(完整word版)六年级数学流水行船问题

合集下载

流水行船

流水行船

流水行船问题
1.流水行船问题涉及公式
顺流速度=船速+水流速度
逆流速度=船速-水流速度
静水速度(船速)=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
流水行船问题中一定要记住四种速度的关系,而且在水速产生变化的情况下记住找到题中的不变量:船速
2.流水行船问题的几种题型
①求流水行船中的几种速度
例一:一艘船速每小时行20千米的客轮,在大运河中从甲地到乙地逆水航行84千米,需要6小时,则顺水速度多少?
例二:一只船以30千米/小时的速度顺水从甲港到乙港需7小时,从乙港返回甲港需10小时。

则船速是多少?
②综合题型--水速变化问题
例三:船往返于相距480千米的两港之间,顺水而下需用8小时,逆水而上需用10小时。

由于暴雨后水速增加,该船顺水而行只需5小时,那么逆水而行需要多久呢?
③综合题型--往返问题
例四:轮船用同一速度往返于两码头之间,它顺流而下行了9个小时,逆流而上行了15小时,如果水流速度是每小时3千米,两码头之间的距离是多少?
变式训练:一艘轮船在两个港口间航行,水速为每小时6千米,船速为每小时48千米,往返需要48小时。

这两个港口之间的距离是多少千米?
往返问题解题小结:。

六年级数学流水行船问题

六年级数学流水行船问题

流水行船问题除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。

【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。

【举一反三】1、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。

这条河水流的速度是多少千米?2、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?【思路导航】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。

顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速。

【思维链接】因为顺水速度是船速+水速,逆水速度是船速-水速,所以顺水速度与逆水速度相差的数量就相当于2个水流的速度,再除以2就是一个水流的速度。

六年级数学流水行船问题

六年级数学流水行船问题

流水行船问题船在流水中航行的问题叫做行船问题。

行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。

【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。

【举一反三】1、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。

这条河水流的速度是多少千米2、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时如果按原航道返回,需要几小时例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?【思路导航】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。

顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速。

(完整版)流水行船问题的公式和例题(含答案)

(完整版)流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。

此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。

* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。

水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。

六年级数学流水行船问题

六年级数学流水行船问题

六年级数学流水行船问题船在流水中航行的问题叫做行船问题。

行船问题是行程问题中比较特殊的类型;它除了具备行程问题中路程、速度和时间之间的基本数量关系;同时还涉及到水流的问题;因船在江、河里航行时;除了它本身的前进速度外;还会受到流水的顺推或逆阻。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外;行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度;由和差问题的解题方法;我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米;水流的速度为每小时3千米;船从甲港顺流而下到达乙港用了15小时;从乙港返回甲港需要多少小时?【思路导航】根据条件;用船在静水中的速度+水速=顺水速度;知道了顺水速度和顺水时间;可以求出甲乙两港之间的路程。

因为返回时是逆水航行;用船在静水中的速度-水速=逆水速度;再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。

【思维链接】求乙港返回甲港所需要的时间;实际还是要用甲、乙两港的全程除以返回时的速度;也就是说路程、速度和时间三者关系很重要;只是速度上要注意是顺水速度还是逆水速度。

【举一反三】1、一只船在静水中每小时行12千米;在一段河中逆水航行4小时行了36千米。

这条河水流的速度是多少千米?2、一艘轮船在静水中航行;每小时行15千米;水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地;用了几个小时?如果按原航道返回;需要几小时?例2:一艘小船往返于一段长120千米的航道之间;上行时行了15小时;下行时行了12小时;求船在静水中航行的速度与水速各是多少?【思路导航】求船在静水中航行的速度是求船速;用路程除以上行的时间就是逆行速度;路程除以下行时间就是顺水速度。

顺水速度与逆水速度的和除以2就是船速;顺水速度与逆水速度的差除以2就是水速。

流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题(完整版)

流水行船问题‎的公式和例题‎流水问题是研‎究船在流水中‎的行程问题,因此,又叫行船问题‎。

在小学数学中‎涉及到的题目‎,一般是匀速运‎动的问题。

这类问题的主‎要特点是,水速在船逆行‎和顺行中的作‎用不同。

流水问题有如‎下两个基本公‎式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指‎船顺水航行时‎单位时间里所‎行的路程;船速是指船本‎身的速度,也就是船在静‎水中单位时间‎里所行的路程‎;水速是指水在‎单位时间里流‎过的路程。

公式(1)表明,船顺水航行时‎的速度等于它‎在静水中的速‎度与水流速度‎之和。

这是因为顺水‎时,船一方面按自‎己在静水中的‎速度在水面上‎行进,同时这艘船又‎在按着水的流‎动速度前进,因此船相对地‎面的实际速度‎等于船速与水‎速之和。

公式(2)表明,船逆水航行时‎的速度等于船‎在静水中的速‎度与水流速度‎之差。

根据加减互为‎逆运算的原理‎,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船‎在静水中的速‎度、船的实际速度‎和水速这三者‎中的任意两个‎,就可以求出第‎三个。

另外,已知某船的逆‎水速度和顺水‎速度,还可以求出船‎速和水速。

因为顺水速度‎就是船速与水‎速之和,逆水速度就是‎船速与水速之‎差,根据和差问题‎的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水‎行25千米,用了5小时,水流的速度是‎每小时1千米‎。

此船在静水中‎的速度是多少‎?(适于高年级程‎度)解:此船的顺水速‎度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中‎的速度是“顺水速度-水速”。

5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中‎每小时行4千‎米。

六年级数学流水行船问题

六年级数学流水行船问题

流水行船问题船在流水中航行的问题叫做行船问题。

行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。

【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。

【举一反三】1、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。

这条河水流的速度是多少千米?2、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?【思路导航】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。

顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速。

(完整版)六年级奥数流水行船问题答案

(完整版)六年级奥数流水行船问题答案
船速:100÷4=25(千米/时) 河长:25×12=300(千米)
答:河长 300 千米。 练习 5:
1、有两只木排,甲木排和漂流物同时由 A 地向 B 地前行,乙木排也同时从 B 地向 A 地 前行,甲木排 5 小时后与漂流物相距 75 千米,乙木排行 15 小时后与漂流物相遇,两木排 的划速相同,A、B 两地长多少千米?
流时的行驶速度,再根据和差问题就可以算出船速和水速。列式为 逆流速:120÷10=12(千米/时) 顺流速:120÷6=12(千米/时) 船速:(20+12)÷2=16(千米/时) 水速:(20—12)÷2=4(千米/时) 答:船速是每小时行 16 千米,水速是每小时行 4 千米。
练习 2: 1、有只大木船在长江中航行。逆流而上 5 小时行 5 千米,顺流而下 1 小时行 5 千米。
3、一船从 A 地顺流到 B 地,航行速度是每小时 32 千米,水流速度是每小时 4 千米, 1 3 2天可以到达。次船从 B 地返回到 A 地需多少小时?
(完整版)六年级奥数流水行船问题答案.pdf
1
The shortest way to do many things is
例题 2: 有一船行驶于 120 千米长的河中,逆行需 10 小时,顺行要 6 小时,求船速和水速。 这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺
2
The shortest way to do many things is
例题 3: 轮船以同一速度往返于两码头之间。它顺流而下,行了 8 小时;逆流而上,行了 10 小
时。如果水流速度是每小时 3 千米,求两码头之间的距离。 在同一线段图上做下列游动性示意图 36-1 演示:图图 B图图来自8A10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流水行船问题船在流水中航行的问题叫做行船问题。

行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。

除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。

顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。

【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。

【举一反三】1、一只船在静水中每小时行12千米,在一段河中逆水航行4小时行了36千米。

这条河水流的速度是多少千米?2、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?例2:一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?【思路导航】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。

顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速。

【思维链接】因为顺水速度是船速+水速,逆水速度是船速-水速,所以顺水速度与逆水速度相差的数量就相当于2个水流的速度,再除以2就是一个水流的速度。

顺水速度与逆水速度的数量和,就相当于2个船速,再除以2就是一个船速。

【举一反三】3、甲、乙两港间的水路长180千米,一只船从甲港开往乙港,顺水6小时到达,从乙港返回到甲港,逆水10小时到达,求船在静水中的速度和水速。

4、一艘轮船从A地顺流而下开往B地,每小时行28千米,返回A地时用了6小时。

已知水速是每小时4千米,A、B两地相距多少千米?例3:甲、乙两港相距200千米。

一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍。

这艘轮船从乙港返回甲港用多少个小时?【思维链接】此题中“已知船速是水速的9倍”,可知船速与水速的和相当于水速的(1+9)倍,也就是顺水速度相当于水速的(1+9)倍,根据这个倍数关系我们就可以轻松的求出水速和船速。

【举一反三】5、A、B两个码头相距112千米,一艘船从B码头逆水而上,行了8小时到达A码头。

已知船速是水速的15倍,这只船从A码头返回B码头需要几小时?6、一条大河,河中内(主航道)水的流速为每小时8千米,沿岸边的速度为每小时6千米,一条船在河中间顺流而下,13小时行520千米,求这条船沿岸边返回原地,需要多少小时?例4:A、B两港间相距360千米,一艘轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。

另有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港要多少小时?【思路导航】先根据和差问题的解题思路,分别求出顺行时间和逆行时间;再根据两港相距360千米和轮船的顺行时间、逆行时间求出轮船的顺行速度和逆行速度;求出了顺行速度和逆行速度就可以求出水流的速度;最后,根据两港相距360千米和机帆船的船速、水速可求出机帆船顺流航行和逆流航行的时间,两者相加的和即是所求的问题。

【思维链接】这是两艘不同速度的船在两港间航行,虽然两船的速度不同,但两船行驶的路程是相同的、水速也是不变的,因此我们要根据一条船中给出的相关条件,求出共同需要的条件“水速”,此题就不难解决了。

【举一反三】7、乙船顺水航行2小时,行了120千米,返回原地用了4小时,甲船顺水航行同一段水路,用了3小时,甲船返回原地比去时多用了几小时?8、甲、乙两港相距90千米,一艘轮船顺流而下要6小时,逆流而上要10小时;一艘汽艇顺流而下要5小时,如果汽艇逆流而上需要几小时?例5:甲、乙两只小船在静水中速度分别为每小时12千米和每小时16千米,两船同时从相距168千米的上、下游两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时乙船追上甲船?【思路导航】此题为水中相遇问题和追及问题,甲、乙两船一个顺流,一个逆流,那么它们的速度和为甲、乙两只小船在静水中速度的和,而水中的追击问题不论两船同向逆流而上还是顺流而下速度差均为甲、乙两只小船在静水中速度的差,因此用路程÷速度和=相遇时间,路程÷速度差=追及时间【思维链接】对于水中的相遇问题,总是一船顺流、一船逆流,而水中的追击问题,总是两船或顺流或逆流,因此两船速度和为:(甲在静水中的速度-水速)+(乙在静水中的速度+水速)=甲在静水中的速度+乙在静水中的速度;两船速度差为:(乙在静水中的速度-水速)-(甲在静水中的速度-水速)=(乙在静水中的速度+水速)-(甲在静水中的速度+水速)=甲在静水中的速度-乙在静水中的速度。

【举一反三】9、A、B两船的速度分别是每小时20千米和16千米,两船先后从同一个港口开出,B比A早出发两小时,若水速每小时4千米,A开出后多少小时追上B?(考虑不同情况哟)10、一条河上游的甲港和下游的乙港相距160千米,A、B两船分别从甲港和乙港同时出发,相向而行,经过8小时相遇,这时A船比B船多航行64千米,已知水速每小时2千米,求A、B两船的静水速度。

课后作业1、甲、乙两港间的水路长468千米,一只船从甲港到乙港需要18小时,从乙港返回甲港需要26小时,问船速和水速各为多少?2、一只小船在静水中的速度为每小时35千米,A、B两地相距300千米,小船从A 地到B地,顺水而行用了7.5小时,从B地到A地需用几小时?3、一艘轮船在静水中的速度是每小时18千米,水流速度是每小时3千米,这只船从甲港逆水航行到乙港需要16小时,问甲、乙两港的距离是多少千米?4、甲、乙两码头间的航道长120千米,A、B两船分别从甲、乙两码头同时起航,如果相向而行4小时相遇,如果同向而行10小时A船追上B船,求两船在静水中的速度。

5、甲乙两船在静水中的速度分别为每小时20千米和每小时16千米,两船都从同一港口顺水出发,乙比甲早出发2小时,如果水速是每小时4千米,甲开出后几小时追上乙?6、甲、乙两城水路长492千米,下午6点一只货船从乙城开往甲城,每小时行20千米。

晚上9点,一只客船从甲城开往乙城,每小时行28千米,几小时后与货船相遇?7、一条河上相距90千米有上下两个码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行。

一天,甲船从上游码头出发时掉下一物,此物浮于水面顺流而下,4分钟后,与甲船相距1千米,预计乙船出发后多少小时可以与此物相遇?8、一艘货轮从甲港到乙港顺流而下要8小时,返回是每小时比顺水少行9千米,已知甲乙两港相距216千米,返回时比去时多行几小时?水流的速度是每小时多少千米?9、A河是B河的支流,A河水速是每小时6千米,B河水速为每小时4千米,某船在A河顺水航行6小时航行114千米,此船在B河还要逆水航行117千米,需要多少小时?12、一艘船在甲、乙两地往返航行,顺流每小时行30千米,逆流每小时行20千米。

这艘船在甲、乙两地之间往返一次的平均速度是多少千米?专题训练流水行船问题流水行船问题两个基本公式:(1)顺水速度=船速+水速(2)逆水速度=船速-水速根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度船速=逆水速度+水速。

根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

例1:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

练习: 1.一只船顺水每小时航行 12 千米,逆水每小时航行 8 千米,问这只船在静水中的速度和水流速度各是多少?2.两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河水流速度。

3.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?4.一只船在河里航行,顺流而下每小时行18千米,已知这只船下行2小时恰好与上行3小时所行的路程相等,求船速和水速。

例2:某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?解:从甲地到乙地,顺水速度:15+3=18(千米/小时),甲乙两地路程:18×8=144(千米),从乙地到甲地的逆水速度:15—3=12(千米/小时),返回时逆行用的时间:144÷12=12(小时)。

答:从乙地返回甲地需要12小时。

练习: 1.一艘每小时行25千米的客轮,在大运河中顺水流行140千米,水速是每小时3千米,需要行几个小时?2.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需几小时?3.一只小船静水中速度为每小时30千米,在176千米长河中逆水而行用了11个小时,求返回原地需要几个小时?例3:甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?解:轮船逆流航行的时间:(35+5)÷2=20(小时),顺流航行的时间:(35—5)÷2=15(小时),轮船逆流速度:360÷20=18(千米/小时),顺流速度:360÷15=24(千米/小时),水速:(24—18)÷2=3(千米/小时),帆船的顺流速度:12+3=15(千米/小时),帆船的逆水速度:12—3=9(千米/小时),帆船往返两港所用时间:360÷15+360÷9=24+40=64(小时)。

相关文档
最新文档