车辆系统动力学发展1
车辆系统动力学【可编辑全文】

可编辑修改精选全文完整版车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。
它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。
车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。
静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。
静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。
结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。
车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。
实验动力学主要负责试验机械结构以及机械系统的动力特性测定。
它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。
分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。
仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。
车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。
它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。
车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。
未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。
从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。
因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。
车辆系统动力学2013版(合肥工业大学卢剑伟) - 第一篇垂向动力学.

第9章 行驶动力学模型
➢ 模型推导前提 ➢ ¼车辆模型 ➢ ½车辆模型 ➢ 整车模型
模型推导前提
模型推导前提
模型推导前提
第9章 行驶动力学模型
➢ 模型推导前提 ➢ 1/4车辆模型 ➢ 1/2车辆模型 ➢ 整车模型
1/4车辆模型
1/4车辆模型
1/4车辆模型
1/4车辆模型
第9章 行驶动力学模型
连续可变阻尼的半主动悬架系统
第10章 可控悬架
➢ 车身高度调节系统 ➢ 全主动悬架系统 ➢ 连续可变阻尼的半主动悬架系统 ➢ 各类悬架系统的性能比较
各类悬架的性能比较
➢ 模型推导前提 ➢ 1/4车辆模型 ➢ 1/2车辆模型 ➢ 整车模型
1/2车辆模型
1/2车辆模型
1/2车辆模型
第9章 行驶动力学模型
➢ 模型推导前提 ➢ 1/4车辆模型 ➢ 1/2车辆模型 ➢ 整车模型
整车模型
整车模型
整车模型
整车模型
第一篇 垂向动力学
第5章 机械振动基础 第6章 路面输入及其模型 第7章 汽车部件垂向动力学 第8章 人体对振动的反应 第9章 行驶动力学模型 第10章 可控悬架系统
第6章 路面输入及其模型
➢ 路面测量技术及数据处理 ➢ 路面不平度的功率谱密度 ➢ 空间频率功率谱密度转化为时间频率功率谱密度 ➢ 路面不平度对汽车的输入功率谱密度
空间/时间频率功率谱密度变换
空间/时间频率功率谱密度变换
空间/时间频率功率谱密度变换
空间/时间频率功率谱密度变换
第6章 路面输入及其模型
路面测量技术及数据处理
路面测量技术及数据处理
第6章 路面输入及其模型
➢ 路面测量技术及数据处理 ➢ 路面不平度的功率谱密度 ➢ 空间频率功率谱密度转化为时间频率功率谱密度 ➢ 路面不平度对汽车的输入功率谱密度
汽车系统动力学

1汽车系统动力学的主要研究内容、范围及其发展方向。
答:内容和范围:严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。
它涉及的范围很广,除了影响车辆纵向及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动;而操纵动力学研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆的侧滑、横摆和侧倾运动。
发展方向:计算机技术和控制技术共同推动了现代汽车系统动力学的发展。
随着各种底盘控制系统在车辆中应用的增长趋势及各功能控制系统集成程度的日益提高,车辆动力学在未来车辆控制系统设计中的作用将愈加重要,可以预见,未来的发展将在车辆主支控制、车辆多体动力学和向“人—车—路”闭环系统的扩展等方面有所体现。
2汽车空气阻尼及怎么样降低汽车空气阻力。
答:汽车直线行驶时受到的空气作用力在行驶方向上的分力成为空气阻力。
空气阻力是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:×sc w v2其中v为行车速度;s为汽车横截面面积,c w为风阻系数。
空气阻力跟速F D=116度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力会增加3倍。
因此高速行车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。
换句话说,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。
空气阻力的大小除了取决于车的速度外,还跟汽车的截面积s和风阻系统c w有关。
通过改善汽车的空气动力学性能,比如变化尾翼、底盘罩、前部进风口和轮毂帽,都能降低风阻系数。
而降低车身高度,等于减小了截面积,或使车身更多地着盖住轮子,也有利于降低空气阻力。
3描述主动悬架的工作原理。
答:主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。
一、动力学的发展过程分为三个阶段

一、动力学的发展过程分为三个阶段:阶段一(20世纪30年代)1.对车辆动态性能的经验性的观察2.开始注意到车轮摆振的问题3.认识到车辆舒适性是车辆性能的一个重要方面阶段二(30年代—50年代)1.了解了简单的轮胎力学,给出了轮胎侧偏角的定义2.定义不足转向和过度转向3.建立了简单的两自由度操纵动力学方程4.开展了行驶平顺性研究,建立了K2实验台,5.引入前独立悬架阶段三(1952年以后)1.通过试验结果和建模,加深了对轮胎特性的了解2.在两自由度操纵模型的基础上,建立了包括侧倾的三自由度操纵动力学方程3.扩展了对操纵动力学的分析,包括稳定性和转向响应特性分析4.开始采用随机振动理论对行驶平顺性进行性能预测二、1.定义:汽车系统动力学就是把汽车看作是一个动态系统,对其行为进行研究,讨论其数学模型和响应。
2.目的:是研究汽车受的力及其与汽车运动之间的相互关系,找出汽车主要性能的内在规律和联系,提出汽车设计参数选取的原则和依据动力学:包括一切与车辆运动系统有关的方面,包括轮胎力学、驱动特性(动力性能)、制动特性、空气力学特性、操纵稳定性、平顺性、驾驶员—汽车—环境闭环系统特性等内容。
而最核心的是行驶动力学(平顺性)和操纵动力学(操纵稳定性)两大领域。
3.重要性:①阐述汽车运动规律的理论基础②汽车动态设计的必要手段③当今汽车技术发展的四大主题(安全、节能、降低污染、舒适)都与汽车动力学密切相关4.内容:研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。
及行驶动力学和操纵动力学。
行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。
三、汽车系统动力学的研究方法和理论基础1.研究方法把实际问题抽象并转化为简化的模型,即建模。
①物理模型:物理本质相同,形状尺寸有别模型的分类:②力学模型:经过简化后的物体实际受力模型③数学等效模型:动态行为的数学形式是相同的,可用等效的常系数微分方程来描述数学模型有理论建模和试验建模两类:a.理论建模是指从机械结构的设计图样出发,作出必要的假定和简化,根据力学原理建模。
汽车系统动力学

汽车系统动力学
1 什么是汽车系统动力学
汽车系统动力学是一个新兴的技术领域,它是汽车技术的分支,
专注于研究和设计汽车系统的总体行为。
该领域主要关注汽车的运动
规律、动力学和控制特性。
汽车系统动力学的研究旨在发展改善汽车
性能并适应日新月异的技术变化和社会需求。
2 动态特性
汽车系统动力学考虑多个机械系统的动态行为,以全面评估和调
整车辆的性能。
它是建立汽车的核心内容,涉及汽车的悬架系统、动
力系统、发动机、传动系统和控制系统的研究与设计。
动力学技术可
以通过实验和数值分析的方法,精确计算车辆的动力和运动特性,提
高车辆的整车性能,提高可靠性和安全性。
3 模拟与控制
把汽车系统抽象化,建立一个车辆动力学模型,可以使研究者以
虚拟的方式实现无限的试验。
运行模拟,发现汽车的动力和控制问题,这也是汽车技术发展中不可替代的方法。
同时,采用模拟技术可以大
大减少汽车系统开发周期。
4 汽车系统动力学的未来发展
汽车系统动力学是一个容易引起现代技术的新领域,随着技术的
不断更新,汽车系统动力学也在发生变化,多层次有趣的课题正在研
究,比如自动驾驶系统的研究,发动机的新能源研究等。
由于其独特
的特性,汽车系统动力学还可以发展到其他领域,如人体工程学,机
器人及空间科学等,将更多新奇的机器人及汽车系统动力学应用于日
常生活中。
汽车系统动力学融合了物理学、数学、机械工程,以及一系列的
有关技术,是一个全新的领域,它将与日俱增,未来有很大发展潜力。
汽车系统动力学习题答案

汽车系统动⼒学习题答案1.汽车系统动⼒学发展趋势随着汽车⼯业的飞速发展,⼈们对汽车的舒适性、可靠性以及安全性也提出越来越⾼的要求,这些要求的实现都与汽车系统动⼒学相关。
汽车系统动⼒学是研究所有与汽车系统运动有关的学科,它涉及的范围较⼴,除了影响车辆纵向运动及其⼦系统的动⼒学响应,还有车辆在垂向和横向两个⽅⾯的动⼒学内容,随着多体动⼒学的发展及计算机技术的发展,使汽车系统动⼒学成为汽车CAE技术的重要组成部分,并逐渐朝着与电⼦和液压控制、有限元分析技术集成的⽅向发展,主要有三个⼤的发展⽅向:(1)车辆主动控制车辆控制系统的构成都将包括三⼤组成部分,即控制算法、传感器技术和执⾏机构的开发。
⽽控制系统的关键,控制律则需要控制理论与车辆动⼒学的紧密结合。
(2)多体系统动⼒学多体系统动⼒学的基本⽅法是,⾸先对⼀个由不同质量和⼏何尺⼨组成的系统施加⼀些不同类型的连接元件,从⽽建⽴起⼀个具有合适⾃由度的模型;然后,软件包会⾃动产⽣相应的时域⾮线性⽅程,并在给定的系统输⼊下进⾏求解。
汽车是⼀个⾮常庞⼤的⾮线性系统,其动⼒学的分析研究需要依靠多体动⼒学的辅助。
(3)“⼈—车—路”闭环系统和主观与客观的评价采⽤⼈—车闭环系统是未来汽车系统动⼒学研究的趋势。
作为驾驶者,⼈既起着控制器的作⽤,⼜是汽车系统品质的最终评价者。
假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。
因此,在⼈—车闭环系统中的驾驶员模型研究,也是今后汽车系统动⼒学研究的难题和挑战之⼀。
除驾驶员模型的不确定因素外,就车辆本⾝的⼀些动⼒学问题也未必能完全通过建模来解决。
⽬前,⼈们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,⽽车辆的最终⽤户是⼈。
因此,对车辆系统动⼒学研究者⽽⾔,今后⼀个重要的研究领域可能会是对主观评价与客观评价关系的认识2.⽬前汽车系统动⼒学的研究现状汽车系统动⼒学研究内容范围很⼴,包括车辆纵向运动及其⼦系统的动⼒学响应,还有车辆垂向和横向动⼒学内容。
车辆系统动力学

车辆系统动力学车辆动力学是在车辆行驶过程中探究车辆运动特性的一门学科,也是车辆系统研究的一个重要组成部分,它关注车辆行驶过程中各个动力学系统中涉及到的物理参数,力学参数和物理特性,以及车辆性能参数和行驶特性。
车辆动力学是一种以力学为基础的,研究车辆行驶过程中的动力特性的学科。
车辆动力学的研究内容主要包括:静态动力学特性,动态动力学特性,变速动力学特性,悬架振动特性,液压控制特性。
静态动力学特性是指车辆停止时的运动特性,它主要研究车辆不发动时的驱动系统构造、系统摩擦、悬架结构的摩擦应力的可利用性,及车辆的静态平衡性能等;动态动力学特性是指车辆发动时的运动特性,它主要研究车辆随时间变化的动力学性能,以及车辆发动时的主要性能指标,如最大加速、最大制动和转弯半径等;变速动力学特性是指车辆使用变速器时的动力学性能,它主要研究车辆随变速器调节参数变化而变化的动态性能,如操纵时的反馈及转向特性等;悬架振动特性是指车辆悬架系统的振动特性,它主要研究车辆行驶时系统的振动参数,如振动加速度和速度,以及悬架系统的不同模式。
液压控制特性是指车辆使用液压悬架系统时的动力学特性,它主要研究车辆行驶时系统的液压支撑力,以及液压悬架系统的不同调节参数。
车辆动力学是一门研究车辆行驶过程中运动特性和动力特性的学科,它将力学,动力学,机械,电子,控制等科学理论应用于车辆研究,发挥着科学研究和车辆设计中的重要作用。
目前,随着汽车技术的发展和安全性能的提高,车辆动力学研究也被越来越多地应用在车辆设计中,它也成为车辆设计中不可缺少的一个复杂的系统科学。
国内外学者利用计算机仿真,理论分析,实验验证,等方法对车辆动力学性能进行研究,为汽车性能的改善和可靠性的提升提供了重要的技术支撑。
以车辆动力学性能为准则,建立合理的汽车设计及调校方法,以达到车辆的最佳性能和最大限度安全等目标,是当今车辆系统性能改善及汽车安全设计的重要途径。
总之,车辆动力学是车辆系统研究的一个重要科学研究领域,它研究车辆行驶过程中的动力学特性,为车辆系统设计及汽车安全性能改善提供了重要的技术支持,也是车辆系统研究中不可缺少的一个复杂系统科学。
车辆系统动力学

2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车系统动力学的发展和现状摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。
汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。
本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。
关键字:汽车系统动力学动力学响应发展历史Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate.Keywords:Dynamics of vehicle system dynamics Dynamic response Development history0 引言车辆动力学是近代发展起来的一门新兴学科。
有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。
事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。
开始出现有关转向、稳定性、悬架方面的文章。
同时,人们对轮胎侧向动力学的重要性也开始有所认识。
在随后的20年中,车辆动力学的进展甚微。
进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。
这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。
随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。
人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。
随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。
计算机及应用软件的开发,使建模的复杂程度不断提高。
在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。
在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。
传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。
在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。
作为驾驶者,人既起着控制器的作用,又是车辆性能的最终评价者。
控制技术的应用,使得车辆设计的目标可以是:力求使车辆系统在各种工况下都有一种较易为驾驶者适应的特性[2~4]。
1 历史回顾回顾车辆动力学的发展过程,首先要肯定20世纪30年代英国的Lanchester对这门学科的早期发展所做的贡献。
另一位本学科发展有卓越贡献的人物是美国的Olley,他率先系统的提出了操纵动力学分析理论。
1932年Olley在美国狄拉克公司建立了著名的“K2”试验台(一个具有前后活动质量的车架),来研究前后悬架匹配及轴距对前后轮相位差的影响。
以Olley为核心人物提出的有关行驶平顺性问题的讨论一直延续到20世纪30年代末,其中关于车身震动、固有频率、俯仰固有频率机器与前后悬架刚度匹配关系等重要问题的讨论极为有意义。
在随后的20年中,车辆动力学进展甚微。
在50年代,人们建立了较为完整的汽车操纵和转向动力学的基础理论体系,其中德国的Milliken出版《汽车动力学》标志着汽车动力学的成熟。
在1993年举办的一次关于车辆舒适性和操纵稳定性的会议上,Segel发表了一篇重要的演讲,对车辆动力学的发展进行了系统的回顾。
在他的文章中,他以自己的深刻理解回顾了这门学科的发展,并以阶段划分的方式对本门学科的早期成就进行了概括。
动力学的发展过程分为三个阶段[8~9]:阶段一(20世纪30年代)①对车辆动态性能的经验性的观察②开始注意到车轮摆振的问题③认识到车辆舒适性是车辆性能的一个重要方面阶段二(30年代—50年代)①了解了简单的轮胎力学,给出了轮胎侧偏角的定义②定义不足转向和过度转向③建立了简单的两自由度操纵动力学方程④开展了行驶平顺性研究,建立了K2实验台,⑤引入前独立悬架阶段三(1952年以后)①通过试验结果和建模,加深了对轮胎特性的了解②在两自由度操纵模型的基础上,建立了包括侧倾的三自由度操纵动力学方程③扩展了对操纵动力学的分析,包括稳定性和转向响应特性分析④开始采用随机振动理论对行驶平顺性进行性能预测随后几十年,汽车制造商意识到行驶平顺性和操纵稳定性在产品中的重要作用。
随着计算机技术的发展,复杂的模型得到了明确的表达的方便的求解。
随后的发展中,逐步引进ABS(防抱死制动系统), TCS(驱动力控制系统),ASR(防滑转控制),DCS(动力学控制),PPS(液压助力),等技术,推动着汽车工业的发展。
2 汽车系统动力学的研究内容和范围2.1 定义:汽车系统动力学就是把汽车看作是一个动态系统,对其行为进行研究,讨论其数学模型和响应。
2.2 目的:是研究汽车受的力及其与汽车运动之间的相互关系,找出汽车主要性能的内在规律和联系,提出汽车设计参数选取的原则和依据2.3 重要性:①阐述汽车运动规律的理论基础②汽车动态设计的必要手段③当今汽车技术发展的四大主题都与汽车动力学密切相关④安全、节能、降低污染、舒适2.4 研究内容:研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。
及行驶动力学和操纵动力学。
行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。
2.4.1纵向动力学纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。
按车辆工况的不同,可分为驱动动力学和制动动力学两部分。
2.4.2行驶动力学行驶动力学研究中的首要问题是建立考虑悬架特性在内的车辆动力学模型,而分析这些动力学问题的最简单的数学模型应该是具有七自由度的整车系统模型。
随着功能愈来愈强大的多体动力学仿真软件的普及应用,包括衬套等复杂细节在内的车辆模型也可以方便地解决。
2.4.3操纵动力学[1]由于轮胎的重要性,因此操纵动力学建模中必须要与轮胎模型精度相吻合。
分析车辆操纵特性可以从最基本的两自由度车辆模型入手,该模型中,车辆向前的速度被假定为恒定的,而两个变量是车辆的侧向加速度和横摆速度。
经过对基本模型的动力学分析,得到了一个关于车辆操纵特性的最基本的概念,即车辆的“不足或过度转向”特性。
通常,操纵动力学的研究范围分为三个区域,即:(1)线性域:侧向加速度约小于0.4g时,通常意味着车辆在高附着路面作小转向运动;(2)非线性域:在超过线性域且小于极限侧向加速度(约为0.8g)范围内;(3)非线性联合工况:通常指车辆在转弯制动或转弯加速时的情况。
3 发展趋势车辆动力学研究由被动元件设计转变为采用主动控制来改变车辆动态性能。
随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展。
3.1 车辆主动控制车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。
而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。
3.2 多体系统动力学多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。
系统方程组可以写成这样一个通式:MX=F式中M表示一个系统参数矩阵,F为所有外力的矢量。
3.3 “人—车—路”闭环系统和主观与客观的评价采用人—车闭环系统是未来汽车系统动力学研究的趋势。
作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。
假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。
因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。
除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。
目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。
因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识[5~7]。
参考文献[1] 郭孔辉著.汽车操纵动力学[M].长春:吉林科学技术出版社,1991[2] 林逸,施国标.汽车电动助力转向技术的发展现状与趋势[M].公路交通科技,2001,18(3):79~87[3] 中国汽车技术研究中心标准所.汽车定型与通用试验方法标准汇编[M].天津:中国汽车技术研究中心,1994[4] 林逸,陈欣.轿车悬架系统空间多提弹性系统运动学研究[J].中国公路学报,2000,13(3):120~122[5] 崔胜民.汽车系统动力学研究内容综述[D].山东工程学院学报,1995,9(4):32~34[6] 温吾凡,张本德. 多刚体系统动力学及其在汽车动力学分析中的应用[J]. 汽车工程. 1986(04)[7] 林逸,张洪欣,李润,温吾凡. 多刚体系统动力学在汽车单斜臂悬架运动分析中的应用[J]. 吉林工业大学学报. 1987(02)[8] Lanchester F W.Some problems peculiar to the design of automobile[J].Automobile Engineers,1908,II:187[9] Olley M.Road manners of the modern car[J].Automobile Engineers,1946-47,51:147~182[10]唐岚,李涵武.汽车测试技术[M].北京:机械工业出版社,2006.。