概率论与数理统计习题及答案----第8章习题详解
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第八章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第八章由于工作太忙,现在才把答案更新完整,多谢广大网友的支持与厚爱。
为简化计算,将原表各数据减去40,然后计算,结果如下:方差来源平方和自由度均方和F(α=0.05)因素A615.6s-1=2SˉA=307.8SˉA/SˉE≈17.0684因素E216.4n-s=12SˉE≈18.0333F0.05(2,12)=3.89总和T832n-1=14F=17.0684>3.89由上表可知,拒绝H0,即认为电池一平均寿命有显著差异.由于置信度为0.95的置信区间为(Xj?ˉ-Xk?ˉ±ta2(n-r)SE(1nj+1nk)ˉ),且t0.025(12)=2.1788,SE(1nj+1nk)ˉ=18.033×(25)≈2.6858,X1?ˉ=2.6,X2?ˉ=-10,X3?ˉ=4.4,则μA-μB的置信值为0.95的置信区间为(2.6+10±2.1788×2.6858)=(2.6+10±5.852),即(6.75,18.45);μA-μC的置信度为0.95的置信区间为(2.6-4.4±5.852),即(-7.652,4.052);习题8.2 双因素试验的方差分析习题1酿造厂有化验员3名,担任发酵粉的颗粒检验. 今有3位化验员每天从该厂所产的发酵粉中抽样一次,连续10天,每天检验其中所含颗粒的百分率,结果如下表所示.设α=5%,试分析3名化验员的化验技术之间与每日所抽取样本之间有无显著差异?SB=13∑i=13T?j2-130T2=13×3662.12-130×1782≈164.57,SE=ST-SA-SB=0.13833.从而得方差分析表(见下表)T?1=∑i=1rXi1=5.46,T?2=∑i=1rXi2=4.88,T?3=∑i=1rXi3=5.08, T1?=∑i=1sX1i=4.88,T2?=∑i=1sX2i=3.86,T3?=∑i=1sX3i=3.6,T4?=∑i=1sX4i=3.71,T=∑i=1r∑j=1sXij=15.42,ST=∑i=1r∑j=1sXij2-T2rs=1.632+?+1.322-15.42212=0.2007, SA=1s∑i=1rTi?2-T2rs=13(4.252+3.862+3.62+3.712)-15.42212=0.0807,SB=1r∑j=1sT?j2-T2rs=14(5.462+4.882+5.082)-15.42212=0.0434,SE=ST-SA-SB=0.0766,得方差分析表如下习题8.3 一元线性回归习题1F~F(1,n-2),且此检验问题的拒绝域为F>Fα(1,n-2). n=12,所需计算如下表所示:F=S回\DivS剩(n-2)≈27.15,查表知F0.05(1,10)=4.96.显然F=27.15>4.96=F0.05(1,10),说明F落在拒绝域中,从而拒绝H0,即认为β1≠0,认为某商品的供给量s与价格p间存在近似的线性关系,设线性关系为s=β0+β1p,则β1=Lps/Lpp≈3.27,β0=112∑i=112si-(112∑i=112pi)β1=112×732-112×112×3.27≈30.48,即近似的线性关系为s=30.48+3.27p.习题4有人认为,企业的利润水平和它的研究费用间存在近似的线性关系,下表所列资料能否证实这利论断(α=0.05)?时间1955195619571958195919601961196219631964研究费用10108881212121111利润(万元) 100150200180250300280310320300解答:n=10,所需计算如果下表所示:xi12121111∑i=110xi=102yi280310320300∑i=110yi=2390xi2144144121121∑i=110xi2=1066yi2784009610010240090000∑i=110yi2=624300xiyi3360372035203300∑i=110xiy i=25040Lxx=∑i=110xi2-110(∑i=110xi)2=1066-110×1022=25.6,Lxy=∑i=110xiyi-110(∑i=110xi)(∑i=110yi)=25040-110×102×2390=662Lyy=∑i=110yi2-110(∑i=110yi)2=624300-110×23902=53090.设研究费用x与利润y之间有线性关系y=a+bx,检验假设H0:b=0,H1:b≠0,H0的拒绝域为F>Fα(1,n-2),其中F=UQ/(n-2),U=Lxy2/Lxx=17118.90625,Q=Lyy(1-Lxy2LxxLyy)=35971.094,则F=UQ/(n-2)≈3.807,查表知F0.05(1,8)=5.32.显然F=3.807<5.32=F0.05(1,8),说明F没有落在拒绝域中,从而接受H0,即认为b=0,这说明用原表中所列资料不能证实企业的利润水平和它的研究费用之间存在线性关系.习题5在钢线碳含量对于电阻的效应的研究院中,得到以下的数据:。
概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

σ
r
(2) E( S A ) = (r − 1)σ 2 + m ∑ ai2 ,且当 H0:a 1 = a 2 = … = a r = 0 成立时,
i =1
σ2
SA
~ χ 2 (r − 1) ;
(3)Se 与 SA 相互独立. 证:根据第五章的定理结论知: 设 X1 , X 2 , …, Xn 相互独立且都服从正态分布 N (µ , σ 2 ),记 X =
i =1 j =1 r m
1
σ2
故
(Y ∑∑ = =
i 1 j 1
r
m
ij
− Yi⋅ ) 2 ~ χ 2 (rm − r ) ,
σ
Se
2
=
1
σ
2
(Y ∑∑ = =
i 1 j 1
r
m
ij
− Yi⋅ ) 2 ~ χ 2 (n − r ) ,即得 E(S e) = (n − r)σ 2;
4
(2) S A = m∑ (Yi⋅ − Y ) 2 = m∑ (ai + ε i⋅ − ε ) 2 = m∑ ai2 + m∑ (ε i⋅ − ε ) 2 + 2m∑ ai (ε i⋅ − ε ) ,
j =1
m
Ti 1 m = ∑ Yij , i = 1, 2, …, r, m m j =1
r r m 1 1 r m 1 r T = ∑ Ti = ∑∑ Yij , Y = T = Y = Yi⋅ , ∑∑ ij r ∑ n rm i =1 j =1 i =1 i =1 j =1 i =1
用 Yi⋅ 作为µ i 的点估计,Y 作为µ 的点估计.又记 ε i⋅ 表示第 i 个总体下随机误差平均值,ε 表示总的随机误 差平均值,即
概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
概率论与数理统计练习题第八章答案

第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
概率论与数理统计习题及答案第八章

习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八
1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为
4.28 4.40 4.42 4.35 4.37
问若标准差不改变,总体平均值有无显著性变化(α=0.05)?
【解】
0010
/20.025
0.025
: 4.55;: 4.55.
5,0.05, 1.96,0.108
4.364,
(4.364 4.55)
3.851,
0.108
.
H H
n Z Z
x
x
Z
Z
Z
α
μμμμ
ασ
==≠=
=====
=
-
===-
>
所以拒绝H0,认为总体平均值有显著性变化.
2. 某种矿砂的5个样品中的含镍量(%)经测定为:
3.24 3.26 3.24 3.27 3.25
设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.
【解】设
0010
/20.005
0.005
: 3.25;: 3.25.
5,0.01,(1)(4) 4.6041
3.252,0.013,
(3.252 3.25)
0.344,
0.013
(4).
H H
n t n t
x s
x
t
t
t
α
μμμμ
α
==≠=
==-==
==
-
===
<
所以接受H0,认为这批矿砂的含镍量为3.25.
3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).
【解】设
0010
/20.025
2
0.025
: 1.1;: 1.1.
36,0.05,(1)(35) 2.0301,36,
1.008,0.1,
6 1.7456,
1.7456(35)
2.0301.
H H
n t n t n
x s
x
t
t
t
α
μμμμ
α
==≠=
==-===
==
===
=<=
所以接受H0,认为这堆香烟(支)的重要(克)正常.
4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).
【解】
01
00.05
0.05
:21.5;:21.5.
21.5,6,0.05, 1.65, 2.9,20,
(2021.5)
1.267,
2.9
1.65.
H H
n z x
x
z
z z
μμ
μασ
≥<
======
-
===-
>-=-
所以接受H0,认为电池的寿命不比该公司宣称的短.
5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.
(1)H0:μ=0.5(%);H1:μ<0.5(%).
(2)
:
Hσ
'=0.04(%);
1
:
Hσ
'<0.04(%).
【解】
(1)
00.05
0.05
0.5;10,0.05,(1)(9) 1.8331,
0.452,0.037,
(0.4520.5)
4.10241,
0.037
(9) 1.8331.
n t n t
x s
x
t
t t
α
μα
===-==
==
-
===-
<-=-
所以拒绝H0,接受H1.
(2)
2222
010.95
22
2
22
22
0.95
(0.04),10,0.05,(9) 3.325,
0.452,0.037,
(1)90.037
7.7006,
0.04
(9).
n
x s
n s
α
σαχχ
χ
σ
χχ
-
=====
==
-⨯
===
>
所以接受H0,拒绝H1.
6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?
【解】
0010
2222
/20.0251/20.975
22
222
0.025
22
:0.005;:0.005.
9,0.05,0.008,
(8)(8)17.535,(8)(8) 2.088,
(1)80.008
20.48,(8).
(0.005)
H H
n s
n s
αα
σσσσ
α
χχχχ
χχχ
σ
-
===≠
===
====
-⨯
===>
故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.
7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,y =0.57kg, s 2=0.176kg.
设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】
01211212/2120.0250.0250.025:;:.200,0.05,
(2)(398) 1.96,
0.1981,
1.918;
(398).
w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=====
==-< 所以接受H 0,认为两批强度均值无显著差别.
8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设
2222
01:;:.A B A B H H σσσσ=≠
【解】
22
1212/2120.0250.9750.02521225,0.05,0.4322,0.5006,
(1,1)(4,4)9.6,11
(4,4)0.1042,
(4.4)9.6
0.43220.8634.
0.5006
n n s s F n n F F F s F s αα=====--===
=====
那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。