HILIC色谱柱介绍
默克---HILIC柱介绍

affected during eluent optimization.
0
1
2
Retention Time (min)
Injection #1001
Injection #501
BSFBMTPEJTQMBZFE
PDUBOPMXBUFSQBSUJUJPODPFGGJDJFOU
Toluene 甲苯
Hexane 正己烷
2
3
Analyte LogP *
3PCVTU[XJUUFSJPOJDTPSCFOU 强劲的两性离子吸附剂
The ZIC®-HILIC Column is designed to retain and separate all types
通常都很小甚至是负值, normally characterized by a small or negative LogP value*
在反相色谱上保留很弱。 and have poor retention on reversed-phase columns.
The ZIC®-HILIC Column is designed to retain and separate
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
亲水作用(Hilic)色谱简介,以及和正相色谱相、反相色谱比较

亲水作用(H i l i c)色谱,有时被称为“含水正相色谱”,有时又被称为“反反相色谱”,简单来说,是极性的固定相和极性的流动相组成,参考表1,在固定相方面,看似和正相色谱一样,那么,同一款色谱柱是否既可以用于正相色谱,又可以用于H i l i c色谱?在流动相方面,和反相色谱接近,那两种模式保留行为和流动相对保留的影响规律有什么差异?你对H i l i c色谱是否也疑惑重重?接下来让我们一起揭开亲水作用(H i l i c)色谱的神秘面纱吧。
表1 反相、正相、Hilic色谱对比一、Hilic简介1.1流动相在大多数的Hilic分离中,采用的流动相为含有少量水/缓冲液与有机相混合(典型的是乙腈),水的比例为3%-40%之间。
水的比例不低于3%是由于Hilic色谱的保留机理决定的,普遍认为Hilic色谱流动相中的水会被吸附到极性固定相的表面形成水膜,然后分析物在水膜和流动相之间进行液液分配作用,加上极性官能团和固定相之间的氢键作用力,离子官能团之间的静电作用力等,实现被分析物的保留。
水膜的作用非常重要,所以Hilic流动相中至少含有3%的水。
当水的比例大于40%时,保留一般很弱(k≈0)。
1.2固定相应用于Hilic色谱的固定相有:纯硅胶柱、氨基柱、二醇基柱、酰胺基柱等。
纯硅胶柱有固定相不易流失的优点,在使用CAD、ELSD和LC-MS检测器时,最受欢迎;氨基柱,在Hilic 色谱中的应用,特别适合碳水化合物(糖类)分离;二醇基柱,亲水性很好,可以提供不同的选择性。
二、Hilic和正相色谱相比2.1固定相的区别同样是Silica,NH2,Diol柱,与用于正相色谱中的色谱柱不同,专为Hilic色谱设计的色谱柱,可以用于水/有机物的流动相中,换句话说,Hilic色谱对固定相的耐水性要求更高,否则会因固定相的水解,出现基线噪音大、色谱柱寿命短等问题。
所以用于正相色谱中的色谱柱,不一定能用于Hilic色谱。
HILIC色谱柱介绍

HILIC色谱柱介绍HILIC(Hydrophilic Interaction Liquid Chromatography)是一种基于水性相互作用的色谱技术。
与传统的反相色谱相比,HILIC色谱具有许多独特的优点,在许多研究领域中得到了广泛的应用。
HILIC色谱是一种液相色谱技术,涉及在含水流动相中使用水亲和性固定相材料。
与反相色谱不同,HILIC色谱是在极性流动相中分离极性化合物。
这些化合物通过极性流动相中的水性分区相和水相关的分区系数来进行分离。
相比之下,反相色谱使用非极性流动相进行分离,根据化合物的亲水性来分离化合物。
HILIC色谱具有许多优点。
首先,它适用于分析极性化合物,这些化合物在反相色谱中可能很难分离。
HILIC色谱对于亲水性化合物,如水溶性维生素、氨基酸和糖类化合物的分离具有很高的选择性和灵敏性。
其次,HILIC色谱不需要在样品和固定相之间添加有机溶剂,因此有利于对生物样品进行分析,如血浆、尿液和蛋白质样品。
此外,HILIC色谱还能够分离极性化合物的异构体和同分异构体,有助于解决化合物纯度和杂质分析问题。
HILIC色谱柱的选择是该技术成功应用的关键。
目前市场上有许多不同类型的HILIC色谱柱可供选择。
根据固定相材料的特性,可以将HILIC色谱柱分为两大类:吸附型HILIC色谱柱和离子交换型HILIC色谱柱。
吸附型HILIC色谱柱是通过将水亲和性的高分子有机化合物固定在色谱柱中来实现分离。
这些固定相材料通常是通过化学修饰或共价交联来实现的,以增加固定相的亲水性。
常见的吸附型HILIC色谱柱固定相材料包括亲水性羟乙基磺酸酯、碳水化合物、氨基酸和糖类衍生物等。
这些材料具有良好的亲水性,并且能够在水性条件下提供良好的分离效果。
离子交换型HILIC色谱柱是通过在色谱柱中使用离子交换材料来实现分离的。
这些材料具有固有的离子交换特性,可以在水性条件下提供选择性分离。
离子交换型HILIC色谱柱的固定相材料通常是在无机载体上固定有离子交换基团,如硅胶或硅氧烷。
HILIC色谱柱介绍

亲水作用(HILIC)是近年来色谱领域研究的热点之一。
本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的进行了总结。
1. HILIC的概念亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。
它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。
而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。
2. HILIC的分离机制HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。
更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。
影响保留的主要因素普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。
影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显着增加样品的保留因子。
在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。
一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显着的亲水作用。
如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。
Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid.4. HILIC与RP-HPLC的比较传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。
PC_HILIC_介绍资料

PC_HILIC_介绍资料PC_HILIC(Porous graphitized carbon hydrophilic interaction chromatography)是一种新型的色谱分析技术,主要应用于极性和水溶性分析物的分离和鉴定。
PC_HILIC色谱技术结合了亲水性交换和碳相色谱的特点,具有较强的保留能力和分离效果。
PC_HILIC色谱柱采用了一种具有高孔隙率的石墨碳材料作为固定相。
这种材料有着大量的亲水性功能基团,可以与水溶性化合物形成氢键、离子键等相互作用,从而实现分离。
此外,石墨碳材料还能形成多孔结构,提供了更大的表面积和更高的保留能力。
1.宽泛的应用范围:PC_HILIC色谱技术适用于分离和鉴定各种不同极性化合物,包括有机酸,糖类,氨基酸,核苷酸等。
因此,在食品、生物医学、环境监测等领域具有很高的应用潜力。
2.较强的保留能力:PC_HILIC色谱柱具有较高的保留能力,能够有效地保留具有弱极性功能基团的化合物。
这使得它在复杂样品的分离和鉴定中表现出色。
3.良好的分离效果:PC_HILIC色谱技术能够对目标化合物进行有效地分离和预提纯。
其分离效果优于传统的反相色谱技术,能够提高分析结果的准确性和可靠性。
4.简单的操作和易于优化:相比于其他液相色谱技术,PC_HILIC色谱技术的操作比较简单。
同时,通过调整流动相的组成、pH值和流速等参数,可以对色谱分离进行优化,以获得更好的分离效果。
需要注意的是,由于PC_HILIC色谱柱的反相作用较弱,因此在分离和鉴定时需要对流动相进行精确的调控,特别是在选择有机溶剂和缓冲液时。
此外,由于采用了高孔隙率的石墨碳材料,色谱柱的稳定性相对较差,需要注意保养和使用。
总结起来,PC_HILIC色谱技术是一种有效的分离和鉴定水溶性化合物的方法。
它具有宽泛的应用范围、较强的保留能力和良好的分离效果。
随着该技术的不断发展和改进,相信其在科学研究和实际应用中将得到更广泛的应用。
色谱柱类型

色谱柱类型
色谱柱可分正相模式色谱柱、反相模式色谱柱和亲水模式柱。
一、正相模式色谱柱
正相模式色谱柱采用极性固定相(如乙二醇、氨基与腈基等键合相);常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。
二、反相模式色谱柱(RPC)
反相模式色谱柱:一般用非极性固定相,以硅胶为基质键合不同的基团(如C18、C8);适用于分离非极性和极性较弱的化合物。
在现代液相色谱中应用最多,据统计它占整个HPLC应用的80%左右。
由于超临界色谱的崛起,一些过去用正相色谱的实验逐渐被超临界色谱所代替,所以反相色谱柱的应用将会更加广泛。
随着色谱柱填料的快速发展,某些无机样品或易解离样品的分析也可用反相色谱法。
为控制样品在分析过程的解离,常用缓冲盐控制流动相的pH值。
硅胶基质键合相(C8和C18)色谱柱使用的pH值通常为2.5~7.5(2~8),太高的pH值会使硅胶溶解,太低的pH值会使键合的烷基脱落。
近年来技术的更新,利用包被、空间位阻、杂化颗粒等新技术,已经可以使硅胶基质的色谱柱使用范围扩大到pH为1~12,流动相为较强酸性或碱性时,可选择宽pH值的色谱柱。
三、亲水模式色谱柱(HILIC)
亲水(HILIC)模式不同于反相色谱技术,流动相为反相色
谱的流动相,它提供了相对于反相的互补选择性,通常可保留传统反相色谱方法无法保留的高极性化合物。
需要注意的是HILIC模式中硅胶基质无键合相的色谱柱,流动相pH适用范围。
amide色谱柱与hilic的区别

amide色谱柱与hilic的区别
Amide色谱柱和HILIC色谱柱都是用于分析极性化合物的色谱柱,但两者之间也存在一些差异。
●相似之处
1.Amide色谱柱和HILIC色谱柱都利用亲水性相互作用来保留极性化合物。
2.两者都能够分离各种类型的极性化合物,包括糖、氨基酸、核苷酸、有机酸和药物等。
3.两者都需要使用含有水或乙腈等亲水性溶剂的流动相。
●区别
1.Amide色谱柱的固定相是酰胺键合相,而HILIC色谱柱的固定相是含有亲水性官能团的键合相,例如diol、zwitterion或强阳离子交换树脂。
2.Amide色谱柱的保留机制主要涉及亲水性相互作用和氢键作用,而HILIC 色谱柱的保留机制主要涉及亲水性相互作用、离子交换作用和疏水性相互作用。
3.Amide色谱柱通常用于分析中性或弱酸性极性化合物,而HILIC色谱柱通常用于分析强酸性或碱性极性化合物。
4.Amide色谱柱的pH范围通常为2-11,而HILIC色谱柱的pH范围通常为1-9。
●总结
Amide色谱柱与HILIC色谱柱都是用于分离极性化合物的色谱柱,但两者之间存在一些关键的区别。
选择哪种色谱柱取决于要分离的化合物的类型。
hilic色谱柱原理及注意事项

hilic色谱柱原理及注意事项
HILIC 色谱柱的原理是利用不同极性的物质在相同的流动相中溶解度不同的特性,使不同极性的物质分离开来。
其主要原理如下:
1.HILIC 色谱柱中的固定相为填料,其表面由亲水的有机基团和疏水的硅基组
成。
2.流动相为高极性的有机溶剂(如甲醇),通过泵的加压作用将其注入色谱
柱中,同时流动相也携带少量的水相作为湿润剂,将固定相均匀涂布在填
料表面。
3.待色谱柱中的流动相达到平衡后,样品中的待测物质与流动相中的离子发
生相互作用,通过流动相和固定相之间的分配作用,将样品中的待测物质
分离出来。
在使用HILIC 色谱柱时,需要注意以下几点:
1.填料的选择:选择合适的HILIC 填料,其比表面积、孔径大小等性质需要
满足样品分离的要求。
2.流动相的选择:根据待分离样品的性质选择合适的流动相,一般情况下,
流动相中需要含有一定比例的水相作为湿润剂,以保证固定相在填料表面
的均匀分布。
3.温度和压力的控制:在使用HILIC 色谱柱时,需要控制好温度和压力的条
件,以保证分离效果和柱效。
4.柱的平衡与清洗:在使用HILIC 色谱柱前,需要对其进行平衡,以保证其
处于良好的工作状态。
同时,在使用过程中,需要定期对其进行清洗,以
保证其性能的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲水作用色谱(HILIC)是近年来色谱领域研究的热点之一。
本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的注意事项进行了总结。
1. HILIC的概念
亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。
它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。
而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。
2. HILIC的分离机制
HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。
更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。
3.HILIC影响保留的主要因素
普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。
影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显著增加样品的保留因子。
在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。
一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显著的亲水作用。
如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。
Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid.
4. HILIC与RP-HPLC的比较
传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。
HILIC正好可以解决这些问题,它提供了一种与传统RPLC互补的保留方式,能够使在RPLC 上保留较弱或没有保留的物质在HILIC柱上提供合适的保留,如图2所示:
Figure 2: Chromatograms comparing the retention of allantoin on Atlantis HILIC Silica and Atlantis dC18 columns. (a) Column: 50 mm×4.6 mm, 3-μm dp Atlantis dC18; mobile phase: 10 mM ammonium formate, pH 3; Shows no retention (k =0) of allantoin. (b) Column: 50 mm×4.6 mm, 3-μm dp Atlantis HILIC Silica; mobile phase: 95:5 (v/v) acetonitrile–water containing 10 mM ammonium formate, pH 3; Shows retention (k =1) of allantoin.
另外,HILIC柱上的洗脱顺序与RPLC柱上的正好相反,极性较小的物质先出峰,极性较大的物质后出峰。
如图3所示:
Figure 3. Comparison of ESI+MS response using HILIC and RP conditions. SIR channels of acetylcholine (m/z 146.2) and choline (m/z 103.9); Columns: 100 mm×2.1 mm, 1.7μm
(A) ACQUITY UPLC BEH C18 (B) ACQUITY UPLC BEH HILIC. Peaks: 1 = acetylcholine,
2 = choline
5.HILIC与质谱技术联用
HILIC可为强极性和强亲水性的化合物提供合适的保留。
通过优化多个色谱参数,有利于实现目标组分和基质中干扰物质的分离,从而降低基质效应的影响;而含有高比例水溶性有机相的流动相又有利于提高质谱离子化效率,进而提高质谱分析的灵敏度。
质谱响应在某种程度上是取决于流动相中有机相的比例。
采用ESI源时,毛细管中离子化的过程类似于一个电泳过程。
由于毛细管被加高压,形成带电液滴。
溶剂蒸发,离子向液滴表面移动,当液滴表面电荷产生的库仑排斥力与液滴表面的张力大致相等时,液滴会分裂成更小的液滴,对于半径<10nm的液滴, 液滴表面形成的电场足够强,电荷的排斥作用最终导致部分离子从液滴表面蒸发出来,形成了气相离子。
而有机相的表面张力比水相的表面张力小得多。
因此,在相同的条件下,流动相中有机相的比例越高,质谱的响应越高。
从图4可以看出,在HILIC柱上的响应比在RPLC柱上的响应高出十倍左右。
Figure 4. Chromatograms comparing the retention and MS response of analyte on C18 m Inertsil ODS-3; mobileμcolumn and HILIC column. (A) Column: 2.1×50mm, 3 phase: methanol-water containing 0.2% formic acid (15:85, v/v) (B) Column: m ACQUITY UPLC BEH HILIC; mobile phase: methanol-water containingμ2.1×50mm, 1.7 0.2% formic acid (85:15, v/v)
6. HILIC柱的使用
(1)初次使用HILIC柱时,应采用50倍柱体积的乙腈-水(50:50)平衡,在进第一针前,应用初始流动相平衡20倍的柱体积。
(2)HILIC柱冲柱子时,采用的是乙腈-水(50:50)来洗去极性物质。
如果解决不了问题,可以使用乙腈-水(5:95) 来冲柱子。
长时间不用时,将柱子保存在乙腈-水(95:5)中。
(3)要保证流动相中至少40%的有机相。
流动相中使用添加剂时,醋酸铵、甲酸铵的重现性优于乙酸和甲酸。
如必须使用甲酸等,0.2%优于0.1%,不要使用磷酸。
(4)水是最强的洗脱溶剂,所以强洗和弱洗溶剂与反相系统的正好相反:弱洗是初始流动相,即高比例的有机相。
并且进样溶剂最好是100%的有机相。
1.HILIC柱如何平衡?
HILIC柱使用70%的乙腈水溶液平衡。
2.HILIC柱如何保存?
HILIC柱使用90%的乙腈水溶液保存。
1. 一直使用Waters 的HILIC较多,感觉质量还行,但是要小心waters 的HILIC是分两种类型的填料的BEH HILIC和HILIC。
很多waters 的销售都不清楚之一点。
但是大家一定要注意,这两款的区别是很大的,保留的效果是不同的。
2. 费罗门公司的HILIC柱,感觉是小家碧玉型的,保留能力不是太强,但是清秀文雅,峰型很好看。
3. HILIC的流动相推荐使用乙腈。
4. 推荐使用乙酸铵,这也以后再说。
5.不能使用100% 的乙腈,推荐使用到95%就行了。
不能使用60%以下的乙腈。
所以梯度范围小。
但是足够用了。
因为100%的乙腈可能对HILIC的中亲水的部分不利于键合相的伸展开。
使得保留性能下降。
其中的解释也是经验,研究论文解释的也让人不太信服。
所以大家可以一起讨论一下这点。
使用甲醇的问题也是这样的。
在甲醇分子附近,HILIC的保留能力下降了,色谱峰型较差。
这也是经验结果。
Pubmed compound XlogP -2 -3,。