对任意的,,总有,所以, 即,解得 ,又, 所以.若12,a <<2max ()(1)6,f x f a a =+=-,w.w.w.k.s.5.u.c.o.m显然成立,综上13a <≤。
………………12分22.选考题(本题满分10分,请从所给的三道题A 、B 、C 中任选一题做答,并在答题卡上填写所选题目的题号,如果多做,则按所做的第一题记分.) A 、(本小题满分10) 选修4-1:几何证明选讲 如图,AB 、CD 是圆的两条平行弦,BE//AC ,并交CD 于E ,交圆于F ,过A 点的切线交DC 的延长线于P ,PC=ED=1,PA=2。
(I )求AC 的长; (II )求证:EF=BE 。
解:(I )1,2,2==⋅=PC PA PD PC PA4=∴PD ,52)(2+-=ax x x f 1>a )(x f []a ,1a 1x 2x []1,1+∈a 4)()(21≤-x f x f a 225)()(a a x x f -+-=1>a )(x f []a ,1[]a ,1⎩⎨⎧==1)()1(a f af ⎩⎨⎧=+-=+-15252122a a aa 2=a 2≥a []1,1+∈=a a x 1)1(-≤-+a a a af x f 26)1()(max -==2min 5)()(a a f x f -==1x 2x []1,1+∈a 4)()(21≤-x f x f 4)()(min max ≤-x f x f 4)5()26(2≤---a a 31≤≤-a 2≥a 32≤≤a 2min 5)()(a a f x f -==4)()(min max ≤-x f x f又2,1=∴==CE ED PC 3分,,CAB PCA CBA PAC ∠=∠∠=∠CBA PAC ∆∆∴∽ AB AC AC PC =∴22=⋅=∴AB PC AC2=∴AC 7分(II )2,==⋅=⋅AC BE EF BE ED CE2212=⋅=∴EFBE EF =∴ 10分B .(本小题满分10)选修4-4:坐标系与参数方程已知直线:sin()4:2cos()(0),44l C k k lππρθρθ-==⋅+≠和圆,若直线上的点到圆C 上的点的最小距离等于2。