地铁竖井监测方案
轨道施工监测实施方案范本

轨道施工监测实施方案范本一、前言。
轨道施工监测是轨道交通建设中至关重要的环节,它直接关系到施工质量和工程安全。
因此,制定科学合理的施工监测实施方案对于保障轨道施工质量和工程安全具有重要意义。
本文档旨在提供一份轨道施工监测实施方案范本,以供相关单位参考和借鉴。
二、监测目标。
1. 监测轨道施工过程中的地质变化情况,及时发现地质灾害隐患,确保施工安全;2. 监测轨道施工中的地表沉降情况,及时采取补救措施,保证线路平稳;3. 监测轨道施工过程中的环境影响,保护周边生态环境;4. 监测轨道施工中的施工质量,确保施工符合规范要求。
三、监测内容。
1. 地质监测,包括地下水位、地下水压力、地下岩层情况等;2. 地表监测,包括地表沉降、地表裂缝、地表变形等;3. 环境监测,包括噪音、振动、扬尘等环境影响;4. 施工质量监测,包括轨道几何尺寸、轨道平整度、轨道弯曲度等。
四、监测方法。
1. 地质监测方法,采用地下水位监测仪、地下水压力监测仪、地质雷达等设备进行监测;2. 地表监测方法,采用全站仪、GPS测量仪等设备进行监测;3. 环境监测方法,采用噪音监测仪、振动监测仪、扬尘监测仪等设备进行监测;4. 施工质量监测方法,采用轨道几何测量仪、轨道平整度测量仪、轨道弯曲度测量仪等设备进行监测。
五、监测频次。
1. 地质监测,根据地质条件和施工进度,制定监测频次,一般不少于每周一次;2. 地表监测,根据地表沉降情况,制定监测频次,一般不少于每日一次;3. 环境监测,根据施工活动和周边环境情况,制定监测频次,一般不少于每日一次;4. 施工质量监测,根据轨道施工进度和质量要求,制定监测频次,一般不少于每日一次。
六、监测报告。
1. 地质监测报告,包括地下水位、地下水压力、地下岩层情况的监测结果及分析;2. 地表监测报告,包括地表沉降、地表裂缝、地表变形情况的监测结果及分析;3. 环境监测报告,包括噪音、振动、扬尘等环境影响的监测结果及分析;4. 施工质量监测报告,包括轨道几何尺寸、轨道平整度、轨道弯曲度等施工质量监测结果及分析。
城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案1.1 测点布置1.1.1 测点布置原则1、按监测方案在现场布设测点,当实际地形不允许时,可在靠近设计测点位置设置测点,以能达到监测目地为原则。
2、为验证设计参数而设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同状况下最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。
3、地表变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。
4、深埋测点(结构变形测点等)不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。
5、各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。
6、测点的埋设应提前一定的时间,并及早进行初始状态的量测。
7、测点在施工过程中一旦破坏,尽快在原来位置或尽量靠近原来位置补设测点,以保证该测点观测数据的连续性。
1.1.2车站测点布置车站测点布设情况如下表9-4所示表9-4 测点布设表1.1.3区间测点布置(1)地面沉降(隆起)监测点:—般地沿隧道中线方向每隔5m布设一个测点,每隔定距离布设一个监测横断面,见表9-5。
表9-5 地面沉降监测横断面间距表注:B代表隧道的外径横断面方向测点间隔,一般为5〜8m在一个监测断面内设9个测点,地表测点顶突出地面5mm以内。
地面沉降测量应在盾构机开挖面附近,每天进行及每周进行后期观测直到沉降稳定。
(2)地面建筑物及临近建筑物沉降、倾斜和水平位移:在每栋建筑物四角各设置一个观测点,以测量其位移、倾斜,沉降点的数量不少于4点,规模较大的建筑物根据需要增加测点数量。
地面和建筑物沉降监测断面沿隧道纵向每30m设一断面地面或建筑物沉醫标志地面或罐於物沉障标£不少穴个5t(J0 分泾沅降仪沉障孔测斜仪 测斜仪测黏扎K 斜孔时称中心纯图 9-20 主断面监测点布置图(单位:mm拱顶下沉测点匚-1收敛测线A'f ■*! j匚!!u 11L ;]图9-21 洞内常规监测点布置图11隧道中心找/ 'V图9-22 纵断面监测点布置图地面或建筑物沉降监测标志\1测斜孔[拱顶下沉监测点[ 1隧道结构 | || If 1 1 1收敛测线A| 1隧底隆起监测点 1 rri 1 隧道结构M 1II1 L 1 1f 20〜30m (特殊地段加密)f 20〜30m (特殊地段加密)丫图9-23 单线隧道掘进地面沉降监测点布置示意图 (3) 土体水平位移及分层沉降:在典型断面布置测斜 仪进行测量,见图9-24。
电力竖井深基坑施工安全监测方案

电力竖井深基坑施工安全监测方案1、工程概况本工程是虹桥综合交通枢纽地区新建道路电力排管工程中的组成部分。
SN4、EW2路均为综合交通枢纽地区规划新建道路,SN4呈南北走向,EW2呈东西走向。
工程所处路段与规划高铁及磁浮相交,为避免相互影响,采用下穿通道方式组织立体交叉。
SN4、EW2路道路两侧新排市政电力管线,为将电力管线接入下穿立交内电缆通道,在地道出、入口各设竖井一座。
四座竖井(含工法坑)相关数据如下表:井位平面尺寸(m)开挖深度(m)围护桩深度(m)备注SN4路西15.0×8.586.715.0 SN4路东13.0×8.1967.816.5 EW2路西15.0×8.77.616.0 EW2路东15.0×9.76.7516.0 由于开挖深度较大,且所处地层存在承压水层,设计采用钻孔灌注桩加旋喷桩止水帷幕墙进行施工维护。
如上表,基坑围护钻孔灌注桩深度最大16.5米。
基坑开挖坑采用壁厚16mm,直径为φ609的钢管支撑,沿坑壁上下共设两道(第一道钢管支撑与开控前地面平,第二道钢管支撑离原地面最大4.3米)。
电力竖井最大开挖深度7.8米,采用明挖顺筑法施工。
2、施工监测的重要性理论、经验和监测相结合是指导深基坑工程的设计和施工的正确途径。
深基坑施工,由于地质条件不同,受外力影响不一致,基坑处于动态变化过程中,施工各阶段情况均有所不同,难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法。
这就必须要依赖于施工过程中的现场监测,通过现场监测所到的数据判断基坑的各项安全指标是否处于受控状态。
首先,依靠现场监测提供动态信息反馈来指导施工全过程,可以提高施工安全性;并可通过监测数据来了解基坑的设计强度,为今后降低工程成本提供设计依据。
第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。
第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施提供依据。
竖井测量方案

昆明市轨道交通*号线一期工程***隧道*号竖井开挖(CK11+140)测量方案中铁**局集团公司2010年8月5日第一章主要施工技术方案一、项目简介昆明市轨道交通*号线一期工程***隧道*号竖井,中心里程CK11+140,纵向长10米,横向宽16米,深度26米。
竖井两侧连接矿山法施工段隧道,施工期本竖井作为隧道施工的工作面,隧道施工结束后作为通风口使用。
通常由于地面测量、地下控制测量以及施工放样中的误差等诸多因素的影响,在实际贯通隧道中心线在贯通面不能理想衔接而造成错位,形成隧道施工贯通误差。
隧道施工贯通误差可分为三部分;一沿隧道中线方向的纵向贯通误差、二垂直隧道中线方向的横向贯通误差、三铅垂面上的高程贯通误差。
在地铁隧道贯通中,横向贯通与高程贯通精度指标最为重要。
是衡量隧道掘进准确度的标准。
我们拟在本竖井施工中采用以下测量方法。
1联系三角形测量联系三角形通过合理构造三角形形状和测量装置可达到较高的精度。
如图1所示,我们在井口架设框架,固定两根钢丝L1、L2,钢丝底部悬挂20kg的重锤,并使重锤浸入油桶中,但不能与油桶有接触,钢丝在重锤重力作用下绷紧,且由于油桶内油的阻尼而保持铅直,所以,L1、L2起了传递坐标的作用。
在实测传递时,首先需要在井口精确定位A0,然后在钢丝上标定两点a1及a2,精确测量三角形a1A0b1 的边长S1、S2、S3及连接角a、B之角值。
同样在井底选择B0,并在钢丝上选出a2及b2,精确丈量三角形a2B0b2的边长S'1、S'2和S'3 传递角a'、B‘之角值。
利用定向原理可以得到井下控制边B0-B1的方位角以及井下控制点B0的坐标。
联系三角形在竖井定位中起传递方位和点位坐标的作用,它的布设图形在方位和点位坐标传递的精度影响上关系极大。
点位传递误差对井下各点的影响均为同一个量值,使各点坐标相对基准都发生相同的位置错动,但这种误差的值较小,所以对地下控制的影响不太大,而方位角传递的误差却随距离的增加而累积。
地铁竖井施工方案

地铁竖井施工方案1. 引言地铁竖井是地铁线路中的重要设施,主要用于乘客进出地铁站。
地铁竖井的施工方案需要考虑地质条件、施工方法、安全技术等多个因素。
本文将介绍地铁竖井施工方案的设计要点和注意事项。
2. 设计要点地铁竖井的设计要点主要包括以下几个方面:2.1 地质勘察在进行地铁竖井施工之前,需要进行详细的地质勘察工作。
地质勘察主要包括地下水位、土质、岩层等地质信息的调查和分析,以确定竖井施工的地质条件和施工方法。
根据地质勘察结果和实际施工情况,选择合适的施工方法进行竖井的开挖。
常用的施工方法包括盖板法、井壁冻结法、开挖法等。
在选择施工方法时,需要考虑施工效率、施工难度和安全性。
2.3 安全技术地铁竖井施工需要高度重视安全事项。
施工过程中应采取合理的安全措施,包括设置支撑结构、监测地下水位、排水和通风等。
同时,需要保证施工人员的安全意识和培训,以防止事故的发生。
3. 施工方案根据以上设计要点,地铁竖井施工方案可概括如下:3.1 地质勘察在竖井施工前,进行详细的地质勘察,包括地下水位、土质、岩层等地质信息的调查和分析。
根据勘察结果,确定施工的地质条件和施工方法。
根据地质勘察结果和实际施工情况,选择合适的施工方法进行竖井的开挖。
常用的施工方法包括盖板法、井壁冻结法、开挖法等。
在选择施工方法时,需要综合考虑施工效率、施工难度和安全性。
3.3 安全技术施工过程中需要采取合理的安全措施,包括设置支撑结构、监测地下水位、排水和通风等。
同时,施工方案还应包括相关员工的安全培训和安全意识的提高,以确保施工人员的安全。
4. 注意事项在地铁竖井施工过程中,需要注意以下几个事项:4.1 施工风险评估在施工前,要进行详细的施工风险评估,并针对可能存在的风险制定应对措施。
施工现场要加强监督和检查,确保施工过程中的安全。
4.2 施工计划的调整根据实际施工情况,及时调整施工计划,并保持与相关部门的沟通和协调。
确保施工进度的安全和顺利。
轨道交通工程竖井施工监测实施方案

轨道交通工程竖井施工监测实施方案目录1、工程概况 (2)2、工程地质及水文地质概况 (3)2.1气象 (3)2.2地形地貌 (4)2.3地质构造 (4)2.4地层岩性 (4)2.5水文地质条件 (4)3、监测目的和依据 (6)3.1监测目的 (6)3.2监测依据 (7)4、监测项目 (7)5、监测点的布设与保护 (7)5.1基准网的布设 (7)5.2测点布设 (8)5.3监测点的保护 (8)6、各监测项目实施方法 (8)6.1竖向位移监测 (8)6.2水平位移(收敛)监测 (11)6.3土体深层水平位移监测 (14)6.4初期支护结构应力监测 (16)7、监测周期与监测频率 (18)7.1监测周期 (18)7.2监测频率 (18)表2 竖井监控量测频率表 (18)8、监测报警与异常情况下的监测措施 (19)8.1监测控制值 (19)8.2异常情况下的监测措施 (19)9、监测数据处理与信息反馈 (21)9.1监测数据处理 (21)9.2监测成果提交 (23)9.3监测信息反馈 (23)10、监测项目组成人员 (24)11、监测仪器设备及检定 (24)11.1监测仪器设备 (24)11.2仪器设备检定 (24)12、作业安全制度 (24)13、监测工作量及附图 (25)13.1监测工作量 (25)13.2附图 (25)1、工程概况本次监测项目为XX市XX站改扩建工程新增XX火车站轨道交通土建预留工程折返线隧道区间南竖井工程。
由于轨道交通土建预留工程折返线区间隧道工期目标为2015年1月15日(春运前)与XX站改扩建工程同步建成,故鉴于工期压力,预留工程隧道在起点及终点端头各设竖井一座。
南竖井为矩形断面,净空尺寸为9m*13m,井深34.98m,竖井上部井壁喷砼C25厚为0.35m,加设Ф42锚杆(L=3500mm)和Ф8钢筋网@150*150mm(旋喷桩加固范围内不设注浆锚管),在竖井的中(下)部井壁喷砼C25厚为0.35m,加设Ф25锚杆(L=3500mm)和Ф8钢筋网@150*150mm。
地铁隧道竖井施工专项方案

目录一、工程概况 (3)二、编制依据 (3)三、总体施工方案 (3)1、施工准备 (4)2、锁口圈施工 (5)3、提升设备安装 (5)4、竖井开挖与支护 (5)5、马头门、横通道施工 (7)6、由横通道向正线隧道交叉口施工 (7)7、机具设备(见下表) (8)8、劳动组织 (9)9、钻爆作业 (9)10、监测方案 (12)11、竖井通风 (12)12、竖井回填 (12)13、防止塌方及应急措施 (13)14、具体工期计划 (13)四、工期保证措施 (13)1、快速组织进场开工 (13)2、及时完成施工总体策划 (14)3、加强施工中每道环节的质量管理 (14)4、建立激励机制,充分调动一切积极因素 (14)5、提前做好防水防台风及雨季施工的安排 (14)6、技术保证措施 (15)五、隐蔽工程质量保证措施 (15)1、检查及验收制度 (15)2、岗位责任制 (16)3、分项、分部工程质量保证措施 (16)六、为确保质量所采取的检测试验手段、措施 (17)1、运用科学、先进的检测、试验手段,确保工程质量 (17)2、认真落实各项管理制度,强化检测试验工作 (17)3、具体检测试验项目 (17)七、质量保证措施 (18)1、质量目标 (18)2、质量保证体系 (18)3、质量保证制度 (18)八、施工安全的保障体系 (21)1、安全管理 (21)2、施工安全管理重点 (23)3、实施好各种保险措施 (23)4、项目部专项安全管理 (23)九、环境保护措施 (30)1、环境保护措施 (30)2、专项管理措施 (32)十、文明施工保证措施 (33)1、文明施工目标 (33)2、文明施工组织机构 (33)3、文明施工措施 (34)4、现场标准化管理措施 (34)5、现场卫生管理 (35)竖井施工专项方案一、工程概况1.工程概述1#竖井施工场地位于路边绿化带上,通过横通道进行左、右线隧道的施工,此施工场地约为m2。
竖井监测方案

目录1、工程概况 (1)2、编制依据 (1)3、工程地质条件 (1)4、竖井基坑开挖监控量测 (1)4.1监测目的及内容 (4)4.2监测仪器的埋设与监测 (5)4.3监测工期与监测频率 (7)4.4监测资料整理与成果分析 (8)4.5质量保证和控制 (8)5、横通道施工监控量测 (9)5.1监测量测目的 (9)5.2监测要求 (9)5.3监控量测项目 (9)5.4横通道施工监控量测图 (10)5.5信息化设计流程 (11)5.6监控量测设计表 (12)5.7监测项目控制值 (12)5.9监控量测方法 (13)5.10监控量测数据整理及信息反馈 (14)5.11监控量测信息反馈及工程对策 (14)6、文明生产与安全生产 (17)附件(含监测单位资质,人员及设备清单)GDK39+265竖井基坑开挖及横通道监测方案1、工程概况GDK39+265施工竖井位于东莞市常平镇朗常路,场地为路面,周边建筑物较为密集。
竖井场地原始地貌属于冲积地貌,现地形平坦,地面高程约22.1~22.3m。
竖井的净空尺寸:长13.6m,宽度7.0m,采用钻孔桩围护结构。
横通道中心里程右线GDK39+265.000、左线GDZK39+265.906,起始于两线间竖井内,分别向左、右线开挖,横通道拱顶埋深约8.3m,覆土表层为第四系冲积的粉质黏土,其下为残积土和全风化层;下伏基岩为强~弱风化混合片麻岩,岩体节理裂隙较发育,岩体较破碎。
根据横通道断面形式、埋深及所处地质条件,本段横通道采用浅埋暗挖法及喷锚构筑法设计和施工。
横通道施工对地面交通基本无影响。
2、编制依据(1)大朗-常平区间GDK39+265施工竖井及横通道结构设计图莞惠施SD-07-08(2010-12-30)(2)《工程测量规范》GB50026-93,中华人民共和国国家标准(3)《建筑基坑工程监测技术规范》(4)广东省标准《建筑基坑支护技术规范》(DBJ/T15-20-97)(5)中华人民共和国国家标准《建筑变形测量规范》(JGJ/T 8-97)(6)《岩土工程勘察规范》(GB50021-2001);(7)《地下铁道工程施工及验收规范》(GB50299-1999)(2003年版)3、工程地质条件GDK39+265施工竖井原始地貌属于冲积地貌,现地形平坦,地面高程约22.1~22.3m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市地铁2号线一期工程BT06标段烟厂车站2号竖井监控量测方案中铁二十二局集团有限公司长春地铁2号线BT06标项目经理部目录(一)工程概况 (4)(二)工程地质概况 (4)(三)围岩分级 (5)(四)水文地质条件 (6)(五)风险源及施工保护措施 (7)3(三)出现突发情况处理措施 (14)5813255668 (29)29303444(一)编制安全生产与文明施工计划 (34)(二)做好岗位安全文明教育培训工作 (34)(三)安全生产与文明施工的具体措施 (35)5(一)为高效完成监测工作,确保监控量测的质量和精度,实现信息化施工,采取的主要保证措施 (35)(二)巡视检查 (37)1122一、工程概况(一)工程概况1、2号竖井及横通道工程概况2号竖井设置在吉林大路与临河街交汇处东南侧,竖井截面形状为矩形断面,净空尺寸为×8m,深度为。
竖井初支厚度350mm,由喷射混凝土、双层钢筋网及钢筋格栅和注浆导管组成,采用倒挂井壁法施工,井底采用钢格栅+喷射混凝土铺底封闭,井口设置宽×高:×现浇混凝土锁口圈梁。
横通道净空尺寸宽×高:×,长度为。
初支厚度350mm,由喷射混凝土、双层钢筋网及钢筋格栅组成,采用台阶法施工,中隔板采用钢筋格栅钢架支撑,端墙采用钢格栅+喷射混凝土封闭,风道口在竖井施工时同步预埋格栅钢架及加强环梁,以确保进洞安全。
2、周边建筑2号竖井西侧为轻轨4号线吉林大路站,东侧为中国民航,南侧为住宅楼,主要以多层混凝土建筑为主,目前正在使用中,距离结构约为9m~25m。
3、地下管线2号竖井及风道埋深上方通过的管线主要有:①燃气、铸铁,DN300,埋深(经调查无此管线);②污水、砼,DN500,埋深;③雨水、砼,DN300,埋深;④污水、砼,DN300,埋深;⑤给水、铸铁,DN300,埋深。
(二)工程地质概况场区地层由第四系全新统人工填土层、第四系全新统冲洪积粘性土和砂土、白垩纪泥岩组成。
各层具体分布详见表1,工程地质及水文情况见图1。
表1 工程地质特征表(三)围岩分级本场地的围岩分级见下表2:表2 围岩等级分类表(四)水文地质条件长春地区现场勘查过程中,发现三层地下水,第一层为表层孔隙潜水〔编号(1)〕,第二层为微浅层承压水〔编号(2)〕,均属于第四系松散岩类孔隙水。
第三层为泥岩裂缝水〔编号(3)〕,现分述如下:(1)层地下水在勘测期间地下水稳定水位埋深~,高程~,主要赋存于第四系粘性土孔隙内,为孔隙潜水,含水层分布全场地,含水层主要为粉质粘土②1、②2,含水层水平、垂直向渗透性差异较小。
地面主要含水介质颗粒较细,水力坡度小,地下水径流十分缓慢。
其主要补给来源为大气降水和地表水入渗,排泄方式主要为蒸发和微弱的径流排泄。
地下水流向地形总体坡度一致,主要流向东,其地下水具有明显的丰、枯水期变化,丰水期水位上升,枯水期水位下降,多年变化平均值,近3~5年最高水位,历史最高水位可按地面下考虑。
(2)层浅层微承压水以粉质粘土②1、②2层为相对隔水顶板, 含水层为砂土②3、②4层,主要赋存于砂层孔隙内。
根据砂层抽水试验水文井及钻孔中测量到的水位,本层地下水承压水头最大可按考虑,局部无承压性,水位埋深~,高程~,该层地下水水位受季节影响较小,其主要接受上层潜水的渗透及侧向径流补给,排泄方式主要为相对含水层中的径流形式及人工开采。
(2)层泥岩裂隙水含水层岩性为全、强、中风化泥岩,存在泥岩裂隙内,主要接受上部孔隙水及侧向的径流补给,排泄方式主要为相对含水层中的径流形式及人工开采。
(3)结构所处的环境作用等级为二类b;图1 工程地质及水文情况图(五)风险源2号竖井风险源如表3所示:表3 2号竖井及横通道风险源二、施工监测目的、制定原则、编制依据(一)监测目的本工程施工实施动态控制及安全管理,通过现场监控量测,掌握基坑地层、地下水、围护结构与支撑体系等的工作状态信息。
通过对量测数据的整理和分析,及时确定采取相应的施工措施,确保工程安全和施工工期。
具体来说,分以下几个方面:1、通过监测掌握基坑及暗挖横通道附近地面、初支结构与支撑体系在工作状态时的强度、稳定性及变形的变化动态,将监测数据与设计预估值进行分析对比,对设计方案进行修改、补充和完善,进而优化设计方案;并有利于有针对性地改进施工工艺和施工参数,确保基坑施工安全。
2、掌握和收集地下水位变化动态,观察判断施工降水对周围地层的影响程度,防止地下水资源的流失和施工污染,保护生态环境。
3、认识各种因素对地表和土体变形等的影响,为有针对性地改进施工工艺和修改施工参数提供依据。
4、预测地表变形的趋势,根据变形发展趋势和周围建筑物情况,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据。
5、建立预警机制,避免结构和环境安全事故造成施工成本的增加。
6、指导现场施工,保障构筑物及地下管线的安全。
7、积累资料和经验,为今后同类工程提供参考。
(二)制定原则监测方案以安全监测为目的,根据工程特点确定监测对象和主要监测指标。
根据监测对象的重要性确定监测规模和内容、监测项目和测点布置,较全面地反映实际工作状态。
采用先进、可靠的监测仪器和设备,设计先进的监测系统。
为确保提供可靠、连续的监测资料,各监测项目间相互校验,以利数值计算、故障分析和状态研究。
在满足确保工程安全施工的前提下,尽量减少对工程施工的交叉干扰影响。
按照国家现行的有关规定、规范编制监测方案。
(三)编制依据【1】《工程测量规范》(GB50026-2007);【2】《建筑变形测量规范》(JGJ8-2007);【3】《城市轨道交通工程监测技术规范》(GB50911-2013);【4】《国家一、二等水准测量规范》(GB/T 12897-2006);【5】《建筑基坑工程监测技术规范》(GB50497-2009)【6】《地铁工程监控量测技术规程》(DB11/490-2007)【7】《城市轨道交通工程测量规范》(GB50308-2008);【8】《城市测量规范》(CJJ8-99);【9】《建筑基坑支护技术规程》(JGJ120-99);【10】国家和长春市有关管线保护、管理、监督、检查的文件通知等【11】本工程相关勘察、设计文件和资料以及会议精神;【12】本工程的施工设计图纸及合同中相应的规定、标准。
监测项目(一)监控量测项目及控制、预警、报警值2号竖井及横通道监控量测的范围由基坑支护结构及基坑周边环境监测两部分组成。
基坑支护结构监测对象主要包含基坑支护结构水平位移、竖井井壁净空收敛;周围环境监测对象主要包含基坑周围土体、地下管线、地下水及周围建(构)筑物等构成。
根据设计图纸及1号线从事基坑施工监测的经验,在本基坑施工过程中拟进行表4-1、表4-2中所述监测项目及控制、预警值。
表4-1 2号竖井监测项目及控制、预警值表4-2 2号竖井横通道监测项目及控制、预警值(二)监控量测频率检测项目的监测频率应综合考虑基坑类别、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化和当地经验而定。
当监测值相对稳定时,可适当降低监测频率。
根据设计要求,烟厂车站监测频次如表5-1、表5-2所示,在施工过程中,严格按照设计及规范要求的频次,对各监测点位采集数据,当有危险事故征兆时,应实时跟踪监测。
表5-1 2号竖井明挖段监测频次表表5-2 2竖井横通道暗挖段监测频次表注:B为坑道跨度当出现下列情况时,应提高监测频率:1. 监测数据达到报警值;2. 监测数据变化量较大或者速率加快;3. 存在勘察中未发现的不良地质条件;4. 超深、超长开挖或未及时加撑等未按设计施工;5. 基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;6. 基坑附近地面荷载突然增大或超过设计限值;7. 支护结构出现开裂;8.周边地面出现突然较大沉降或严重开裂;9.基坑底部、坡体或支护结构出现管涌、渗漏或流砂等现象;10.基坑工程发生事故后重新组织施工;11.出现其他影响基坑及周边环境安全的异常情况。
(三)出现突发情况处理措施1.当监测数据达到预警值;采取措施:立即通知三方及监理,组织对比数据并联测复核数据,分析预警原因,加强监测频率。
2.基坑支护结构或周边土体的位移出现异常情况或基坑出现渗漏、流砂、管涌、隆起或陷落等;采取措施:立即通知业主、监理、三方及设计,同时立即停止施工,疏散施工人员,并组织人员应急抢险;组织召开五方会议,分析原因,制定应急措施,增加监测点,加强监测频率。
3.基坑支护结构的支撑或锚杆体系出现过大变形、压屈、断裂、松弛或拔出的迹象;采取措施:立即通知业主、监理、三方及设计,同时立即停止施工,疏散施工人员,并组织人员应急抢险;组织召开五方会议,分析原因,制定应急措施,加强监测频率。
4.周边建(构)筑物的结构部分、周边地面出现可能发展的变形裂缝或较严重的突发裂缝;采取措施:立即通知业主、监理、三方及设计,同时立即停止施工,疏散施工人员,并组织人员对该建筑物进行围挡或防护,禁止行人靠近,令行人绕行,加强监测频率;组织召开五方会议,分析原因,制定应急措施及处理方案。
5.周边管线变形突然明显增长或出现裂缝、泄漏等。
采取措施:立即通知业主、监理、三方、设计及该管线的产权单位,同时立即停止施工,疏散施工人员,并组织人员对该管线附件路面及建筑进行围挡或防护,疏散附近人员,禁止行人靠近,令行人绕行,加强监测频率;组织召开会议,分析原因,制定应急措施及处理方案。
监测方案本方案测点布置以满足安全生产管理和监控为前提,按照监测设计原则,保证施工监测与第三方监测同点、同时段监测的基本要求下,综合施工图纸监测设计、现场情况优化而成。
同时,在施工现场实际施工中,根据现场的实际情况,在保证现场安全生产和监控的情况下,可以对监测点进行适当的增加或减少,以方便现场施工及监控。
监测点布设完成并施工单位自检后,上报监理及第三方监测,经监理、第三方检查、验收后,方可与第三方测取初始值并进行监测。
同时,为保证监测数据的有效性,应按照设计及规范要求埋设布置监测点,不应付、糊弄。
1、沉降(垂直位移)监测控制网布设(1)水准基准点、工作基准点的布设及检校水准基准点采用管段内测绘院提供的国家标准水准点中离线路较远且稳定性较好的水准点作为基准点,而工作基准点则是由国家标准基准点引测出来的,布设示意图如图2-2。
工作基准点是直接用于对变形观测点进行观测的控制点,其埋设位置既要考虑到便于观测,又要考虑它的稳定性,因此,本工程工作基点拟每150米设一个工作基点。
为检测工作基点稳定性,根据施工进度情况,拟每季度检测一次,检测时按照城市一等水准测量要求进行施测,施工监测时按照城市二等水准要求执行。
相关技术指标如下:观测主要技术要求(2)仪器采用徕卡DNA03系列电子水准仪及配套铟瓦条码尺进行观测。