2011-2015希望杯四年级第1试解析
最新第十五届小学“希望杯”全国数学邀请赛四年级第1试赛及答案

第十五届小学“希望杯”全国数学邀请赛四年级第1试试题以下每题6分,共120分。
1. 计算:19×75+23×25=2. 定义新运算:a△b=(a+b)×b, a○b=a×b+b如:1△4=(1+4)×4=20, 1○4=1×4+4=8按从左到右的顺序计算:1△2○3=3. abc是三位数,若a是奇数,且abc是3的倍数,则abc最小是。
4. 三个连续自然数的乘积是120,它们的和是。
5. 已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对。
6. 如果8×(2+1÷x)=18,则x= 。
7. 观察以下的一列数:11,17,23,29,35,……若从第n个数开始,每个数都大于2017,则n= 。
8. 图1由20个方格组成,其中含有A的正方形有个。
9. 图2由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个。
10. 某学习小组数学成绩的统计图如图3,该小组的平均成绩是分。
11. 今年小均5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍。
12. 10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大 15,则这10个数中最小的数是。
13.如图4把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向和长度移动其中的4个长方形,则所得图形的周长是 cm.图4 (第13题)14. 在一个长方形内画三个圆,这个长方形最多可以被分成部分。
15. 2017年3月19日是星期日,据此推算,2017年9月1日是星期。
16. 观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12,17被叫“3个相邻的被5除余2的数,若有3个相邻的被5除余2的数的和等于336则其中最小的数是。
17. 甲、乙两人分别是从A、B两地同时出发,相向而行,甲到达A、B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米。
2015年第十三届小学希望杯全国数学邀请赛四年级第一试决赛试题及答案详解

2015年全国数学竞赛试题用7棵树栽6排,使每排3棵,用图来表示。
四年级数学奥数“希望杯”测试题(第一试)学校:班级:姓名:号次:一、我是计算小能手。
(6+6 共12分)四、解答。
(每15分一题共60分)列递等式计算: 1.在12÷( )=( )……()中,可能1.(7777+8888)÷5-(888-777)×3 出现余数多少?2 .100-98+96-94+92-90+…+4-2 2.四位数的四个数字都是偶数,百位数字是2,则这样的四位数有多少个?二、填空。
(7+7+7 共21分)1.故事书共160页,在它的页码中,数字“2”出现了 3.最大的三位数与最小的三位数的差是( )次。
合数还是质数?2.在16时16分,钟表上时针和分针的夹角为()。
3.盒子中有4个球,编号分别为1、2、3、4每次摸出两个球,将其编号相减(大减小),则差是() 4.若P和P+5都是质数,求(24P+1).的可能性大。
(20P+1)的值。
三、我是绘画小高手。
(7分)希望杯试题1 希望杯试题22015年全国数学竞赛试题答案120°+8°-96°=32°四年级数学奥数“希望杯”测试题(第一试)三、略一、50.3000 四、1.0、1、2、3、4、5、12详解: 2.1001、原式=(100+96+92+…+4)-(98+94+90+…+2) 3.合数,详解:999-100=899=29=25×(100+4)÷2-25×(98+2)÷2 ×31=25×(104-100)÷2 4.2009=25×4÷2=502、原式=16665÷5-111×3=3333-333=3000二、36.32°.1详解:2、360°÷12×4=120°360°÷60×16=96°360°÷(12×60)×16=8°。
第十二--十五届小学“希望杯”邀请赛四年级第1试赛及答案

第十二届小学“希望杯”全国数学邀请赛四年级第Ⅰ试试题2014年3月16日上午8:30至10:00以下每题6分,共120分1、过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生()名。
2、买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是()元()角。
3、图1是4×4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有()种。
4、小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距()米。
5、如图2,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是()厘米。
6、图3是长方形,将它分成7部分,至少要画()条直线。
7、甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍。
那么,原来甲桶中油比乙桶中的油多()千克。
8、甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有()幅。
9、一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是()。
10、如图4,每个小正方形的边长都是1,那么。
图中面积为2的阴影长方形共有()个。
11、如图5,将一张圆形纸片对折,再对折,又对折,……,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是()。
12、自然数a 是3的倍数,a -1是4的倍数,a -2是5的倍数,则a 最小是()。
13、四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生()人。
14、如图6,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形 ABCD 的面积是()。
2015小学四年级希望杯数学竞赛答案(1)

2015小学四年级希望杯数学竞赛及答案第十三届“希望杯”全国数学邀请赛四年级第1试来是9,百位是4,所以是在1492年。
一、1.49 2.46 3.3.844 10、周六4.23 5.16 6.11 二、111095 61050 21 497.630 8.6 9.1492 10.六详解:详解: 1.原式=7+97+997+9997+999971.原式=7×7=49 =(10-3)+(100-3)+(1000-3)+(10000-3)+(100000-3)2.除周围4个小圆外,中间小圆的规律是1×2,2 =(10+100+1000+10000+100000)-3×5×3,3×4,……,第6个图有6×7+4=46个小圆。
=111110-15=1110953. 3.844亿米2、4.略4.和23,差1,所以商是23。
附说明和*差=23,而 3.原式=(1+5+9+...+41)-(3+7+11+ (39)23只能是=23*1 =231-210=215.原来8个数的和是8×8=64,后来变成了7×8=56,小了8,所以原数是8+8=166.有10种属相,10+1=11人就可以满足条件。
抽屉问题7.要保持母鸡是公鸡的6倍,母鸡增加60,公鸡就要增加360,所以360-60=300就是差的2倍,现在有150只母鸡,原来有90只母鸡,一共养了630只鸡。
8.对于图c来说,每个小方块都摞了2层,最多有6块。
9、肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原。
第十四届小学四年级“希望杯”全国数学邀请赛试题及答案

第十四届小学“希望杯”全国数学邀请赛四年级第1试试题以下每题6分,共120分。
1、计算:25×259÷(37÷8)= .2、若9个连续偶数的和是2016,则这些数中,最小的是.3、有110张相同得长方形纸片,长比宽多10厘米,将这些纸片如图1无重合摆放,可以摆成长是2750厘米的长方形,将这些纸片如图2无重合摆放,可以摆成长是厘米的长方形。
4、甲、乙、丙3人一起购买学习用品,已知甲和乙共支付了67元,乙和丙共支付了64元,甲和丙共支付了63元,那么,甲支付了元。
5、图3由5×4个边长为1的小正方形组成,其中阴影部分的面积是。
6、一个工厂电表的示数是52222千瓦,若干天后,电表的示数(五位数)又出现4个相同的数码,那么该工厂在这些天内至少又用了千瓦的电.7、已知碳素笔每支1元8角,笔记本每个3元5角,文具盒每个4元2角,晶晶买这三种文具刚好用了20元,则她买了个笔记本。
8、一个除法算式,若被除数比除数大2016,商是15,余数是0,则被除数是。
9、若一个长方形的长减少3厘米、宽增加2厘米,得到一个和原长方形面积相等的正方形,则长方形的周长是厘米。
10、已知a,b,c都是质数,若a×b+b×c=119,则a+b+c= .11、王华每星期二、六学书法,已知2016年的元旦是星期五,那么在2016年8月,王华学书法的天数是。
12、一个四位数A,将四位数的各位上的数字(均不为0)重新排列得到的最大数比A大7668,得到的最小数比A小594,则A= 。
a2016能被12整除,则这样的六位数有个。
13、若六位数b14、3堆桃子的个数分别是93,70,63,一只猴子在3堆桃子间搬运,已知猴子每次最多可以搬5个桃子,并且在从一堆搬到另一堆的途中会吃掉1个,当3堆桃子个数相等时,猴子至少吃掉了个桃子。
15、在1到100这100个数中,被2,3,5除都有非零的余数,且余数彼此不等的数有个。
2013年第11届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2013年第11届小学“希望杯”全国数学邀请赛试卷(四年级第1试)小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、以下每题6分,共120分1.(6分)计算:4×37×25=_________.2.(6分)某种速印机每小时可以印3600张纸,那么印240张纸需要_________分钟.3.(6分)若三个连续奇数的和是的111,则最小的奇数是_________.4.(6分)一个数除以3余2,除以4余3,除以5余4,这个数是_________.5.(6分)如图是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是_________.6.(6分)将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是7.(6分)小明今年12岁,爸爸40岁.在小明_________岁的时候,爸爸的年龄是小明的5倍.8.(6分)商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是_________元.9.(6分)如图,把数字4,5,6填入到下面正方体的展开图中,使正方体相对两个面上两个数字的和都相等,则A处应该填_________,B处应该填_________,C处应该填_________.10.(6分)从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是_________,最小的是_________.11.(6分)如图,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是_________平方厘米.12.(6分)2013的质因数中,最大的质因数与最小的质因数的乘积是_________.13.(6分)从边长为5的正方形的四个角截掉四个小长方形,如图,截得的图形的周长是_________.14.(6分)喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是_________.15.(6分)将1到16这16个自然数排成如图的形状,如果每条斜线是的4个数的和相等,那么a﹣b﹣c+d+e+f﹣g=_________.16.(6分)行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正_________(填东、西、南、北)方向_________海里17.(6分)A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC的长度是_________厘米.18.(6分)图中共有三角形_________个.19.(6分)老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备_________箱苹果,_________箱桔子,_________箱香蕉.(答案用整数表示)20.(6分)12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是_________.(12小时制)二、附加题21.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9,A3=3,…,则A1+A2+A3+…+A2013=22.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成_________个正方形.2013年第11届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:4×37×25=3700.考点:运算定律与简便运算.专题:运算定律及简算.分析:根据乘法交换律进行计算即可.解答:解:4×37×25,=4×25×37,=100×37,故答案为:3700.点评:根据题意,找准所运用的运算定律,然后再进行计算即可.2.(6分)某种速印机每小时可以印3600张纸,那么印240张纸需要4分钟.考点:简单的工程问题.专题:工程问题.分析:化1小时=60分钟,先依据工作效率=工作总量÷工作时间,求出速印机的工作效率,再根据工作时间=工作总量÷工作效率即可解答.解答:解:1小时=60分钟,240÷(3600÷60),=240÷60,=4(分钟),答:印240张纸需要4分钟.故答案为:4.点评:本题主要考查学生依据工作时间,工作效率以及工作总量之间数量关系解决问题的能力.3.(6分)若三个连续奇数的和是的111,则最小的奇数是35.考点:奇数与偶数的初步认识.专题:数的整除.分析:先求出三个奇数的平均数求(即中间的那个奇数),因为两个连续的奇数相差“2”,所以中间的数再减去2就是最小的奇数.解答:解:111÷3﹣2,=37﹣2,=35;故答案为:35.点评:此题的关键是求出中间的那个奇数,然后根据两个连续的奇数相差“2”,进行解答.4.(6分)一个数除以3余2,除以4余3,除以5余4,这个数是59.考点:找一个数的倍数的方法.专约数倍数应用题.分析:把“除以3余2,除以4余3,除以5余4”理解为除以3差1,除以4差1,除以5差1,即这个数至少是3、4、5的最小公倍数少1,因为3、4、5三个数两两互质,这三个数的最小公倍数,即这三个数的连乘积;求出3、4、5的最小公倍数,然后减去1即可.解答:解:3×4×5﹣1,=60﹣1,=59;答:这个数是59.故答案为:59.点评:此题只要考查了当三个数两两互质时的最小公倍数的方法:三个数两两互质,这三个数的最小公倍数,即这三个数的连乘积.5.(6分)如图是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是8.考点:格点面积(毕克定理).专平面图形的认识与计算.分析:数出整格部分的个数,再数出不足一个部分的格数,不足一格的按照半格计算即可.解答:解:整格的有5个,不足一格的有6个;5+6÷2=8.答:阴影部分的面积是8.故答案为:8.点评:本题考查了数格子求面积的方法,不足一格的按照半格计算.6.(6分)将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是20厘米,或16厘米.考点:图形的拼组;长方形的周长.专题:平面图形的认识与计算.分析:根据两个新长方形拼组大长方形的方法可得:新长方形长与宽分别为4+4=8厘米、2厘米;或4厘米、4厘米,所以新长方形的周长是(2+4+4)=20cm,或4×4=16cm.解答:解:(4+4+2)×2,=10×2,=20(厘米),答:拼成的新长方形的周长是20厘米或16厘米.故答案为:20;16.点评:关键是知道将两个长方形拼成一个的长方形有两种情况,再根据长方形的周长公式C=(a+b)×2解决问题.7.(6分)小明今年12岁,爸爸40岁.在小明7岁的时候,爸爸的年龄是小明的5倍.考点:年龄问题.专题:年龄问题.分析:根据题意知道父亲和儿子的年龄差(40﹣12)不变,再根据父亲的年龄是儿子的5倍,即将年龄问题转化成差倍问题,因此当父亲的年龄是儿子的5倍时,儿子的年龄即可求出.解答:解:(40﹣12)÷(5﹣1),=28÷4,=7(岁),答:小明7岁时,父亲的年龄是小明年龄的5倍,故答案为:7.点评:解答此题的关键是,不管过多少年,父亲与儿子的年龄差不会变化,再根据差倍公式,即可求出当父亲的年龄是儿子的5倍时,儿子的年龄.8.(6分)商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是99元.考点:整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:商店按每个60元购进了50个足球,全部售出后获利1950元,根据除法的意义可知,每个足球的利润是1950÷50元,又每个成本价是60元,则每个足球的售价是60+1950÷50元.解答:解:60+1950÷50=60+39,=99(元).即每个足球的售价是99元.故答案为:99.点评:在此类问题中,售价=成本价+利润.9.(6分)如图,把数字4,5,6填入到下面正方体的展开图中,使正方体相对两个面上两个数字的和都相等,则A处应该填5,B处应该填4,C处应该填6.考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与2面相对,B面与3面相对,C面与1面相对,使正方体相对两个面上两个数字的和都相等,A 处填5,B个填4,C处填6.解答:解:如图,把它折叠成正方体后,A面与2面相对,B面与3面相对,C面与1面相对,使正方体相对两个面上两个数字的和都相等,A处填5,B个填4,C处填6;故答案为:5,4,6.点评:本题是考查正方体展开图的特征,使正方体相对两个面上两个数字的和都相等,关键是弄清哪两个面相对.10.(6分)从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是98632,最小的是56132.考点:最大与最小.专题:传统应用题专题.分析:要使得到的这个五位数最大,就是使这个数的最高位上的数最大,第二位上的数是除了解最高位和去掉的数字最大的数,依此类推可得出最大的五位数,要使这个五位数最小,就要使这个五位数的最高位是从后面数第五位,最小的一个数(0除外).据此解答.解答:解:根据以上分析知:最大的五位数是:98632,最小的五位数是:56132.故答案为:98632,56132.点评:本题主要考查了学生根据整数比较大小的方法解决问题的能力.11.(6分)如图,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是100平方厘米.考点:长方形、正方形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分是个三角形,可看做以小正方形的边长为底,高也是小正方形的边长,所以面积等于小正方形面积一半,所以小正方形的面积为50×2=100平方厘米.解答:解:据分析可知:小正方形的面积为50×2=100(平方厘米).答:小正方形的面积是100平方厘米.故答案为:100.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.12.(6分)2013的质因数中,最大的质因数与最小的质因数的乘积是183.考点:合数分解质因数.专题:数的整除.分把一个合数写成几个质数连乘积的形式,叫做比这个合析:数分解质因数.首先将2013分解质因数,然后再求出最大的质因数与最小的质因数的乘积即可.解答:解:把2013分解质因数:2013=3×11×61,3×61=183.答:最大的质因数与最小的质因数的乘积是183.故答案为:183.点评:此题考查的目的是掌握分解质因数的方法,一般情况用短除法比较好.13.(6分)从边长为5的正方形的四个角截掉四个小长方形,如图,截得的图形的周长是20.考点:正方形的周长.专题:平面图形的认识与计算.分析:根据图形可知,在大正方形的四个角截掉四个小长方形,虽然面积减少了,但是它的周长不变.所以利用正方形的周长公式解答即可.解解:5×4=20,答:答:截得的图形的周长是20.故答案为:20.点评:解答此题的关键是明白:在大正方形的四个角截掉四个小长方形,虽然面积减少了,但是它的周长不变.14.(6分)喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是41.考点:整数的裂项与拆分;页码问题.专题:传统应用题专题.分析:因为左右两页的页码数是连续两个自然数,所以先把420分解质因数,然后组成相邻两个因数的积:420=2×2×3×5×7=20×21,所以两页的页码数的和是20+21=41;就此解答.解答:解:根据左右两页的页码数是连续两个自然数可得,420=2×2×3×5×7=20×21,所以,两页的页码数的和是:20+21=41.故答案为:41.点评:本题考查了整数拆分问题和页码问题的综合应用,关键是通过分解质因数找到相邻的两个因数.15.(6分)将1到16这16个自然数排成如图的形状,如果每条斜线是的4个数的和相等,那么a﹣b﹣c+d+e+f﹣g= 11.考点:幻方.专题:有规律性排列的数的求和与推导问题.分析:把这个图顺时针旋转45°,就是一个四阶幻方,先求出幻和(每条斜线上4个数的和),为(1+16)×16÷2÷4=34,根据幻和进而可以a、g、f、c、b、d、e分别为8,3,5,14,6,10,11,所以a﹣b﹣c+d+e+f ﹣g=8﹣6﹣14+10+11+5﹣3=11.解答:解:幻和为:(1+16)×16÷2÷4,=17×16÷2÷4,=17×(16÷2÷4),=17×2,=34.a=34﹣13﹣12﹣1=8;g=34﹣13﹣2﹣16=3;f=34﹣16﹣9﹣4=5;c=34﹣1﹣15﹣4=14;b=34﹣12﹣7﹣9=6;d=34﹣15﹣6﹣3=10;e=34﹣2﹣7﹣14=11;所以a﹣b﹣c+d+e+f﹣g=8﹣6﹣14+10+11+5﹣3=11.故答案为:11.点评:本题看成一个四阶幻方,关键是求出幻和,再根据幻和求出未知的数,进而求解.16.(6分)行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正南(填东、西、南、北)方向50海里处.考点:根据方向和距离确定物体的位置.专题:图形与位置.分析:依据题目条件画出示意图,如图所示:海盗船、商船、护航舰所在位置刚好构成等边三角形,护航舰在海盗船的正南方向50海里处.解答:解:因为海盗船、商船、护航舰所在位置刚好构成等边三角形,所以护航舰在海盗船的正南方向50海里处.故答案为:南、50.点评:解答此题的关键是明白:海盗船、商船、护航舰所在位置刚好构成等边三角形,从而问题轻松得解.17.(6分)A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC的长度是12厘米.考点:长度比较.专题:平面图形的认识与计算.分析:如图所示,根据题意,AD=62cm,AB+BC+CD=62=12+18+32;又因为30=12+18,44=12+32,所以BC=12cm.解答:解:根据题干分析可得:AD=62cm,AB+BC+CD=62=12+18+32;又因为30=12+18,44=12+32,所以BC=12cm.答:线段BC的长度是12厘米.故答案为:12.点评:考查了长度比较,注意本题给出的图形中线段BC是直线上最短的一条线段.18.(6分)图中共有三角形28个.考点:组合图形的计数.专题:几何的计算与计数专题.分析:如图一,有6+4+2=12(按包含几部分计数)三角形,图二在图一基础上增加了3×2=6个三角形图三在图二基础上增加了5×2=10个三角形,所以共有三角形12+6+10=28个解答:解:根据题干分析可得:共有三角形12+6+10=28(个),答:一共有28个三角形.故答案为:28.点评:解答此题要注意:在原来图形上增加一条线段,增加的三角形一定包含增加这条线段或这条线段的某一部分.19.(6分)老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备30箱苹果,20箱桔子,15箱香蕉.(答案用整数表示)考点:公约数与公倍数问题.专题:约数倍数应用题.分析:要求每名学生都分到a个苹果,a个桔子,a根香蕉,即苹果、桔子、香蕉总数相等,且总数是20、30、40、50的倍数.先求20、30、40、50的最小公倍数,然后根据苹果、桔子、香蕉每箱的数量,即可求出箱数.解答:解:[20,30,40,50]=600,苹果600÷20=30(箱),桔子600÷30=20(箱),香蕉600÷40=15(箱).答:老师至少要准备30箱苹果,20箱桔子,15箱香蕉.故答案为:30,20,15.点评:此题解答的关键是明确苹果、桔子、香蕉总数相等,然后通过求求20、30、40、50的最小公倍数,进而解决问题.20.(6分)12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是3时.(12小时制)考点:时间与钟面.专题:时钟问题.分析:12点时针和分针重叠,分针比时针走得快,分针与时针的夹角从0度慢慢增加90度,再到180度,又慢慢减少90度,再到0度,至下一次分针与时针重叠.从时针与分针重叠到下一次重叠时,分针与时针成90度夹角,有两个时刻.通过估算,12点到1点,时针和分针2次成90度夹角,1点到2点,时针和分针2次成90度夹角,2点25分多一点时针和分针第5次成90度夹角,3点整时针和分针第6次成90度夹角.据此解答.解答:解:根据以上分析知:12点到1点,时针和分针2次成90度夹角,1点到2点,时针和分针2次成90度夹角,2点25分多一点时针和分针第5次成90度夹角,3点整时针和分针第6次成90度夹角.故答案为:3时.点评:本题的关键是分针与时针每到下次重合时两次成90度的角.二、附加题21.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9,A3=3,…,则A1+A2+A3+…+A2013= 10067.考点:乘积的个位数.专题:综合填空题.分析:几个7相乘的积的个位数字的循环周期是:7、9、3、1四次一个循环周期,那么2013个7相乘的积的个位数是:2013÷4=503…1,即有503个循环周期的个位数字,再加上第一周期的第一个数字7即可.解答:解:7n的个位数以7、9、3、1四个为一周期,2013÷4=503…1,A1+A2+A3+…+A2013=503×(7+9+3+1)+7=503×20+7,=10060+7,=10067.故答案为:10067.点评:此题考查了尾数问题和周期问题.22.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成21个正方形.考点:组合图形的计数.专题:几何的计算与计数专题.分析:如图:第一类1×1 正正方形9个,第二类斜正方形4+2+4+2=12个(如下图所示),共9+12=21个正方形.解答:解:由分析得出:第一类1×1 正正方形9个第二类斜正方形4+2+4+2=12个(如上图所示)共9+12=21个正方形.故答案为:21.点评:本题关键是明确正方形的边长所占的格子,然后分类分别计数.参与本试卷答题和审题的老师有:李斌;王庆;林清涛;齐敬孝;姜运堂;张召伟;苏卫萍;chenyr;似水年华;zlx;王亚彬;nywhr;zhangx;xuetao;dgdyq(排名不分先后)菁优网2014年2月17日。
【杯赛真题】2015年第十三届小学希望杯四年级一试真题详解

真题
答案
详解
奥数网∣择校、杯赛、教育
为了大家更好的备考杯赛奥数君从今天起会陆续发布一些杯赛的历年真题给大家真题是杯赛复习的一个重要参考家一起学习起来吧
【杯赛真题】2015年第十三届小学希望杯四年级一试真题详解
希望杯作为全国性杯赛之一,在小升初择校中起着举足轻重的作用,大家需要重视起来。
第八届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2010年第八届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、填空题(共20小题,每题6分,共120分)1.(6分)8×7÷8×7=.2.(6分)将一些半径相同的小圆按如图所示的规律摆放:第1个图形中有6个小圆,第2个图形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…,依此规律,第6个图形中有个小圆.3.(6分)地球与月球的平均距离大约是384400000米,把这个数改写成用“亿”作单位的数是亿米.4.(6分)如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是.5.已知8个数的平均数是8,如果把其中一个数改为8后这8个数的平均数变为7,那么这个被改动的数原来是.6.(6分)某校的学生的属相有鼠、牛、龙、蛇、马、羊、猴、鸡、狗、猪.那么至多选出位学生,就一定能找到属相相同的两位学生.7.(6分)某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变成公鸡只数的4倍.则养鸡场原来一共养了只鸡.8.(6分)将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有块.9.(6分)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为厘米.10.(6分)几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16.如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元年.11.某年的8月份有5个星期一,4个星期二,则这年的8月8日是星期.12.(6分)一栋居民楼里的住户每户都订了2份不同的报纸.如果该居民楼的住户只订了甲、乙、丙三种报纸,其中甲报30份,乙报34份,丙报40份.那么既订乙报又订丙报的有户.13.(6分)由1,2,3,4,5五个数字组成的不同的五位数有120个,将它们从大到小排列起来,第95个数是.14.(6分)如果连续三天的日期中“日”的数这和是18,则这三天的“日”分别是5,6,7.若连续三天的日期中“日”的数之和为33,则这三天的“日”的数分别是.15.(6分)某天,汤姆猫和杰瑞鼠都在图中的A点,杰瑞鼠发现D处有一盘美食,沿着A→B→D的方向向D处跑去,5秒钟后,汤姆猫反应过来,沿着A→C→D的方向跑去,已知汤姆猫每秒钟跑5米,杰瑞鼠每秒钟跑4米.那么,先到达D点.16.(6分)如图,四边形ABCD内有一点P到四条边AB、BC、CD、DA的距离PE、PF、PM、PN都等于6厘米.如果四边形ABCD的周长是57厘米,那么四边形ABCD的面积是平方厘米.17.(6分)甲、乙、丙、丁、戊五个人坐在同一排5个相邻的座位上看电影,已知甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戊的左右两侧的邻座上分别坐着她的两个姐姐,则和是戊的姐姐.18.(6分)小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?19.(6分)小明将127粒围棋子放入若干个袋子里,无论小朋友想要几粒棋子(不超过127粒),小明只要取出几个袋子就可以满足要求,则小明至少要准备个袋子.20.(6分)森林里有一对兔子兄弟赛跑,弟弟先跑10步,然后哥哥开始追赶,若弟弟跑4步的时间等于哥哥跑3步的时间,哥哥跑5步的距离等于弟弟跑7步的距离,那么兔子哥哥跑步才能追上弟弟.2010年第八届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、填空题(共20小题,每题6分,共120分)1.(6分)8×7÷8×7=49 .【分析】本题按照从左到右的顺序计算.【解答】解:8×7÷8×7=56÷8×7=7×7=49故本题答案为:49.【点评】本题是考察运算顺序的,不要被表面数字迷惑.2.(6分)将一些半径相同的小圆按如图所示的规律摆放:第1个图形中有6个小圆,第2个图形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…,依此规律,第6个图形中有46 个小圆.【分析】根据题干可知,每个图形中四个角上的小圆点数都是4,第1个图形中小圆的个数为6,可以写成6=1×(1+1)+4;第2个图形中小圆的个数为10,可以写成10=2×(2+1)+4;第3个图形中小圆的个数为16,可以写成16=3×(3+1)+4;第4个图形中小圆的个数为24,可以写成24=4×(4+1)+4;…所以第n个图形,小圆点个数就可以写成:n×(n+1)+4个,由此即可解决问题.【解答】解:根据题干分析可得:第n个图形中小圆的个数为n×(n+1)+4,当n=6时,图形中小圆的个数为:6×7+4=46(个).答:第6个图形中小圆点的个数是46个.故答案为:46.【点评】本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,并从已知的特殊个体推理得出一般规律.即可解决此类问题.3.(6分)地球与月球的平均距离大约是384400000米,把这个数改写成用“亿”作单位的数是 3.844 亿米.【分析】根据整数的改写方法,将384400000的小数点向左移动8位即可求解.【解答】解:3 8440 0000=3.844亿.故答案为:3.844.【点评】考查了整数的改写,把较大数改写成以“万”或“亿’作单位的数,容易丢掉计数单位或单位名称.4.(6分)如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是23 .【分析】因为,23=23×1,因此这两个数的和是23,差是1,因此这两个数的和除以这两个数的差的商即可求出.【解答】解:因为,23=23×1,因此,这两个数的和是:23,差是:1,所以,这两个数的和除以这两个数的差的商是:23÷1=23,故答案为:23.【点评】解答此题的关键是,理解“两个自然数的和与差的积是23,”将23进行合理的拆项,得出和与差分别是几,由此即可求出答案.5.已知8个数的平均数是8,如果把其中一个数改为8后这8个数的平均数变为7,那么这个被改动的数原来是16 .【分析】如果把其中一个数改为8后,平均数由8变成7,说明总和减少了,因为根据“移多补少的方法”,可知平均数少了8﹣7=1,总共少了8×1=8,所改的数是8+8=16;解答即可.【解答】解:(8﹣7)×8+8=8+8=16答:这个被改动的数原来是 16.故答案为:16.【点评】此题应根据题意并结合平均数的意义和计算方法进行解答.本题的难点是理解:减少的总数就是被改动的数减少的.6.(6分)某校的学生的属相有鼠、牛、龙、蛇、马、羊、猴、鸡、狗、猪.那么至多选出11 位学生,就一定能找到属相相同的两位学生.【分析】建立抽屉:把属相是鼠、牛、龙、蛇、马、羊、猴、鸡、狗、猪的看做10个抽屉,利用抽屉原理考虑最差情况即可解决问题.【解答】解:把属相是鼠、牛、龙、蛇、马、羊、猴、鸡、狗、猪的看做10个抽屉,考虑最差情况:选出10位同学分别在10个抽屉里,那么再任意选出1位,无论放到哪个抽屉都会出现一个抽屉里有2位学生,所以10+1=11(位),答:至多选出11位学生,就一定能找到属相相同的两位学生.故答案为:11.【点评】此题考查了利用抽屉原理解决问题的灵活应用,这里要考虑最差情况.7.(6分)某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变成公鸡只数的4倍.则养鸡场原来一共养了630 只鸡.【分析】由题意,可设原来养公鸡x只,则母鸡为6x只,根据等量关系公鸡、母鸡各增加60只,母鸡的只数变成公鸡只数的4倍.即可列出方程解决问题.【解答】解:可设原来养公鸡x只,则母鸡为6x只,根据题意可得方程:6x+60=4(x+60),6x+60=4x+240,6x﹣4x=240﹣60,2x=180,x=90;90+90×6=630(只);答:养鸡场原来一共养了630只鸡.故答案为:630.【点评】此类题目含有两个未知数,一般都是用表示倍数关系的等量关系设出未知数,利用另一个等量关系列出方程.8.(6分)将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有 6 块.【分析】由从上向下看到的视图易得最底层小正方体的个数,由从正面看到的视图和从左向右看到的视图找到其余层数里小正方体的个数相加即可.【解答】解:由从上向下看到的视图易得最底层有3个小正方体,第二层最多也有3个小正方体,所以这堆木块最多共有6块小正方体.故答案为:6.【点评】考查了从不同方向观察物体和几何体,注意从上向下看到的视图决定底层正方体的个数.9.(6分)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为120 厘米.【分析】先求出在水平方向上,所有线段的长度和,再求出竖直方向上所有线段的长度和,最后即可求出图形外轮廓的周长;或运用平移的方法,得出此图形外轮廓的长实际是3个边长是10厘米的正方形的长,由此得出答案.【解答】解:在水平方向上,所有线段的长度和:(10+10÷2×4)×2,=(10+20)×2,=30×2,=60(厘米),竖直方向上所有线段的长度和也同样是60厘米,图形外轮廓(图中粗线条)的周长是:60+60=120(厘米),或10×4×3,=40×3,=120(厘米),答:图形外轮廓(图中粗线条)的周长为120厘米,故答案为:120厘米.【点评】解答此类题目的关键是,要善于观察,分析和推理,合理利用“平移法”,“分解法”,“合并法”等,把复杂的图形,转化为我们熟悉的图形解答.10.(6分)几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16.如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元1492 年.【分析】因为是几百年前,所以四位数的千位数肯定是1,又十位数字加1,十位数字恰等于个位数字的5倍,则个位数字可为1或2,但千位为1,则个位为只能为2,2×5=9+1,即十位数为9,个位数为2,它们的和等于16,所以百位数为:16﹣1﹣9﹣2=4,则哥伦布发现美洲新大陆是在公元 1492年.【解答】解:根据公元纪年方法可知,四位数的千位数肯定是1,又2×5=9+1,所以十位数为9,个位数为2,它们的和等于16,所以百位数为:16﹣1﹣9﹣2=4,则哥伦布发现美洲新大陆是在公元 1492年.故答案为:1492.【点评】完成本题的关键是通过十位数与个位数的关系求出十位数与个位数是多少.11.某年的8月份有5个星期一,4个星期二,则这年的8月8日是星期六.【分析】首先分析题中的8月份5个星期一,4个星期二说明这个月的最后一天是8月31日星期一,枚举法分析即可.【解答】解:依题意可知:8月份5个星期一,4个星期二说明这个月的最后一天是8月31日星期一.8月8日是31﹣8=23天,在星期一的基础向前推23天(三个星期和2天)故8月8日是星期六.故答案为:六【点评】本题考查对周期问题的理解和运用,关键问题是找到最后一天是星期一.问题解决.12.(6分)一栋居民楼里的住户每户都订了2份不同的报纸.如果该居民楼的住户只订了甲、乙、丙三种报纸,其中甲报30份,乙报34份,丙报40份.那么既订乙报又订丙报的有22 户.【分析】根据题干,甲乙丙三种报纸共订了30+34+40=104份,已知平均每户都订了2份不同的报纸,所以这栋楼共有住户有104÷2=52户,既订乙报又订丙报的就是没有定甲报的,已知甲报订了30份,由此可知这栋楼的住户没订甲报的有52﹣30=22户.【解答】解:根据题干分析可得:(30+34+40)÷2﹣30,=104÷2﹣30,=52﹣30,=22(户);答:既订乙报又订丙报的有22 户.故答案为:22.【点评】根据所订报纸的总份数得出住户总数,根据容斥原理得出既订乙报又订丙报的就是指没有订甲报纸的住户,是解决本题的关键.13.(6分)由1,2,3,4,5五个数字组成的不同的五位数有120个,将它们从大到小排列起来,第95个数是21354 .【分析】由1,2,3,4,5五个数字组成的不同的五位数有5×4×3×2×1=120(个),遵守乘法原理;将它们从大到小排列起来,高位上的数字越大,这个数就越大,最大的数是54321,当第一位数字是5时有4×3×2×1=24个较大的数,即前24个数;其次以4开头的数字如45321有4×3×2×1=24,前48个数了;第49个数是以3开头的数4×3×2×1=24,同样有24个;同理以2开头的数有24个,24×4=96,那么第95个数是以2开头的数字的倒数第二个,即:21354.【解答】解:4×3×2×1=24,以5、4、3、2开头的数字各有24个,24×4=96(个),所以将它们从大到小排列起来,第95个数是以2开头的数中的倒数第二个,即21354.答:第95个数是 21354.故答案为:21354.【点评】此题考查了排列组合,5个不同数字组成五位数,高位的数字越大,这个数越大,组成数字时分步完成,遵守乘法原理.14.(6分)如果连续三天的日期中“日”的数这和是18,则这三天的“日”分别是5,6,7.若连续三天的日期中“日”的数之和为33,则这三天的“日”的数分别是10,11,12 .【分析】如果连续三天的日期中“日”的数这和是18,则这三天的“日”分别是5,6,7.5+6+7=18;若连续三天的日期中“日”的数之和为33,则这三天的“日”的数分别是多少?类似前面解决方法,因为10+11+12=33,符合题意,即可得解.【解答】解:因为10,11,12是连续的三天,而且10+11+12=33.符合题意.所以,若连续三天的日期中“日”的数之和为33,则这三天的“日”的数分别是 10,11,12;故答案为:10,11,12.【点评】此题考查了日期和时间的推演,根据题意,模仿推演是解决此题的关键.15.(6分)某天,汤姆猫和杰瑞鼠都在图中的A点,杰瑞鼠发现D处有一盘美食,沿着A→B→D的方向向D处跑去,5秒钟后,汤姆猫反应过来,沿着A→C→D的方向跑去,已知汤姆猫每秒钟跑5米,杰瑞鼠每秒钟跑4米.那么,杰瑞鼠先到达D点.【分析】先分别计算出汤姆猫和杰瑞鼠行的路程(达到D点),根据“路程÷速度=时间”分别计算出杰瑞鼠和汤姆猫到达的D点所用的时间;然后用杰瑞鼠到达的D点所用的时间减去提前早跑的时间(5秒),即算出杰瑞鼠在同时出发后用的时间,然后比较,继而得出结论.【解答】解:汤姆猫:(13+27)÷5,=40÷5,=8(秒);杰瑞鼠:(32+12)÷4﹣5,=44÷4﹣5,=6(秒);6<8,杰瑞鼠先到;故答案为:杰瑞鼠.【点评】解答此题应根据路程、速度和时间三个量之间的关系,进行分析、解答,得出结论.16.(6分)如图,四边形ABCD内有一点P到四条边AB、BC、CD、DA的距离PE、PF、PM、PN都等于6厘米.如果四边形ABCD的周长是57厘米,那么四边形ABCD的面积是171 平方厘米.【分析】连接PA、PB、PC、PD得到四个三角形,△PAB、△PBC、△PCD、△PDA,四边形ABCD的面积等于这四个三角形的面积之和.【解答】解:S四边形ABCD=S△PAB+S△PBC+S△PCD+S△PDA=AB×PE+BC×PF+CD×PM+AD×PN因为PE=PF=PM=PN=6厘米,AB+BC+CD+AD=四边形ABCD的周长57厘米,所以,S四边形ABCD=S△PAB+S△PBC+S△PCD+S△PDA=AB×PE+BC×PF+CD×PM+AD×PN=×6×(AB+BC+CD+AD)=×6×57=171(平方厘米);答:那么四边形ABCD的面积是 171平方厘米.故答案为:171.【点评】此题考查了图形的拆拼,添加辅助线,把四边形拆成四个三角形,是解决此题的关键.17.(6分)甲、乙、丙、丁、戊五个人坐在同一排5个相邻的座位上看电影,已知甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戊的左右两侧的邻座上分别坐着她的两个姐姐,则乙和甲是戊的姐姐.【分析】据甲坐在离乙、丙距离相等的座位上可知甲的位置在乙、丙的中间,又丁坐在离甲、丙距离相等的座位上,则丁在甲、丙的中间,因为五个人坐在同一排5个相邻的座位上看电影,所以戊只能坐在乙和甲的中间,所以乙和甲和戊的姐姐.即她们的排列顺序是乙、戊、甲、丁、丙(也可倒过来)如图:【解答】解:如图,据题意可知,甲的位置在乙、丙的中间,丁在甲、丙的中间,戊坐在乙和甲的中间.即她们的排列顺序是乙、戊、甲、丁、丙(也可倒过来),所以,乙和甲是戊的姐姐.故答案为:乙;甲.【点评】本题可在分析题意的基础上画图更好理解一些.18.(6分)小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?【分析】两人共得208分,其中小张比小李多得64分.根据这两个条件可以求出小张和小李各得多少分,再根据鸡兔同笼原理,即可求出小张、小李两人各中几发.【解答】解:小张的得分:(208+64)÷2=136(分),小李的得分:136﹣64=72(分),每人打10发,假设这10发全部打中,得20×10=200(分),小张被扣掉的分数:200﹣136=64(分),每脱靶一发,就要从总分中扣掉的分数:20+12=32(分),64里面有几个32,就脱靶几发:(200﹣136)÷(20+12)=2(发),同理,小李脱靶的靶数:(200﹣72)÷(20+12)=4(发),小张打中的靶数:10﹣2=8(发),小李打中的靶数是:10﹣4=6(发);答:小张中8发,小李中6发.【点评】解答此题的关键是,弄清题意,确定运算方法,找出对应量,列式解答即可.19.(6分)小明将127粒围棋子放入若干个袋子里,无论小朋友想要几粒棋子(不超过127粒),小明只要取出几个袋子就可以满足要求,则小明至少要准备7 个袋子.【分析】因为127=1+2+4+8+16+32+64,而1、2、4、8、16,32,64这几个数中任意1个、2个、3个…数的和可以组成连续的不超过127的自然数,由此得出答案.【解答】解:因为,127=1+2+4+8+16+32+64,所以,至少要准备7个袋子,答:小明至少要准备7个袋子;故答案为:7.【点评】解答此题的关键是,将127分成几个数相加,并且这几个数中任意1个、2个、3个…数的和可以组成连续的不超过127的自然数.20.(6分)森林里有一对兔子兄弟赛跑,弟弟先跑10步,然后哥哥开始追赶,若弟弟跑4步的时间等于哥哥跑3步的时间,哥哥跑5步的距离等于弟弟跑7步的距离,那么兔子哥哥跑150 步才能追上弟弟.【分析】假设哥哥跑3步要1秒,则弟弟跑4步也是1秒;由于哥哥跑5步等于弟弟的7步,所以哥哥跑5步的距离一定是5的倍数,也是7的倍数;假设弟弟1步跑5米,哥哥1步跑7米,则可以得出哥哥和弟弟的速度,然后利用速度差和路程差求出哥哥追赶上弟弟用的时间,最后求出哥哥要跑多少步才能追上弟弟.【解答】解:假设哥哥跑3步要1秒,则弟弟跑4步也是1秒;①弟弟、哥哥的速度:弟弟速度:4×5=20(米/秒);哥哥速度:3×7=21(米/秒).②哥哥追赶上弟弟用的时间:5×10÷(21﹣20),=50÷1,=50(秒).③哥哥追上弟弟要跑:50×21÷7=150(步).答:兔子哥哥跑150步才能追上弟弟.故答案为:150.【点评】此题属于比较难的追及问题,条件较复杂,需要认真分析,先表示出一倍的量,就好找关系了.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:49:28;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九届“希望杯”全国数学邀请赛四年级 第1试2011年3月13日 以下每题6分,共120分。
1. 计算:(7777+8888)÷5—(888—777)×3= .2. 计算:1+11+21+…+1991+2001+2011= .3. 在小于30的质数中,加3以后是4的倍数的是 .4. 小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 倍.5. 既是6的倍数又是8的倍数的所有两位数的和是 .6. 四年级一班2个小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这两个小组中既不会打乒乓球又不会下象棋的有 人.7. 按照左侧四个图中数的规律,在第五个图中填上适当的数:6135241642534253161642538. 已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200.则这两个被改动的数以外的7个数的乘积是 .9. 如图1,△ABC 的面积为36,点D 在AB 上,BD=2AD ,点E 在DC 上,DE=2EC ,则△BEC 的面积是 .E DC B AO 60︒20︒E DC B AF B图1 图2 图310.今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大 岁.11.某次考试,A 、B 、C 、D 、E 五人的平均分是90分.若A 、B 、C 的平均分是86分,B 、D 、E 的平均分是95分,则B 的得分是 .12.如图2,已知直线AB 和CD 交于点O ,若∠AOC=20°,∠EOD=60°,则∠AOE= °,∠BOC= °13.如图3,四边形ABCD 与CEFG 是边长相等的正方形,且B 、C 、G 在一条直线上,则图中共有 个正方形, 个等腰直角三角形.14.一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 千克,桶重 千克.15.某个两位数的个位数字和十位数字的和是12,个位数字和十位数字交换后所得两位数比原数小36,则原数是 .16.王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么他来回都坐车,则需 分钟.17.图4中“C ”形图形的周长是 厘米.图4 18.如图5,从1,2,3,4,5,6,中选出5个数填在图中的空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有 种不同的填法.19.三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是 .20.甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D ,第五名是E .” 乙:“第二名是A ,第四名是C .”丙:“第三名是D ,第四名是A .” 丁:“第一名是C ,第三名是B .”戊:“第二名是C ,第四名是B .”若每个人都只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是 .2012年“希望杯”全国数学邀请赛四年级初试试题1. 小慧从开始站立的A 点向西走了15米,到达B 点,接着从B 点向东走了23米,到达C 点,那么从C 点到A 点的距离是______米。
2. 长方形MNPQ 中,MN=3,MQ=4,过它的中心O (对角线MP 和NQ 的交点) 画一条直线,长方形MNPQ 被分成两个相同的图形,它们的形状是_______。
3. 如果a 表示一个三位数,b 表示一个两位数,那么,a+b 最小是( ),a+b 最大是( ),a-b 最小是( ),a-b 最大是( )。
4. 一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是( )分。
5. 如果今天是星期五,那么从今天算起,57天后的第一天是星期( )。
6. 如图1所示,5个相同的两位数AB 相加得两位数MB,其中相同的字母表示相同的数字,7不同的字母表示不同的数字,则AB=()7. 一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有()种。
8. 某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是()9. 只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等。
那么,比40大并且比50小的质数是(),小于100的最大的质数是().10. 如图2,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有()个,面积为8S的正方形有()个。
ACD11.在一个长方形内,任意画一条直线,长方形被分成两部分(如图3),如果画三条互不重合的直线,那么长方形至少被分成()部分,最多被分成()部分。
12.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有()块糖果。
13.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角。
那么一杯饮料的原价是()元。
14.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子共有()个.15.小兰将连续偶数2、4、6、8、10、12、14、16、…逐个相加,得结果2012.验算时发现漏加了一个数,那么,这个漏加的数是()。
16. A、B、C、D四个盒子中依次放有8,6,3,1个球,第1个小朋友找到放球最少的盒子,然后从其他盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其他盒子中各取一个球放入这个盒子,….,当第50位小朋友放完后,A盒中球的个数是____.17. 如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是_______。
18. 用步枪射击,发10发子弹,每击中靶心一次奖励2发子弹;用手枪射击,发14发子弹,每击中靶心一次奖励4发子弹。
小王用步枪射击,小李用手枪射击,当他们把发的和奖励的子弹都打完时,两人射击的次数相等,如果小王击中靶心30次,那么小李击中靶心_____次。
19. 东方红小学2012年的升旗时间因日期不同而不同,规定:1月1日到1月10日恒定为早晨7:13;1月11日到6月6日,从早晨7:13逐渐提前到4:46,每天依次提前1分钟;6月7日到6月21日,恒定为早晨4:46。
则今天(3月11日)东方红小学的升旗时间是______点______分。
20. 如图所示的电子时钟可显示从00:00:00到23:59:59的时间,在一昼夜内(24小时)钟表上显示的时间恰由数字1,2,3,4,5,6组成的共有_________秒。
第十一届2013年“希望杯”全国数学邀请赛四年级第Ⅰ试试题2013年3月17日以下每题6分,共120分1.计算:4×37×25=()。
2.某种速印机每小时可以印3600张纸,那么印240张纸需要()分钟。
3.若三个连续奇数的和是111,则其中最小的奇数是()。
4.一个数除以3余2,除以4余3,除以5余4,则这样的数中最小的是()。
5.图1是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是( )。
6.将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是( )厘米,或()厘米。
7.今年,小明12岁,爸爸40岁,在小明()岁的时候,爸爸的年龄是小明的5倍。
8.商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是()元。
9.如图2,将数字4,5,6填入正方体的展开图中,使正方形相对的两个面内数字的和都相等,则A处应该填(),B处应该填(),C处应该填()。
10.从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是(),最小的是()。
11.如图3,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是()平方厘米。
12.2013的质因数中,最大的质因数与最小的质因数的乘积是()。
13.从边长为5的正方形纸片的四个角剪掉四个小长方形后得到图4,得到新图形的周长是()。
14.喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是()。
15.将1到16这16个自然数排成如图5的形状,如果每条斜线是的4个数的和相等,那么a-b-c+d+e+f-g=()。
16.行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正()(填东、西、南、北)方向()海里处。
17.A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC 的长度是()厘米。
18.图6中共有三角形()个。
19.老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备()箱苹果,()箱桔子,()箱香蕉。
(答案用整数表示)20.12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是()。
(12小时制)附加题1.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9,A3=3,…,则A1 +A2 +A3 +…+ A2013=()。
2.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成()个正方形。
第十二届“希望杯”数学四年级第1试试题 2014年3月16日以下每题6分,共120分。
1、过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班级共有名。
2、买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元 __角。
3、图1是4×4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有 种。