概率论与数理统计整理(一二章)

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计基础知识和公式整理

概率论与数理统计基础知识和公式整理

第1章随机事件与概率A B=不可能同时发生,称事件A与事件互不相容或者互斥。

基本事件是互不相容的。

=且B互为逆事件,或对A BΦ,则(P B-A{ωω21,P) (2=ω1()(|)n i i P A P A B ==∑对全概率公式可以利用课堂讲解过的概率树来描述和分析。

设事件B 1,B 2,…,B n 及1(|))(|i n j j P A B P P A B ==∑此公式即为贝叶斯公式。

1=i 2n第二章随机变量及其分布第三章多维随机变量及其分布的联合分布函数。

通过全平面上的区域来形}1z-)]n第四章随机变量的数字特征第五章大数定律和中心极限定理1(数理统计部分的知识都是从样本和样本统计量出发来分析总体的属性,例如:分析已知分布中的未知参数等)第六章数理统计的基本概念与抽样分布总体有相同分布的随机变量;观察之后,样本就是nk=2,3,.()},max{n n X X =常用统计量的基本性质~X N 221)~S χ-(X-第七章 参数估计,)mA θ=),,2∧m θ 即为参数n12,,,,)(;,)m i m P X θθθθ=∏=∂法的流程。

第八章 假设检验假设检验的基本步骤如下:1. 根据实际问题,提出原假设0H 及备择假设1H ;(可确定是单侧还是双侧假设检验)2. 依据实际条件构造检验统计量;(检验统计量不含任何未知参数且分布已知)3.对于给定显著性水平α,确定检验统计量的拒绝域;(拒绝域要与0H 为真时检验统计量的趋势相反)4.将样本值或者样本统计量的值代入检验统计量的表达式计算实际值,判断是否落入拒绝域,若落入拒绝域,则否定0H ,否则接受0H 。

概率论与数理统计(完整版)

概率论与数理统计(完整版)
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?

实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.

概率论与数理统计复习汇总

概率论与数理统计复习汇总
3 个患者的治疗中,至少有一个是有效的概率. 设对各个患者的治疗效果是相 互独立的.
第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。

概率论与数理统计02-第1章知识小结_28

概率论与数理统计02-第1章知识小结_28
3
P(Bi )P( A / Bi)
5. 21
i0
休息,休息一下!
P( A)
5. 全概率公式
n
P ( A ) P ( B i ) P ( A | Bi )
i1
6. Bayes公式
(B1,, Bn是 的 一 个 划 分 )
P(Bk A)
P(Bk )P( A | Bk )
n
, k 1, 2 , , n
P(Bi )P( A | Bi )
i1
知识小结
(四) 两种概型
用完后放回;第二次比赛时再从中任取3个.
(1) 求第二次取到的球都是新球的概率. (2) 已知第二次取到的球都是新球,求第一次取到的球也都是新球的概率.
解:A”第二次取到的都是新球.”Bi”第一次取到 i 个新球.”
则 B0, B1, B2, B3 是完备事件组.”且
Ci C3i P(Bi ) 9C33 ,
12
C3 P( A / Bi) C93i , i 0,1,2,3.
12
典型例题分析
(1) 由全概率公式
3
3
P(A) P(Bi )P( A / Bi)
i0
i0
Ci C3i 93
C93i
441 0.146
C3 12
C3 12
3025
(2) 由贝叶斯公式
P(B3/ A)
P(B3)P( A / B3)
第一章 随机事件的概率
知识小结
知识小结
(一) 三种运算(加减乘)
运算的作用:提供了复杂事件的表示斱法.
1. 和运算 A B={ / A或 B } 2. 差运算 A B={ / A且 B } 3. 乘积运算 AB={ / A且 B }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、随机事件和概率
考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验
考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:
1. 随机事件:可能发生也可能给不发生的事件。

0<概率<1。

2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成
的集合叫做样本空间,大写字母S表示。

3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。

(2)相等:
事件A包含事件B且事件B包含事件A。

(3)和:事件的并,记为A∪B。

(4)差:A-B称为A
与B的差,A发生而B不发生,A-B=A-AB。

(5)积:事件的交,事件A与B都发生,记为AB
或A∩B。

(6)互斥:事件A与事件B不能同时发生,AB=空集。

(7)对立:A∪B=S。

4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C)
(AB)C=A(B C)(3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律
5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特
别地:互不相容的完全事件组)。

6. 概率的概念:用来表示随机事件发生的可能性大小的数,称为随机事件的概率。

7. 概率的基本性质:(1)非负性:任意随机事件的是介于0和1之间的,0《P(A)《1。

(2)规范
性:P(S)=1。

(3)可列可加性:基本事件两两不相容。

8.古典型概率:如果E是一个等可能概型,且它的样本空间S只有有限个样本点,则称E为古典
概型。

等可能概型。

)P(A)=M/N
M为随机事件A中所含有的基本事件数,N为基本事件的总数。

9. 几何型概率:假设试验的基本事件有无穷多个,但可以用某些几何特征来表示总和,设为D,
并且其中一部分,即随机事件A所包含的基本事件数也可以用同样的几何特征来表示,设为d,则随机事件的概率为P(A)=d/D。

10. 条件概率:在基本事件B已经发生的情况下。

基本事件A发生的概率。

P(A|B)=P(AB)/P(B)(B
中A发生的情况只有AB部分)。

11.概率的基本性质:(1)两个互不相容事件的并的概率,等于着两个事件概率的和,即
P(A+B)=P(A)+P(B)。

(2)有限个互不相容的并的概率,等于这些事件概率的和,即P(∑A)
=∑P(A)。

→对立事件的概率的和等于1。

(3)任意两个事件的并的概率等于这两个事件的
概率的和减去这两个事件的交的概率,即P(A∪B)=P(A)+P(B)-P(AB)。

→对于任意三个事件
A,B,C,有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)-P(ABC)。

(4)设事件B的概率
P(B)>0,则在事件B已发生的情况下,事件A的条件概率等于事件AB的概率除以事件B的概
率所得的商,即P(A|B)=P(AB)/P(B)。

→有限个事件的交的概率等于这些事件的概率的乘积,
其中每一事件的概率是在它前面的一切事件都已经发生的条件下的条件概率,即
P(A1A2A3…Ai)=P(A1)P(A1|A2)P(A2|A1A2)…P(Ai|A1A2A3Ai-1) 。

12. 全概率公式与贝叶斯公式:(1)若基本事件两两不相容,且B1∪B2∪B3∪…. ∪Bn=S,则称
B1,B2,B3,….,Bn为S的一个划分。

(2)设事件A当且仅当互不相容的基本事件中至少有一
个发生时才可能发生,已知基本事件概率P(Bi)和事件A在Bi已发生条件下的条件概率P(A|Bi),则P(A)= ∑P(Bi)P(A|Bi)。

→设B1,B2,…,Bn是样本空间S的一个划分,A为任一事件,则
P(A)= ∑P(Bi)P(A|Bi)。

(3)全概率公式中,概率B(Bi)为假定已知的,他们常是以往的经验总
结,称为先验概率;在已知事件A发生条件下,求出事件Bi发生的概率P(Bi|A)称为后验概率。

(4)设B1,B2,….Bi为S的一个划分,则P(Bi|A)=P(BiA)/P(A)=P(A|Bi)P(Bi)/ ∑P(A|Bi)P(Bi) 。

13. 事件的独立性:事件A是否发生对于事件B是否发生没有影响,则说A与B是独立的,
P(AB)=P(A)P(B)。

→设A1,A2,…An是n事件,如果1<<k1<<k2<<….<<ks<n的s个数有
P(Ak1Ak2…..Aks)=P(Ak1)P(Ak2)….P(Aks),则称A1,A2,…,An是相互独立的。

14. 独立重复试验:----------
二、随机变量及其概率分布
考试内容:随机变量(事件结果数量化)及其概率分布(取某一个随机变量的概率) 随机变量的分布函数的概念(F(x)=P{X<=x})及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的概率分布随机变量函数的概率分布
考试要求:1.理解随机变量及其概率分市的概念.理解分布函数F(x)=P{X<=x}(-∞<x<+∞)的概念及性质.会计算与随机变量有关的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-l分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为
5.会求随机变量函数的分布(离散型连续型(注意单调性):公式法分布函数法).
整理重点:
1. 随机变量:设随机试验E的样本空间为S,如果对每个样本点e,都有唯一的实数值X(e)与之对应,则称X(e)为S上的随机变量,简记为X。

→随机变量的取值是有限个或可列无穷多个,离散型随机变量;随机变量的取值不能一一列举,非离散型随机变量(连续型随机变量)。

2. 概率分布(分布律):设离散型随机变量X所有可能取的值为x k,. X取x k 的概率为p k,即P(X= x k )= p k ,此等式为离散型随机变量X的概率分布。

3. 几种常见的离散型随机变量的分布律:(1)(0—1)分布或两点分布或伯努利分布:P{X=k}=p k(1-p)1-k,k=0,1 (0<p<1) (2) 二项分布X~B(n,p)P{X=K}=C k n p k q n-k,k=0,1,…,n。

→用二项分布计算比较麻烦时,引用→(3)泊松分布X~P(λ)P{X=k}=λk e-λ/k! λ>0,k=0,1,…,n 。

(4)超几何分布X~H(n, M, N)P{X=K}=C M n C N-M n-k/C N n, k=0,1,…,l .n<=N, l=min{M, n}。

4. 随机变量的分布函数:(1)设X为一随机变量,x是任意实数,称F(x)=P(X<=x) 为X的分布函数。

→X取值与(x1,x2】的概率是P{x1<X<x2}=F(x2)-F(x1) (2) 一般的,若离散型随机变量的分布律为p k=P{X=x k} ,k=1,2,… 则F(x)=∑p k。

(3)分布函数的性质:0《X《1,-∞<x<+∞;F(x)单调不减;F(x)右连续。

5. 连续型随机变量及其概率密度函数:设随机变量X的分布函数为F(x)=∫-∞x f(t)dt ,则称X为连续型随机变量,称f(t)为X的概率密度函数。

→特别的对于任意一个确定的a,有连续型随机变量的概率为0。

6. 几种常见的离散型随机变量:(1)均匀分布X ~U【a , b】:f(x)=1/(b-a) a<<x<<b (2)指数分布X~E(λ):f(x)= λe-λx x>0
(3) 正态分布:!!!!!!!!
7. 会求随机变量函数的分布(离散型连续型(注意单调性):公式法分布函数法)。

相关文档
最新文档