放射治疗技术第五章常用放射治疗方法
放射治疗过程教程

计划确定与执行
治疗方针的确定
根治性放射治疗:根治性放射治疗的病人条
件是一般状况较好,肿瘤不能太大并无远处脏 器转移,病理类型属于对射线敏感或中度敏感 的肿瘤。根治性放射治疗的照射野要包括原发 灶和淋巴引流区,照射范围较大,剂量较高。 因此对肿瘤附近的正常组织和器官,特别是一 些敏感的组织或器官的防护非常重要。
患者诊断与放疗适应征确定 靶区及放疗剂量确定 计划确定与执行
患者诊断与放疗适应征确定
诊断:病史、临床特征、影像学检查、 病理确诊。
一、二类肿瘤是根治性放射治疗
恶 性 肿 瘤 三、四类肿瘤应以手术为主,
酌情补充放射治疗
放射敏感的肿瘤
肿瘤给予较低的剂量即可达到临床治愈, 但是由于这类肿瘤恶性程度较高,容易 出现远距离转移,需要与化学疗法等方 法进行综合治疗,才能取得远期疗效。
内照射技术
内照射又称近距离照射是将封装好的放射源, 通过施源器或输源导管直接植入患者的肿瘤部 位进行照射。其基本特征是放射源贴近肿瘤组 织,肿瘤组织可以得到有效的杀伤剂量,而邻 近的正常组织,由于辐射剂量随距离增加而迅 速跌落,受量较低。
内照射大致可分为腔内照射、组织间插植照射、 管内照射和表面施源器照射。
根据影像学检查确定ቤተ መጻሕፍቲ ባይዱ区
模拟定位机 :模拟放射治疗机的各种几何参
数、机械和光学特点,重复治疗机的所有自由 度,保证靶区定位时的一切条件与治疗时完全 一致,病人按照治疗时的体位在模拟机下通过 透视、拍片来确定病变的范围。
它能显示靶区及重要器官的位置、活动范 围,拍摄照射野定位片,多用于胸部肿瘤的定 位;食管和胃肠病变定位可通过喝钡来确定食 管病变的长度和胃肠肿瘤的位置。
放射治疗及放疗基本流程

胃肠腺癌、前列腺癌、胰腺癌、肝癌 特点:需要高剂量照射适形放疗可取得较好疗效。
放射治疗敏感性
❖ 放射不敏感肿瘤 来源于间叶组织肉瘤
❖ 放疗仅作为手术辅助治疗或转移复发后姑息治疗
主要内容
❖ 放射治疗概念及地位 ❖ 放射治疗的适应症 ❖ 放射治疗方式 ❖ 放射治疗技术及进展 ❖ 放疗病例展示 ❖ 放射治疗流程
❖ 模拟定位的方式: ▪ 常规模拟 :常规模拟定位机 ▪ CT模拟 :CT模拟定位机 ▪ MRI模拟 :MRI定位机
模拟定位机
❖ 体位 仰卧、俯卧、特殊体位 ❖ 固定与摆位
▪ 体膜、头颈肩膜、真空垫 ▪ 头枕 B、C、D、E、F、船型枕、头颈肩架、体架、有孔腹板 ❖ 特殊处理 禁食、饮水、憋尿等
除不彻底
转移淋巴结 清扫不彻底
乳腺癌 膀胱癌 直肠癌
根治性 手术后复发 高危病人辅助治疗
保留器 官和功能的局部 肿瘤切除手术后 的根治性放射治疗
❖ 脑胶质瘤 ❖ 食道癌 ❖ 膀胱癌 ❖ 乳腺癌 ❖ 骨-软组织肉瘤
头颈部肿瘤 直肠癌 前列腺癌 宫颈癌
术后放射治疗
肺癌 肾癌
精原细胞瘤 子宫内膜癌
INT-0116:总生存率
二维 常规
三维 3D-CRT
放射治疗技术进展
IMRT/IMAT
四维(+时间) IGRT
生物调强?
治疗机
模拟定位 计划系统
区
X线机/C060 加速器
X线/模拟机 影 像 无/二维 生物靶
无
加速器 (多叶光栅 MLC) (射野影像EPID)
CT模拟定位机 CT/MR/PET-CT 正向计划系统 无
肿瘤放射治疗技术学重难点

肿瘤放射治疗技术学第一章绪论1、放射治疗概念及目的概念:是以放射物理学和放射生物学知识为基础,借助于放射线的电离辐射作用进行研究和探讨对恶性肿瘤进行治疗的一项技术。
目的:在给予肿瘤精确治疗的同时,尽可能减少对正常组织的损伤,这样既可以延长患者的生存时间,又可以保证患者的生存质量。
根本目的:(1)、最大限度地消灭肿瘤;(2)、最大限度地保护正常组织和器官地结构和功能:(3)、提高病患地长期生存率和改善生存质量。
2、近距离与远距离照射近距离照射:也称内照射,指放射源密闭后直接置入被治疗的组织内或放入人体的天然间隙内进行照射。
主要照射方式包括腔内照射、组织间照射、伏贴照射和放射性粒子植入治疗。
远距离照射:也叫做体外照射,就是放射源距离人体外一定的距离,集中照射人体某一部分。
根据放射源到治疗照射部位距离的不同,分为。
SSD—要求放射源到患者皮肤表面的距离为100cm。
SAD—要求放射源到患者肿瘤中心的距离为100cm。
其中旋转照射(ROT)为SAD的特例。
3、放射治疗的作用P4—将恶性肿瘤细胞的数目减少到可获得永久局部肿瘤控制的水平,患者可以长期生存。
—缓解症状,提高患者生活质量和一定程度的控制肿瘤。
—提高预防性放射性治疗的局部控制率。
4)、非恶性疾病的放射治疗—非恶性疾病或“良性”疾病可通过射线照射成功治疗。
第二章放射治疗设备1、X线模拟定位机功能结构及与治疗机的区别功能结构:由X线发生装置、成像系统、其他辅助装置构成。
结构上分为固定机座、旋转机架、机头、影像接触装置、治疗床、操作台等构成。
与治疗机的区别:X线模拟定位机可用于二维常规放疗定位2、CT模拟定位机结构及与诊断CT机的区别三大部分:CT扫描机、外置激光定位系统、模拟定位软件与诊断床的区别:扫描床是否为平板床补充:MR模拟定位机与诊断用定位机最大的区别在于扫描线圈3、医用直线加速器结构及功能结构加速系统:电子枪、加速管、微波功率源、微波传输系统、脉冲调制系统、真空系统、恒温水冷系统等束流系统:偏转磁铁、靶、初级准直器、均整器和散射箔、监测电离室、二级准直器等控制系统:运动控制系统、治疗床、其它附属系统等加速管为医用电子直线加速器的核心部分4、Co60半影问题几何半影,可通过减少源的尺寸和延长源到准直器的距离解决。
放疗技术 ppt课件

,滤过越多,谱线分布对治疗越好,但过多的滤过会使强 度大大下降,不经济,要注意综合考虑。
第二节 远距离60Co治疗机
•自1951年第一台钴-60(一般用60Co表示)远距离治疗机 在加拿大生产以来,经过几十年的发展,一直是我国最主 要的放射治疗设备,近年来第一的位置才逐渐让位给医用 电子直线加速器。据统计,目前我国仍然有约400台60Co治 疗机在服役。 •60Co源的半衰期为5.27年,衰变产生的两条射线的能量为 1.17和1.33MeV,平均能量为1.25MeV。外照射所用的60Co 源活度一般为()量级,临床上为便于计算,常用距源1米 处单位时间的照射量或空气比释动能来表示钴-60治疗机的 源活度。
•滤过板使用时的注意事项包括:①不同X射线能量范围用 不同的滤过板,100kV以下的用铝,以上的用铜或铜加铝 或复合过滤;②同一管电压的X射线,滤过板不同,所生X 射线半价层也不同;③使用复合滤过板时要注意放置的次
序,沿射线方向,应先放原子序数大的,后放原子序数小
的,这样放置的主要目的是为了过滤掉滤板本身产生的特
X射线管
X射线治疗机(WEIDA )
Energy: 6MeV(X-ray)
Dose Date : 2GY/min Field size: 2X2~35X35cm
•四、X线的能谱的特点 •X线管放射的X线组成很复杂,是一束波长不等的混合能 谱,从最长波长到最短波长是连续的。
•从图5-2中看出X射线有两种成分,分别为特征辐射和轫 致辐射。轫致辐射是X射线谱中主要成分,自最大能量以 下,在任一能量范围内光子均有一定的强度。特征辐射指
在连续谱上一些突出的峰值,即在某些特定能量处强度最 大处。
《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。
放射治疗学

名词解释:根治性放射治疗(剂量一致):是指通过给予肿瘤致死剂量的照射使病变在治疗区域内永久消除,达到临床治愈的效果。
姑息性放射治疗(剂量不固定):姑息性放射治疗是对病期较晚,临床治愈较困难的病人,为了减轻痛苦,缓解症状,延长生存期而进行的一种治疗。
源皮距(SSD)表示沿射线中心轴从射线源到皮肤表面的距离。
源瘤距(STD)表示射线源沿射线中心轴到肿瘤内所考虑点的距离百分深度计量(PDD)是指体膜内射线中心轴上任一深度d处的吸收剂量与参考点深度吸收剂量之比的百分数等剂量曲线:把体膜内过射线中心轴平面上剂量相同的点连接起来形成的一组曲线,直观反映了射线束在体内离轴方向的剂量变化肿瘤区GTV)包括已确定存在的肿瘤以及受侵犯组织临床靶区CTV)包括已确定存在的肿瘤以及潜在的受侵犯组织,CTV要大于GTV,GTV和它外周亚临床病变组织构成临床靶区CTV。
计划靶区(PTV)包括临床靶区,照射中患者器官运动和由于日常摆位中靶位置和靶体积变化等因素引起的扩大照射的组织范围。
超分割放射治疗:在与常规分割方案相同的总治疗时间内,在保持相同总剂量的情况下每天照射两次氧增强比(OER)对同一细胞来说,有氧和无氧时达到相同效果所需的能量比。
颅底线:外眦与外耳孔连线(眼耳线,基准线)为中颅窝底;眼耳线往后的延长线为后颅窝底;过眉弓下缘与基准线平行的线为前颅窝底立体定向放射手术(SRS)是指将多个小野三维集束单次大剂量照射头颅内某一局限性靶区,使之发生放射性反应,而靶区外周围组织因剂量迅速递减而免受累计,从而在其边缘形成陡峭的剂量跌落界面,达到外科手术效果的放射治疗术立体定向放射治疗(SRT)第一类SRT的特征是使用小野三维集束分次大剂量照射,分次剂量大大高于常规放射治疗分次治疗剂量。
第二类SRT是利用立体定向技术进行常规分次的放射治疗技术,而将后一种SRT技术归为三维立体定向适形放射治疗技术。
三维适形放射治疗(3DCRT)是一种高科技放射治疗技术,即通过调整照射野形态、角度及照射野权重,使得高剂量区剂量分布的形状在三维方向上与病变的形状相一致。
常见放射治疗技术

与常规放疗相比
3DCRT对肿瘤组织的适形聚焦照射和对正常 组织的良好保护,提高了肿瘤与正常组织的 剂量比。 在正常组织受到允许剂量照射的情况下,肿 瘤组织可以得到比常规放疗更高的总剂量。 治疗时可以明显地提高单次剂量,缩短总的 治疗时间。 可以更有效地保护正常组织,降低放射损伤, 提高肿瘤的局部控制率。
立体定向放射外科与传统手术比较
优点:避免了开颅手术的许多风险,诸如 麻醉意外、出血、感染以及因为切除脑组 织而导致脑部功能的缺损,也不会遗留疤 痕,住院时间缩短。
问题:肿瘤需数月后才能逐渐消退;有些 肿瘤虽然被灭活,但也许不会永远消失。
立体定向放射外科的局限性
乏氧细胞对放射线抗拒 肿瘤细胞周期时相性对放射线抗拒
现代肿瘤放射治疗的目标:
增加肿瘤靶区放射剂量,提高肿瘤局部控制 率。 降低肿瘤周围正常组织照射剂量,保存重要 器官的正常功能,提高病人的生存质量。
随着计算机技术、医学影像技术和图像处 理技术的不断发展。 放射治疗设备不断开发和更新。 放射治疗新技术,如立体定向放射治疗、 三维适形放疗、调强放疗、图像引导放疗 以及质子治疗技术先后问世并不断发展完 善。
目前影像学还不能提供上述细胞生物活动的 信息,随着影像学的发展,如PET、fMRI、 MRS、分子显像、基因显像等技术的出现,将 为今后肿瘤“生物调强”放射治疗奠定基础。
生物靶区示意图
在不远的将来,“生物调强”放疗技术 将使肿瘤放射治疗迈上新的台阶。
质子放射治疗技术
质子治疗发展历程
1946年Wilson提出质子治疗建议; 1954年在美国Berkeley,Tobias进行了世界 上第一例质子治疗; 在1990年美国LOMA LINDA医学院医院安 装了世界上第一台专为治病人设计的质子 同步加速器CONFORMA3000(OPTIVUS 公司生产);
近距离照射远距离放射治疗技术

高能X射线、60Coγ 射线
4-6MV的X射线、60Coγ 射线
放射源的选择
照射技术 半束照射技术 放射源选择 4-6MV的X射线、60Coγ 射线
旋转照射技术
半身与全身照射技术 不规则野照射技术 近距离照射技术 术中照射技术
高能X射线、60Coγ 射线
4-6MV的X射线、60Coγ 射线 3-7MeV的电子线 X射线、60Coγ 射线、电子线 192Ir、131I、103Pb、32P、90Sr kV级X射线、60Coγ 射线、高能电子线
第五章 临床常用照射技术
放射源种类
常用放射源 放出α、β、γ三种射线的放射性同位素 X线治疗机和各类加速器 产生电子束、质子束、中子束、负π介子束 和其他重离子束的各类加速器。
照射方式
外照射
放射源位于体外一定距离,集中 照射人体某一部位,叫体外远距离照射, 简称外照射 近距离照射 将发射源密封后直接植入被治 疗的组织内或放入人体的天然腔隙内,如 口咽、鼻咽、食管、宫颈等部位照射,叫 组织间照射,或腔内照射,简称近距离照 射。
外照射
近距离照射
远距离放射治疗技术
体位固定技术 固定源皮距照射技术 全脑全脊髓照射技术 相邻野照射技术 楔形野照射技术 等中心与成角照射技术 切线野照射技术
半束照射技术 旋转照射技术 半身与全身照射技术 不规则野照射技术 近距离照射技术 术中照射技术
治疗体位的确定
一般说来,患者感到最舒适的体位往往是最易重复 和最易摆位的体位,可这种体位往往不能满足最佳 布野的要求。
因此在不确定患者治疗体位时,要首先根据治疗技 术的要求,借助治疗体位固定器让患者得到一个较 舒适的,重复性的好的体位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肺的放射性反应
主要表现:放射性肺炎、肺纤维化 程度依据:受照射肺的体积、总剂量和分次量 临床表现:轻者咳嗽、咳痰、低热、胸闷,重
者呼吸衰竭、高热、死亡 远期效应:肺纤维化所致功能障碍、运动力下
降、慢性心力衰竭 耐受量:V20<20Gy
食管的放射性反应
早反应:表现为放疗开始两周后出现的胸 骨后烧灼感、吞咽困难、疼痛,剂量达 40Gy时症状最为严重。
后装治充裕,提高了 摆位与固定的精细 程度
较好的防护屏蔽, 可提高放射源强度, 缩短治疗时间,减 轻患者痛苦
按源在人体内置放时间分类
暂时驻留 永久植入:尽管是一项传统技术,
但由于在治疗前列腺肿瘤方面颇 为成功,以及源的不断改进和更 新,使其仍然占有一席。
天然放射性同位素:镭-226
常用放射源物理特性
按源的置放方式分类
两种方式:手工和“后装(afterloading)” 手工操作大多限于低剂量率和易于防护
的放射源 “后装”技术则是指先将施用器置放于
接近肿瘤的人体天然腔、管道或将空心 针管植入瘤体,再导入放射源的技术, 多用于计算机程控近距离放疗没备。
原理为逆向CT成 像 。X射线穿过人 体组织时,由于人 体组织密度及厚度 不均匀,射线被不 均匀吸收,穿过人 体组织后的射线强 度均匀性发生改变
调强放疗实现原理
将一个照射野分成多个细小的子野 或线束
对线束逐一给予不同的权重,优化 射野内产生剂量不均匀的强度分布
通过危及器官的线束通量减少,而 靶区部分的线束通量增大
第五章 常用放射治疗方法
学习要点
掌握内容:放射源种类与照 射方式、远距离放疗
熟悉内容:放疗适应证、近 距离放疗
了解内容:放疗反应与损伤
一、放射源的种类及照射方式 二、远距离放射治疗 三、近距离放射治疗 四、放射治疗适应证的选择 五、放射治疗反应与损伤
常用放射源
放射源
α、β、γ 同位素
X射线治疗机 加速器
NOMOS调强采用步进治疗方式
三维适形 静态调强 动态调强 断层扫描调强 旋转容积调强
——调强治疗发展史
一、放射源的种类及照射方式 二、远距离放射治疗 三、近距离放射治疗 四、放射治疗适应证的选择 五、放射治疗反应与损伤
近距离治疗的意义
接受近距离放疗的肿瘤患者 约占放疗病人总数的5%~10 %
按剂量率大小分类
低剂量率(LDR)指参考点剂量率限定在 O.4~2Gy/h
中剂量率(MDR)为2~12Gy/h 高剂量率(HDR)大于12Gy/h 脉冲剂量率(PDR)指剂量率在1~3Gy/h
按放射源种类分类
远距离、近距离均可使用:钴Co60、铯Cs-137
常用放射源:钴Co-60、铯Cs-137、 铱Ir-192、碘I-125、锎Cf-252
20-45Gy:胃肠、 视觉、各种炎 症
75Gy以上:输尿 管、子宫、成人 乳腺、关节软骨 等
放疗反应与损伤
皮肤的放射性反应 肺的放射性反应 食道的放射性反应 心脏的放射性反应 肝脏的放射性反应 中枢神经系统的放射性反应 脊髓的放射性反应
皮肤的放射性反应
早期反应:红斑、脱毛脱皮 晚期反应:萎缩、脱皮、纤维化、坏死、
内照射(近距离照射):采用某种 方式将放射源置于人体的自然腔道 或组织间进行近距离直接照射。
放射源能量
内外照射的区别
内照射 小
外照射 大
治疗距离
短
长
能量吸收 大部分由组织吸收 大部分被准直器和 限束器吸收
穿射路径
直接进入靶区 须穿过皮肤和正常 组织
治疗方式 不同部位选择相应 不同能量配合多野
施源器
多叶准直器(MLC)(多叶光栅)
多叶准直器(MLC)静态调强
两种运动方式 收缩式
两侧叶片逐步向中 央运动 扫描式 双侧叶片逐步向一 侧(右侧)移动
MLC运动方式与缺点
缺点 射线利用率低 叶片间漏射 呼吸与器官运动影
响射野间剂量衔接
多叶准直器动态调强
叶片移动朝向一个方向 滑窗技术、快门技术、跟随技术 静态调强子野更换时中断照射 动态调强子野更换时持续照射 动态调强调强剂量分布优于静态调
单野照射:如颈部淋巴结、腹股沟淋巴结 两野对穿照射:如椎体、骨肿瘤 两野交角照射:如上颌窦癌、腮腺癌
(楔形板角度选择= 90°— 两野交角/2) 相邻野照射:如乳腺癌、颈部淋巴结
立体定向放射治疗
固定方式 治疗剂量
SRS(γ刀) 一次性固定头环
单次大剂量
SRT(X刀) 重复定位分次头环
分次小剂量
SSD常用0°照射
根据人体解剖及 骨性标记定位
优点:定位与治 疗操作简便
缺点:靶区剂量 均匀性与精确性 较差,治疗重复 性差,影响患者 外表美观
等中心照射最为常用
ROT与发展趋势
线束布局分类
共面照射:射野中心轴均在同一平面内 非共面照射:一个或多个以上射线束轴
不在同一个平面
a
b
常规照射方式
内容复习:
1、60钴γ射线释放的能量大小? 2、当前较为常用的60钴遮线器类型及60
钴准直器的最少吸收厚度为几个半价 层?
3、微波传输方式、微波发生器、线束偏 转系统分类?
4、射野挡块使用的目的? 5、什么是电离室?
电离室是由处于 不同电位的电极 和限定在电极之 间的气体组成, 通过收集因辐射 在气体中产生的 电子或离子运动 而产生的电讯号 来定量测量电离 辐射的探测器。
调强实现方式
物理补偿器 多叶准直器(MLC)静态调强 多叶准直器动态调强 断层扫描照射 电磁偏转扫描调强 NOMOS的2D调强准直器
楔形板(一维调强)
物理补偿器
三维固体物理调强原理
加工组织补偿器的自动切割机
3D切割原理 切割高密度泡沫
向补偿器缺损处填入 防护材料
直接用防护材料切割 补偿器
照射
靶区均匀性
差
好
一、放射源的种类及照射方式 二、远距离放射治疗 三、近距离放射治疗 四、放射治疗适应证的选择 五、放射治疗反应与损伤
常规放疗技术
SSD(源皮距): 放射源到患者皮 肤表面的距离为 100cm
SAD(等中心): 放射源到病灶中 心距离为100cm
ROT:靶区为中 心旋转照射
顺利 4、严格掌握放疗禁忌证
明确诊断
依据病理学或细胞学检查,部分可根据影 像学检查结果。
治疗方案制定
根据病情选择最佳治疗方法 根治性放疗:病情、敏感程度 姑息性放疗:晚期患者、止痛止血、
缓解疼痛、抑制生长 综合性放疗:配合手术、化疗,疗效
最大限度化
确定治疗范围,保护正常组织
不同类型肿瘤给予不同照射剂量:精原细 胞瘤30-35Gy/4w、高分化癌60-70Gy/6-7w
强
断层扫描照射
螺旋断层放射治疗系统
集IMRT(调强适形放疗)、IGRT (影像引导调强适形放疗)、DGRT (剂量引导调强适形放疗)于一体
直线加速器与螺旋CT完美结合,突 破传统加速器的诸多限制,在CT引 导下360°聚焦断层照射肿瘤,对恶 性肿瘤患者进行高效、精确的治疗。
Tomotherapy构造
综合多种因素选择不同治疗射线与方式
放疗前准备
头颈部肿瘤治 疗时口塞的使 用,避免颞颌 关节韧带因放 疗导致纤维化, 最终导致患者 张口困难。
辅助工作:口腔及牙齿的处理、颅脑减压
术、气管造口术、食道支架安装、上颌窦 癌放疗前开窗引流术等
放疗禁忌证
严重合并症,如心衰、糖尿病等、白细胞 低于3.0×109/L,血小板低于8×109/L
瘤
三维适形放射治疗(3D-CRT)
三维适形放 疗:在三维 方向上每个 射野的形状 均与靶区形 状一致的适 形放射治疗
三维适形放疗分为共面与非共面两种形式 实现方法 非共面多固定野适形照射法 同步挡块法 循迹扫描法 多叶准直器法(MLC)
三维适形调强放疗
调强放疗:辐射野内剂量强度按一定要求进 行调节。
正常组织放疗敏感性
细胞的放射敏感性取决于细胞的类型和细胞 的分化程度
放射敏感性与组织增殖能力呈正比
高度敏感:淋巴、造血、性腺、胃肠、胚胎 中度敏感:视觉、皮肤、口咽、肝肾肺 低度敏感:中枢、内分泌腺、心脏 不敏感:肌肉、骨、结缔组织
串型组织与并型组织
串型组织:整个器官或组织的功能会 因其中任意一个功能单元的破坏而受 损,且有较小的体积效应。如脊髓、 神经、小肠等。
恶病质、昏迷病人,有大量胸水,有可能 导致穿孔及大出血者
放疗中度敏感肿瘤,足量照射后又原位复 发的
对放疗中度敏感肿瘤已有远处转移者 放疗不敏感肿瘤应列为相对禁忌证
放疗的综合原则
放疗与手术结合 术前放疗 术后放疗 术中放疗 放疗与手术、化疗结合
一、放射源的种类及照射方式 二、远距离放射治疗 三、近距离放射治疗 四、放射治疗适应证的选择 五、放射治疗反应与损伤
电子束、质子束 中子束、介子束 重离子加速器
射线治疗
源: α、β、γ 、 加速器、电子束等
照射方式 内照射、外照射
内用同位素治疗
口服或静脉注入 碘-131、磷-32
内用同位素为开放性 组织间及腔内治疗同位素为封闭性
放射治疗方式分类
外照射(远距离照射):将放射源 置于体外一定距离进行照射,放射 线需经皮肤和正常组织才能到达肿 瘤或病变组织。
放疗反应的处理
皮肤:干性、湿性脱皮,停止放疗、药 物治疗
并型组织:有足够数量的功能单元同 时受损,整个组织或器官的功能才可 能受损,具有较大的体积效应。如肺、 肝、肾等。
标准治疗条件 超高压治疗(1-6Mev)、
10Gy/周、1次/天、5次/周
2Gy/f
正常器官耐受水平划分
45-70Gy:皮肤、 口腔、消化、 中枢、五官