汽车悬架系统动力学研究

合集下载

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析

汽车悬架系统优化设计及性能分析一、介绍汽车悬架系统是车辆不可或缺的部分。

它主要负责车辆的支撑和减震工作,为行驶过程提供了舒适性和稳定性。

因此,汽车制造商在设计汽车悬架系统时非常重视性能和稳定性,尤其是在高速行驶和曲线驾驶方面。

在本文中,将探讨汽车悬架系统的优化设计和性能分析。

首先,我们将了解悬架系统的基本概念和组成部分。

接着,将讨论悬架系统的优化设计和性能分析方法,其中会包括液压悬挂系统和空气悬挂系统。

最后,我们将介绍一些常见的汽车悬架问题,并给出解决方案。

二、汽车悬架系统的基本概念和组成部分汽车悬架系统是由许多组成部分组成的。

基本上,悬架系统包括垂直弹簧、水平限制器、减震器、保持器和底盘等部件。

这些部分的设计和性能影响着车辆的轻重平衡、转向能力、制动力等。

垂直弹簧是悬架系统中最基本的部分之一。

其主要作用是支持车载负载和路面扭曲。

在一般情况下,垂直弹簧采用钢制线圈弹簧或橡胶制减震器。

水平限制器是悬挂系统中的一种保护设备。

其主要作用是控制车辆在水平和纵向方向上的运动。

减震器是悬架系统的关键部分。

它负责控制车辆在行驶过程中发生的震动。

减震器的作用是将垂直弹簧支持的能量转换成热能。

保持器主要是为了使车辆在转向时保持稳定。

在悬架系统中,保持器往往被视为弹簧与减震器之间的连接。

底盘是整个悬挂系统的核心部分。

它由上下两个零件组成。

下部通常由车身连接杆和悬架机构组成,而上部是用于固定悬架和与车体连接的结构。

底盘的作用是支撑整车负荷和稳定性。

三、悬架系统的优化设计和性能分析方法悬架系统的优化设计和性能分析一直是汽车工业中的重要问题。

优化设计方法的主要目标是减少悬架系统重量和体积,并增加车辆的稳定性和操纵性。

在性能分析方面,主要是采用试验、仿真和计算三种方法,以获得更准确的结果。

试验是最常用的分析方法之一。

它包括车辆实际测试、路试和底盘试验。

这种方法可以测量和分析悬架系统的各种性能参数,例如侧倾角、轮胎接地面、悬架行程、制动力等。

基于ADAMS的悬架系统动力学仿真分析与优化设计

基于ADAMS的悬架系统动力学仿真分析与优化设计

基于ADAMS的悬架系统动力学仿真分析与优化设计一、概述本文以悬架系统为研究对象,运用多体动力学理论和软件,从新车型开发中悬架系统优化选型的角度,对悬架系统进行了运动学动力学仿真,旨在研究悬架系统对整车操纵稳定性和平顺性的影响。

文章提出了建立悬架快速开发系统平台的构想,并以新车型开发中的悬架系统优化选型作为实例进行阐述。

简要介绍了汽车悬架系统的基本组成和设计要求。

概述了多体动力学理论,并介绍了利用ADAMS软件进行运动学、静力学、动力学分析的理论基础。

基于ADAMSCar模块,分别建立了麦弗逊式和双横臂式两种前悬架子系统,多连杆式和拖曳式两种后悬架子系统,以及建立整车模型所需要的转向系、轮胎、横向稳定杆等子系统,根据仿真要求装配不同方案的整车仿真模型。

通过仿真分析,研究了悬架系统在左右车轮上下跳动时的车轮定位参数和制动点头量、加速抬头量的变化规律,以及汽车侧倾运动时悬架刚度、侧倾刚度、侧倾中心高度等侧倾参数的变化规律,从而对前后悬架系统进行初步评估。

1. 悬架系统的重要性及其在车辆动力学中的作用悬架系统是车辆的重要组成部分,对车辆的整体性能有着至关重要的作用。

它负责连接车轮与车身,不仅支撑着车身的重量,还承受着来自路面的各种冲击和振动。

悬架系统的主要功能包括:提供稳定的乘坐舒适性,保持车轮与路面的良好接触,以确保轮胎的附着力,以及控制车辆的姿态和行驶稳定性。

在车辆动力学中,悬架系统扮演着调节和缓冲的角色。

当车辆行驶在不平坦的路面上时,悬架系统通过其内部的弹性元件和阻尼元件,吸收并减少来自路面的冲击和振动,从而保持车身的平稳,提高乘坐的舒适性。

同时,悬架系统还能够根据车辆的行驶状态和路面的变化,自动调节车轮与车身的相对位置,确保车轮始终与路面保持最佳的接触状态,以提供足够的附着力。

悬架系统还对车辆的操控性和稳定性有着直接的影响。

通过合理的悬架设计,可以有效地改善车辆的操控性能,使驾驶员能够更加准确地感受到车辆的行驶状态,从而做出更为精确的操控动作。

汽车底盘系统的动力学分析

汽车底盘系统的动力学分析

汽车底盘系统的动力学分析汽车底盘系统是车辆的重要组成部分,它直接影响着车辆的操控性、舒适性和安全性。

对汽车底盘系统进行动力学分析,有助于我们更好地理解其工作原理,优化设计,提升车辆的整体性能。

汽车底盘系统主要包括车架、悬架、转向系统和制动系统等部分。

这些部件相互协作,共同实现车辆的行驶、转向和制动等功能。

车架作为底盘的基础结构,承载着车辆的各种零部件和载荷。

其强度和刚度对于车辆的稳定性和耐久性至关重要。

良好的车架设计能够有效地分散和承受来自不同方向的力,减少车架的变形和疲劳损伤。

悬架系统在汽车底盘中起着关键作用。

它连接车架和车轮,能够缓冲路面冲击,减少车身的振动,同时保持车轮与路面的良好接触。

常见的悬架类型有独立悬架和非独立悬架。

独立悬架能够使每个车轮独立运动,提供更好的操控性和舒适性。

例如麦弗逊式悬架,结构简单,占用空间小,常用于前轮;多连杆悬架则能更精确地控制车轮的运动姿态,提升车辆的稳定性和操控性能。

转向系统决定了车辆的转向特性。

传统的机械转向系统依靠驾驶员的力量通过转向机构传递到车轮,而现代车辆更多地采用了助力转向系统,如电动助力转向(EPS)和液压助力转向(HPS)。

助力转向系统能够根据车速和转向角度提供适当的助力,使转向更加轻便灵活。

同时,转向系统的几何参数,如主销内倾、主销后倾、前轮外倾和前轮前束等,对车辆的操控稳定性和自动回正能力有着重要影响。

制动系统是保障车辆安全的关键。

常见的制动类型有盘式制动和鼓式制动。

盘式制动散热性能好,制动效能稳定,多用于前轮;鼓式制动结构简单,制动力较大,常用于后轮。

制动系统的性能不仅取决于制动部件的性能,还与制动管路的布局、制动液的特性以及制动控制系统的精度有关。

在对汽车底盘系统进行动力学分析时,我们需要考虑多个因素。

首先是路面条件,不同的路面粗糙度和坡度会对车辆底盘产生不同的激励。

例如,在崎岖不平的路面上行驶时,悬架系统需要更好地吸收冲击,以减少车身的颠簸;而在湿滑路面上制动时,制动系统的防滑性能就显得尤为重要。

二分之一车辆悬架系统的动力学仿真研究

二分之一车辆悬架系统的动力学仿真研究

摘 要 :建 立 了二 分 之 一 车 辆 悬 架 系统 的 数 学 模 型 , 应用 MA TL A B / S i mu l i n k建 立 该 系统 的 仿
真模型 , 对车辆以两种速度分别通过 台阶和坡 路 时悬架各 性能指 标的 响应进行 研 究, 分析 不 同路
面激励 、 不同速度对悬架性能的影响 ; 提 出在 悬 架 设 计 时 应 考 虑 车辆 行 驶 在 特 殊 路 面 的 情 况 以 实 现 悬架 参 数 最佳 匹 配 , 从 而 使 悬 架性 能达 到 最优 , 扩 大 悬 架在 更 大 范 围 内的 适 应 性 和 实用 性 。
关 键 词 :汽 车 ;悬 架 ;路 面激 励 ;MA TI AB / S i mu l i n k ;仿 真 分 析 中图分类号 : U4 6 1 . 1 文献 标 志 码 : A 文章编号 : 1 6 7 1 —2 6 6 8 ( 2 0 1 5 ) O 1 —0 0 0 5 —0 4
二 分之一 车 辆悬 架系 统模 型如 图 1所示 。
z 3 ) ; FI 为质 心惯 性力 , F1 一 z 。

e 一



mc g
一 句
图 2
半 个 车 身 的 受 力 分 析

m 为 二 分 之 一 车 身 质 量 ; J 为 二 分 之 一 车 身转 动 惯 量 ; 0 为 车 身 质 心 处 的俯 仰 角 ; 为 质心 垂直位 移 ; z z 、 z 为 前 、 后 车身垂 直 位移 ; n、 b为 车 身 质 心 至 前 、 后 轴 的距 离 ; L为轴 距, L— n +b ; m m 为 前、 后轮非 簧载质量 ; K “ K 为前 、 后轮胎 的刚度 ; Z o f 、 o 为 前 、 后

基于ADAMSCar的汽车悬架系统_动力学建模与仿真分析毕业设计

基于ADAMSCar的汽车悬架系统_动力学建模与仿真分析毕业设计

毕业设计(论文)题目:基于ADAMS/Car的汽车悬架系统动力学建模与仿真分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日指导教师评价:一、撰写(设计)过程1、学生在论文(设计)过程中的治学态度、工作精神□优□良□中□及格□不及格2、学生掌握专业知识、技能的扎实程度□优□良□中□及格□不及格3、学生综合运用所学知识和专业技能分析和解决问题的能力□优□良□中□及格□不及格4、研究方法的科学性;技术线路的可行性;设计方案的合理性□优□良□中□及格□不及格5、完成毕业论文(设计)期间的出勤情况□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)指导教师:(签名)单位:(盖章)年月日评阅教师评价:一、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格二、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格建议成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)评阅教师:(签名)单位:(盖章)年月日教研室(或答辩小组)及教学系意见教研室(或答辩小组)评价:一、答辩过程1、毕业论文(设计)的基本要点和见解的叙述情况□优□良□中□及格□不及格2、对答辩问题的反应、理解、表达情况□优□良□中□及格□不及格3、学生答辩过程中的精神状态□优□良□中□及格□不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范?□优□良□中□及格□不及格2、是否完成指定的论文(设计)任务(包括装订及附件)?□优□良□中□及格□不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义□优□良□中□及格□不及格2、论文的观念是否有新意?设计是否有创意?□优□良□中□及格□不及格3、论文(设计说明书)所体现的整体水平□优□良□中□及格□不及格评定成绩:□优□良□中□及格□不及格(在所选等级前的□内画“√”)教研室主任(或答辩小组组长):(签名)年月日教学系意见:系主任:(签名)年月日********大学毕业设计(论文)任务书姓名:院(系):专业:班号:任务起至日期:毕业设计(论文)题目:基于ADAMS/Car汽车悬架系统动力学建模与仿真分析立题的目的和意义:汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。

汽车悬架系统动力学模型的研究

汽车悬架系统动力学模型的研究

1 绪论随着社会的发展和文明的进步,汽车作为一种交通工具,已成为人们出行的主要选择,汽车乘坐的安全性、舒适性已成为世人关注的焦点。

汽车作为高速客运载体,其运行品质的好坏直接影响到人的生命安全,因此,与乘坐安全性、舒适性密切相关的轿车动力学性能的研究就显得非常重要。

悬架系统汽车的一个重要组成部分,它连接车身与车轮,主要由弹簧、减震器和导向机构三部分组成。

它能缓冲和吸收来自车轮的振动,传递车轮与地面的驱动力与制动力,还能在汽车转向时承受来自车身的侧倾力,在汽车启动和制动时抑制车身的俯仰和点头。

悬架系统是提高车辆平顺性和操作稳定性、减少动载荷引起零部件损坏的关键。

一个好的悬架系统不仅要能改善汽车的舒适性,同时也要保证汽车行驶的安全性,而提高汽车的舒适性必须限制汽车车身的加速度,这就需要悬架有足够的变形吸收来自路面的作用力。

然而为了保证汽车的安全性,悬架的变形必须限定在一个很小的范围内,为了改善悬架性能必须协调舒适性和操作稳定性之间的矛盾,而这个矛盾只有采用这折衷的控制策略才能合理的解决。

因此,研究汽车振动、设计新型汽车悬架系统、将振动控制在最低水平是提高现代汽车性能的重要措施[1][2]。

1.1 车辆悬架系统的分类及发展按工作原理不同,悬架可分为被动悬架(Passive Suspension)、半主动悬架(Semi-Active Suspension)和主动悬架(Active Suspension)三种,如图1.1所示[3]。

(a)被动悬架 (b)全主动悬架 (c)半主动悬架图 1.1 悬架的分类图1.1中Mu为非簧载质,Ms为簧载质量,Ks为悬架刚度,Kt为轮胎刚度;C1为被动悬架阻尼,C2为半主动悬架可变阻尼,F为主动悬架作动力。

目前我国车辆主要还是采用被动悬架(Passive Suspension)。

其两自由度系统模型如图1.1(a)所示。

传统的被动悬架一般由参数固定的弹簧和减振器组成,其弹簧的弹性特性和减振器的阻尼特性不能随着车辆运行工况的变化而进行调节,而且各元件在工作时不消耗外界能源,故称为被动悬架。

汽车悬架系统动力学研究剖析

汽车悬架系统动力学研究剖析

汽车悬架系统动力学研究剖析汽车悬架系统是汽车重要的组成部分之一,它承担着减震、支撑车身、提供舒适性、保证车辆操控性的重要功能。

随着汽车技术的不断发展,对汽车悬架系统的要求也越来越高。

本文将对汽车悬架系统的动力学研究进行剖析,从力学角度探讨悬架系统的运动规律和影响因素。

汽车悬架系统的动力学研究主要包括悬架系统的振动、冲击与控制。

悬架系统的振动是指汽车在不同路面条件下的颠簸现象,这种振动会直接影响到车辆的行驶舒适性和操控性能。

冲击则是指车辆在行驶过程中遇到的突然上升或下降的力,这种冲击会对车辆的稳定性和安全性造成影响。

控制则是指通过悬架系统的特性调整,来保持车辆的稳定性和操控性能。

悬架系统的振动主要通过弹簧和减振器来吸收和控制。

弹簧是悬架系统的主要支撑元件,它能够通过储存和释放能量,来实现对车身的支撑。

而减振器则主要用于控制车身在弹簧的作用下产生的振动,使车身保持平稳。

这两个元件的组合和特性对车辆的振动特性起着至关重要的作用。

悬架系统的冲击主要通过减震器来控制。

减震器是悬架系统中的关键元件,它能够通过阻尼力来减缓车身的冲击,从而使车辆在行驶过程中更为稳定和安全。

减震器的阻尼特性和调节方式对车辆的冲击响应有着直接的影响。

悬架系统的控制主要是通过悬架系统的参数调节和悬架控制系统来实现。

悬架系统的参数调节包括弹簧刚度、减振器的阻尼特性等,通过调整这些参数,可以实现对车辆振动和冲击的控制。

而悬架控制系统则是指通过电子控制单元(ECU)来感知车辆的运动状态,并通过调节悬架系统的特性,来实现对车辆悬架系统的控制。

这种控制方式可以使得悬架系统根据不同的路面、驾驶条件和驾驶模式进行调节,从而提供更好的行驶舒适性和操控性能。

除了悬架系统的振动、冲击和控制外,悬架系统的动力学研究还包括悬架系统的动力学建模和优化设计。

动力学建模是指通过建立悬架系统的数学模型,来研究悬架系统的振动、冲击和控制特性。

优化设计则是指通过分析悬架系统的动力学特性和需求,对悬架系统的结构和参数进行优化,以提高悬架系统的性能和效能。

汽车悬架多刚体动力学分析及九点控制

汽车悬架多刚体动力学分析及九点控制

D 为横 摆 臂与 车 身 2个 铰接 点,构 成横 摆臂 自身 的转
轴 ,A 上 A D B;C为麦 氏悬 架 上端 与 车 身 铰接 点;
目前 汽车广 泛 采用 的是 一种 麦克 弗森 滑柱 式前 悬 为后悬 架 与车身 铰接 点 ; 为后轮 T DA元件 上 支点 。 T DA元 件 为机 械系 统 动力 学 中的常 见元 素 , 即移 动 S 过横 摆臂 和伸缩 式 滑柱 支杆 组件 与车 身相 连 ,悬架 弹 弹簧 一阻尼器 一作动器 的组合 。 分别 以各 质心 为 原点 , 簧和 阻尼 器与支 杆 组件 同轴 ,而后 悬 可视 为一 个铰 接 建 立 各 构 件 自身 的 局 部 坐 标 系 0
p i tc n r lsr t g sa o t d t e f r t e r t a n l ssa d c mp t r smu a in. e r s lss o d t a o n o to t ae y wa d p e o p r o m h o e i l a y i n o c a u e i lto Th e u t h we h t
是 大位移 和 空 间非线性 的,在建 立动 力 学方程 时 面 临 在 后 纵摆 臂和 车身 间的弹簧 以及 阻尼 零 件作 为车 身 的
繁重 的数 学运 算 ,又 由于方程 的非线 性和 复杂 性 ,很 支 撑 ,缓 冲 轮 胎 路 面 力 。 汽 车 悬 架 系 统 是 一 个 典 型 难求 得真解 。多刚体 系 统动 力学 善于进 行 复杂 系统 的 的多质 量 振动 系统 ,为 了便 于 分析 ,将模 型进 行 如下
Ab t a t M o ei g a a y i n ov n f e i l me h n c l y t m h e r b e o y a c . n o d r o s l e sr c : d l , n l ss d s l i g o h ce n a v c a i a se i t e k y p o lm f n mi s I r e o v s s d t a d a a y e q ik y a d a c r t l , n l ss o e il u p n i n b h g a g ’ me h d o l — o y d n m is n n l z u c l n c u a ey a ay i n v h c e s s e so y t e La r n e S t o fmu t b d y a c i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车悬架系统动力学研究 This manuscript was revised by the office on December 22, 2012(研究生课程论文)汽车动力学论文题目:汽车悬架系统动力学研究指导老师:乔维高学院班级:学生姓名:学号:2015年 1月汽车悬架系统动力学研究摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。

主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。

关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析The automobile suspension system dynamics researchCaisi Vehicle141Abstract: Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension.Key words: Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics;simulation and analysis引言汽车悬架是汽车车轮与车身之间一切装置的总称。

其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。

不同的悬架设置会使驾驶者有不同的感受。

看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。

悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽车的操纵稳定性、行驶平顺性都有很大的影响[1]。

通过对麦弗逊悬架的仿真提出其优化分析方法。

麦弗逊悬架系统由两大基本部分组成:支柱式减震器和三角形托臂,具有结构简单,占用空间小,非簧载质量小,且与减震器弹簧配合使用组成一个可相对运动的结构体,可以实现车身高度和悬架刚度的自由调节。

但是,由于主销轴线位置在减振器与车身连接铰链中心和横摆臂与转向节连接铰链中心的连线上,当悬架在变形时,主销轴线也随之改变,前轮定位参数和轮距也都会相应改变,且变化量可能很大。

因此,如果悬架结构设计不当,就会大大影响汽车产品的使用性能[2]。

1 ADAMS软件简介ADAMS模块是美国前MDI公司( Mechanical Dynamics Inc.) 与德国宝马( BMW)、奥迪(Audi)、法国雷诺(Renault)和瑞典沃尔沃(Volvo)等公司合作开发的整车设计软件包。

ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。

其由基本模块、扩展模块、接口模块、专业领域模块及工具箱5类模块组成。

利用该软件不仅能快速建立高精度的整车虚拟样机模型,其中包括车身、悬架、转向系、发动机、传动系和制动系等。

用户还能够利用后处理模块通过高速动画观察各种复杂工况的车辆运动学和动力学响应,并输出表征操纵稳定性和安全性的性能参数。

为了分析某车型麦弗逊悬架的性能,在ADAMS/Car 模块中搭建汽车前转向轮的麦弗逊悬架模型,使用 ADMAS/Insight 虚拟样机进行试验设计,进行相应的优化设计,提出改进方案,并验证了方案的可行性。

2悬架系统建模以某轿车的麦弗逊前独立悬架为例进行建模和仿真分析。

由于麦弗逊悬架左右对称,所以在CAR环境下只需要输入单侧模型的参数,系统会自动地建立另一边的模型。

因此,这里建模过程只涉及到左侧悬架。

2.1 物理模型的简化麦弗逊悬架系统主要由车身 1、上下摆臂2、转向横拉杆3、减震器及减震弹簧4、转向齿条 5、车轮总成6和转向节带制动器总成7组成。

悬架各刚体之间的连接关系为:减震器4的上端用螺栓和橡胶衬垫与车身相连接,减震器4下端固定在转向节7上,转向7通过球铰接与下摆臂连接;下摆臂一端通过两个转动铰接与车身相连(其中一个为虚约束),另一端通过球铰接与转向节总成7相连;转向横拉杆一端通过球铰接与转向节总成相连,另一端通球铰接与转向齿条相连。

在进行运动分析时,转向齿条通过固定副与车身相连,车轮总成和转向节总成也通过固定副相连,车身相对地面不动。

对于单侧车轮的麦弗逊悬架约束方程数目为:n=6+1+5+3+4+3+3+2=39;对于单侧车轮的麦弗逊悬架自由度数目为:DOF=6+7-n=3。

这意味着单侧车轮的麦弗逊悬架有3个自由度,包括:车轮绕车轴的转动自由度;车轮绕主销的转动自由度;车轮上下方向跳动的自由度。

2.2 系统坐标系的确立在建立多体模型时,坐标系的选择对建立样机模型的力学方程的难易程度起到很大的作用。

该模型的坐标原点为两侧车轮接地印迹中心点连线的中点。

以地面为XY平面,汽车中心对称面为XZ平面,通过前轮轮心连线,垂直XY、XZ两平面的面为YZ平面,取竖直向上为Z轴正向,车身右侧为Y轴正向,以车前进方向的反方向为X轴正向。

2.3 模型关键硬点的获取硬点是各零件之间连接处的关键几何定位点,确定硬点就是在子系统坐标系中给出零件之间连接点的几何位置。

模型关键硬点的空间位置坐标和相关系数是建立运动学模型的关键,从厂家提供的零/部件装配图上可以得到硬点的坐标值。

2.4 仿真模型的建立根据某乘用车的前悬架及整车设计参数,计算或测量整合零件的质量、质心位置及绕质心坐标系三个坐标轴的转动惯量,将这些动力学参数填写到对应的对话框中。

然后在硬点的基础上创建零件的几何模型,并定义各零件间的运动关系确定约束类型,通过约束将各零件连接起来,从而构成子系统结构模型。

最后将建好的子系统模型组装成悬架系统模型,完成ADAMS /CAR模型下的建模过程。

在多体动力学软件ADMAS/Car中建立该车带转向系统的麦弗逊前悬架及整车多体动力学仿真模型。

如图1所示。

图1 前悬架总成模型3 前悬架运动性能分析3.1主销后倾角对整车运动学性能的影响主销后倾角是指主销轴线和地面垂直线在汽车纵向平面内的夹角。

由于有主销内倾角的存在, 使得主销延长线接地点落在轮胎接地点前面,产生回正力矩,从而保证汽车稳定直线行驶。

回正力矩不易过大,否则将使驾驶员转动方向盘过于吃力,影响整车的操纵稳定性。

现代汽车设计主销后倾角一般不超过2°-3°。

3.2主销内倾角对整车运动学性能的影响主销内倾角是指主销轴线与地面垂直线在汽车横向平面内的夹角。

同主销后倾角一样,也使车轮有自动回正作用。

由于有主销内倾角的存在,使得驾驶员转向操纵轻便,也可以减小从车轮传递到方向盘的冲击力。

但内倾角不易过大,否则在汽车转向时,轮胎与路面产生较大的滑动,使得转向操纵沉重,影响整车稳定性,同时加剧轮胎磨损。

3.3车轮外倾角对整车运动学性能的影响车轮外倾角是指通过车轮中心的汽车横向平面与车轮平面的交线与地面垂线之间的夹角。

由于车轮外倾角的存在,保证汽车直线订驶稳定性的同时,使得驾驶员转向操纵轻便,同时也与拱形路面相适应。

3.4前束角对整车运动学性能的影响因前轮有外倾角的存在,将导致两侧车轮有向外滚开的趋势,由于转向横拉杆等一些构件对车轮有约束作用,车轮会出现既有滚动又有滑动的情况。

因此为了消除前轮外倾角的存在而带来的不良后果,在汽车设计时添加前轮前束,前束也可用前束角来表示。

前束角选择的合理可以延缓轮胎磨损。

3.5主销偏距对整车运动学性能的影响主销偏距是指主销延长线与地面的交点到轮胎接地中心的距离。

主销偏距的大小对转向操纵轻便与否起到非常关键作用,主销偏距小,则转向时阻力也小,主销偏距大,则使转向沉重的同时加剧轮胎磨损。

3.6轮距变化量对整车运动学性能的影响汽车在行驶时,车轮会产生上下跳动,这样会导致轮距变化。

轮距变化一方面会使轮胎加剧磨损,另一方面也会影响汽车行驶的直线稳定性和操纵稳定性。

因此,轮距变化量越小对整车行驶越有利。

4 仿真分析本仿真试验分析主要采用双轮同向激振仿真,保持左右车轮相同高度,对车轮施加设定数值的上挑和回弹运动,从而获取悬挂特征参数。

通过进行双侧车轮平行跳动仿真来分析前轮前束角、车轮外倾角、主销后倾角。

跳动的范围选择为轿车经常用的±50 mm,前轮定位参数变化曲线如图2~图4所示。

图2 前轮前束角的变化曲线图3 车轮外倾角的变化曲线图4 主销后倾角的变化曲线5 结论主销后倾角越大,越有助于保持车辆行驶的方向稳定性,但过大的主销后倾角可能导致不平顺的行驶状况,若在低速,甚至会导致转向前轮产生摆振,因此主销后倾宜在2°-3°范围内。

在车轮跳动过程中,车轮外倾角对轮胎的侧滑影响小,但是,外倾角过大,会使轮胎出现偏磨损现象,故车轮外倾角应在0.5°-2°范围内,。

对于前束角应配合车轮外倾角的取值,控制在0.2°-1.0°。

在车轮跳动过程中,特别在低速行驶过程中,主销内倾角过大,会使转向发飘。

在车轮上跳过程中外倾角减小,能有效补偿由于车身侧倾引起的不良影响。

主销后倾角对内倾角变化影响较大,并且随着车轮的上跳,主销内倾角增加,能有效补偿由于载荷增加而降低汽车转向轻便性的趋势,有利于提高汽车的转向轻便性。

主销内倾角对后倾角的变化影响最大,并且,主销后倾角随车轮上跳而增大,由侧向力引起的不足转向特性将得到提高。

根据某车型存在的问题,研究的车轮跳动过程中车轮定位参数与轮胎磨损的关系以及定位参数相互之间的影响将为汽车的初始设计提供可靠的技术依据,为有效地减小车轮侧滑、降低轮胎磨损以及提高汽车的操纵稳定性进行了探索。

本文分析了悬架运动学参数对整车性能的影响’利用多体动力学软件ADAMS/Car对麦弗逊悬架进行建模与仿真,分别得到主销后倾角、车轮外倾角等参数随车轮行程的变化曲线,为麦弗逊悬架设计及整车的操纵稳定性和平顺性分析提供了基础。

相关文档
最新文档