自动控制原理课程设计 速度伺服控制系统设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理课程设计题目速度伺服控制系统设计

专业电气工程及其自动化

姓名

班级

学号

指导老师

机电工程学院

2009年12月

目录一课程设计设计目的

二设计任务

三设计思想

四设计过程

五应用simulink进行动态仿真六设计总结

七参考文献

一、课程设计目的:

通过课程设计,在掌握自动控制理论基本原理、一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。

二、设计任务:

速度伺服控制系统设计。

控制系统如图所示,要求利用根轨迹法确定测速反馈系数'

k,以

t

使系统的阻尼比等于0.5,并估算校正后系统的性能指标。

三、设计思想:

反馈校正:

在控制工程实践中,为改善控制系统的性能,除可选用串联校正方式外,常常采用反馈校正方式。常见的有被控量的速度,加速度反馈,执行机构的输出及其速度的反馈,以及复杂系统的中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中的一部分环节以实现校正,。从控制的观点来看,采用反馈校正不仅可以得到与串联校正同样的校正效果,而且还有许多串联校正不具备的突出优点:第一,反馈校正能有效地改变被包围环节的动态结构和参数;第二,在一定

条件下,反馈校正装置的特性可以完全取代被包围环节的特性,反馈校正系数方框图从而可大大削弱这部分环节由于特性参数变化及各种干扰带给系统的不利影响。 该设计应用的是微分负反馈校正:

如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为

B G s ()=00t G s 1G (s)K s +()

=22t

1T s T K s ζ+(2+)+1 =22'1

T s 21Ts ζ++

试中,'

ζ=ζ+

t

K 2T

,表明微分负反馈不改变被包围环节的性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改善了系统的平稳性。

微分负反馈校正系统方框图

四、设计过程:

1.未校正系统如下图:

绘制开环传递函数G s H s ()()=K

s s (+1)

的根轨迹图

系统的开环极点为1p =0,2p =-1,无开环零点。

(1) 根轨迹有2条,分别起始于1p =0,2p =-1,2条全部终止于无穷

远处。

(2) 根轨迹对称于实轴且连续变化。 (3) 实轴上的根轨迹段位于[-1,0]上。 (4) 渐近线2条,渐近线与实轴的交点为:

1

1

a 101

22

n m

i j

i j p z

n m

δ==-=---=

=-∑∑

渐近线的倾角为:

a

k ,0n 2

k m ππ

ϕ±==±=-(2+1)

(5)根据分离点和会合点的公式:

''2

()()()()(21)1()00

N s M s N s M s s s s -=+⨯-+⨯=解得:

1s 2=-, s d N K M s ||

==-(s )()

14=- (6)分离点和会合点的分离角和会合角均为±090 (7)根轨迹与虚轴的交点: 2D s s s k 0=++=()

2D j j k 0ωωω++=()=-

2k 0ω-+=,0ω=,解得:0k 0ω==, 手工绘制系统的根轨迹图:

校正前原系统的时域性能指标:

评价控制系统优劣的性能指标,一般是根据系统在典型输入下输出响应的某些特征值规定的。

首先判断系统的稳定性。由开环传递函数知,闭环特征方程为

2

D(s)=s s 100++=

根据劳斯判据知闭环系统稳定。 稳态指标

1静态位置误差系数p K P 2s 0s 010K =limG s H s lim s s

→→=∞+()()=

稳态误差:ss p

1

e 01k

==+

p K 的大小反映了系统在阶跃输入下消除误差的能力,p K 越大,

稳态误差越小;在阶跃输入时,若要求系统稳态误差为零,则系统至少为Ⅰ型或高于Ⅰ型的系统。该系统为Ⅰ型系统,故稳态误差为0.

2静态速度误差系数v K v 2s 0s 010K limsG s s lims 10s s

→→==+()H()=

稳态误差:ss v 11e k 10==

v K 的大小反映了系统跟踪斜坡输入信号的能力,v K 越大,系统

稳态误差越小;Ⅰ型系统在稳态时,输出与输入在速度上相等,

但有一个与K 成反比的常数位置误差。

3静态加速度误差系数K a 2

2

s 0s 010K lims G s H s lims 0s s a →→==()()=(+1)

ss a

1e K ==∞

K a 的大小反映了系统跟踪加速度输入信号的能力,K a 越大,系

统跟踪精度越高;

Ⅰ型系统的输出不能跟踪加速度输入信号,在跟踪过程中误差越来越大,稳态时达到无限大。 动态指标

系统的闭环传递函数

2

C s 10

R(s s s 10=++())

与典型的二阶系统相比,有

2n n 1021ωζω==,

解得:n 3.162ω=, 0.1581ζ=

arctan

arctan 80.60.1581

β==

1上升时间r t

r t 0.56s =

=

=

相关文档
最新文档