气相色谱测定甲烷等永久性气体

合集下载

气相色谱原理和分析方法图解

气相色谱原理和分析方法图解

(2)载体类型
大致可分为硅藻土和非硅藻土两类。硅藻土载体是目 前气相色谱中常用的一种载体,它是由称为硅藻的单细胞海藻骨架组成, 主要成分是二氧化硅和少量无机盐,根据制造方法不同,又分为:
红载体和白色载体。 红色载体是将硅藻土与粘合剂在900℃煅烧后, 破碎过筛而得,因铁生成氧化铁呈红色,故称红色 载体,其特点是表面孔穴密集、孔径较小、比表面 积较大。对强极性化合物吸附性和催化性较强,如 烃类、醇、胺、酸等极性化合物会因吸附而产生严 重拖尾。因此它适宜于分析非极性或弱极性物质。 白色载体是将硅藻土与20%的碳酸钠(助熔剂) 混合煅烧而成,它呈白色、比表面积较小、吸附性 和催化性弱,适宜于分析各种极性化合物。101, 102系列,英国的Celite系列,英国和美国的 Chromosorb系列,美国的Gas-Chrom A, CL, P, Q, S, Z系列等,都属这一类。
二.气固色谱固定相
1.常用的固体吸附剂 主要有强极性的硅胶,弱极性的氧化铝,非 极性的活性炭和特殊作用的分子筛等。使用时, 可根据它们对各种气体的吸附能力不同,选择 最合适的吸附剂 .(见表19-6) 2.人工合成的固定相
作为有机固定相的高分子多孔微球是一类人工合成 的多孔共聚物。它既是载体又起固定液作用,可在活化 后直接用于分离,也可作为载体在其表面涂渍固定液后 再用。由于是人工合成的,可控制其孔径大小及表面性 质。圆球型颗粒容易填充均匀,数据重现性好。在无液 膜存在时,没有“流失”问题,有利于大幅度程序升温。 这类高分子多孔微球特别适用于有机物中痕量水的分析, 也可用于多元醇、脂肪酸、脂类、胶类的分析。
第十九章 气相Biblioteka 谱法Gas Chromatography
气相色谱法(GC)是英国生物化学家 Martin A T P等人在研究液液分配色谱的基础上,于1952 年创立的一种极有效的分离方法,它可分析和分离 复杂的多组分混合物。目前由于使用了高效能的色 谱柱,高灵敏度的检测器及微处理机,使得气相色 谱法成为一种分析速度快、灵敏度高、应用范围广 的分析方法。如气相色谱与质谱(GC-MS)联用、 气相色谱与Fourier红外光谱(GC-FTIR)联用、气 相色谱与原子发射光谱(GC-AES)联用等。 气相色谱法又可分为气固色谱( GSC )和气液 色谱( GLC ):前者是用多孔性固体为固定相,分 离的对象主要是一些永久性的气体和低沸点的化合 物;而后者的固定相是用高沸点的有机物涂渍在惰 性载体上.由于可供选择的固定液种类多,故选择 性较好,应用亦广泛。

气相色谱法

气相色谱法

气相色谱法气相色谱法1、气相色谱法(gc)是以气体为流动相的色谱分析法。

2、气相色谱缺点要求样品气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%-20%的有机物能用气相色谱法进行分析。

3、气相色谱仪的组成气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4、气路系统包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气:。

5、进样系统包括进样装置和气化室。

气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μl;毛细管色谱常用1μl;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6、进样方式分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7、分离系统色谱柱:填充柱(2-6 mm直径,1-5 m长),毛细管柱(0.1-0.5 mm直径, 几十米长)。

8、温控系统的作用温度是色谱分离条件的重要选择参数,气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度。

气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。

9、检测系统作用:将色谱分离后的各组分的量转变成可测量的电信号。

指标:灵敏度、线性范围、响应速度、结构、通用性。

通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应。

检测器类型:浓度型检测器、热导检测器、电子捕获检测器、质量型检测器、氢火焰离子化检测器、火焰光度检测器。

10、热导检测器的主要特点结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。

11、氢火焰离子化检测器的特点优点:(1)典型的质量型检测器;(2)通用型检测器(测含c有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。

气相色谱的定性分析方法

气相色谱的定性分析方法


fm'

Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。

气相色谱分析

气相色谱分析
操作简便,易维修,价廉。
讨论题:气相色谱检测器的选择
工业级乙醇中含水量的测定 石油中的硫化物分析 氟里昂的组成 天然气中的烃类分析 农产品中的有机磷农药的分析 茶叶中有机氯农药的残留 城市空气中的有机污染物 汽车尾气中的氮氧化合物的测定
3. 气相色谱操作条件的选择
流速 柱温 气化温度 检测器温度 进样量 载气种类 固定相种类
外涂层耐480℃ 金属柱:机械强度好,耐高温
按固定相的形态分类
WCOT—wall-coated open tubular column 壁涂毛细管柱、化学键合相毛细管柱、交联毛细管柱
SCOT—support-coated open tubular column 涂载体毛细管柱
PLOT—porous-layer open tubular column 多孔层毛细管柱
组分与固定液之间的相互作用力
➢静电力(定向力) ➢诱导力 ➢色散力
➢氢键力
固定液的选择:
一般是根据“相似相溶”的原则进行, 即固定液与被测物组分在性质上有某些 相似时,其溶解度就大,即作用力大, 保留时间越长。
固定液的选择: “相似相溶” 的原则
样品
固定液
非极性组分 非极性固定液
试液出峰顺序 按沸点由低至高出峰
流速u(Fc)
根据速率方程,可计算求出最佳流速,此时柱 效最高。在实际工作中,为缩短分析时间,往 往使流速稍高于最佳流速。
具体的:对于填充柱,氮气的实用最佳线速为1015cm/s;氢气为15-25cm/s;氦气介于两者之间。若 填充柱内径为4mm,则体积流速为氮气30-40ml/min, 氢气40-60ml/min。
应用举例
工作环境分析实例
电子俘获检测器

施耐德气相色谱

施耐德气相色谱

施耐德气相色谱是一种常用的化学分析方法,用于分离和测定混合气体中的组分。

以下是关于施耐德气相色谱的详细介绍:
施耐德气相色谱的原理是基于不同组分在固定相和流动相之间的分配平衡。

当混合气体通过色谱柱时,各组分在固定相和流动相之间的分配平衡被打破,导致不同组分在色谱柱上得到分离。

通过检测器对分离后的组分进行检测和记录,可以得到各组分的色谱峰。

施耐德气相色谱的色谱柱有多种类型,如填充柱和毛细管柱等。

不同类型的色谱柱具有不同的固定相和分离效果。

选择合适的色谱柱是获得准确和高效分离的关键。

此外,施耐德气相色谱还需要其他辅助设备和试剂,如载气、燃气和助燃气等。

这些设备和试剂的选择和使用也是影响分离效果的重要因素。

施耐德气相色谱的应用非常广泛,包括环境保护、食品和药品分析、石油化工等领域。

通过施耐德气相色谱,可以对混合气体中的有害物质进行检测和分离,也可以对气体中的组分进行定性和定量分析。

总的来说,施耐德气相色谱是一种重要的化学分析方法,具有广泛的应用前景。

在应用过程中,需要选择合适的色谱柱和其他辅助设备和试剂,并注意操作条件的控制,以确保获得准确和高效的分析结果。

气相色谱法

气相色谱法

13
10 µl Syringe
14
Enter from Injector
Exit to Detector
Packed Column installed in Oven Compartment.
15
16
17
18
19
20
气相色谱仪结构——进样系统 气相色谱仪结构——进样系统
进样系统的作用是将液体或固体试样, 进样系统的作用是将液体或固体试样,在进入色谱柱之 前瞬间气化,然后快速定量地转入到色谱柱中。 前瞬间气化,然后快速定量地转入到色谱柱中。进样的大 小,进样时间的长短,试样的气化速度等都会影响色谱的 进样时间的长短, 分离效果和分析结果的准确性和重现性。 分离效果和分析结果的准确性和重现性。
的电负性越大,则氢键作用力越强。 叫氢键作用力。X,Y的电负性越大,则氢键作用力越强。 叫氢键作用力。 F-H…F > O-H…F > O-H…N> N-H… F-H…F > N≡C-N…N
32
气相色谱仪结构——分离系统 气相色谱仪结构——分离系统
硅藻土类载体 天然硅藻土经煅烧等处理后而获得的具有一定粒度的多孔性 颗粒。按其制造方法的不同,可分为红色载体和白色载体两种。 颗粒。按其制造方法的不同,可分为红色载体和白色载体两种。 红色载体因含少量氧化铁颗粒而呈红色 其机械强度大, 因含少量氧化铁颗粒而呈红色。 红色载体因含少量氧化铁颗粒而呈红色。其机械强度大,孔 径小,比表面积大,表面吸附性较强,有一定的催化活性, 径小,比表面积大,表面吸附性较强,有一定的催化活性,适用
于涂渍高含量固定液,分离非极性化合物。 于涂渍高含量固定液,分离非极性化合物。
白色载体是天然硅藻土在煅烧时加入少量碳酸钠之类的助熔 白色载体是天然硅藻土在煅烧时加入少量碳酸钠之类的助熔 使氧化铁转化为白色的铁硅酸钠。白色载体的比表面积小, 剂,使氧化铁转化为白色的铁硅酸钠。白色载体的比表面积小, 孔径大,催化活性小,适用于涂渍低含量固定液, 孔径大,催化活性小,适用于涂渍低含量固定液,分离极性化合

第三章 气相色谱法

第三章 气相色谱法

分离室:准确控制分离需要的温度。当试样复杂时, 分离室温度需要按一定程序控制温度变化,各组分 在最佳温度下分离。
5)检测系统
色谱仪的眼睛,通常由检测器、放大器、记录仪三部 分组成;
被色谱柱分离后的组分依次进入检测器,按其浓度 或质量随时间的变化,转化成相应电信号,经放大 后记录和显示,给出色谱图; 检测器:广谱型—对所有物质均有响应; 专属型—对特定物质有高灵敏响应;
毛细管柱结构流程
具有分流和尾吹装置
二、气相色谱的特点
① ② ③ ④ ⑤
分离效率高 灵敏度高 选择性好 分析速度快 应用范围广
第二节 气相色谱固定相
1. 固体固定相 2. 液体固定相 3. 合成固定相
一、固体固定相
一般采用固体吸附剂,主要用于分离和分 析永久性气体及气态烃类物质。 1. 强极性的硅胶 2. 弱极性的氧化铝 3. 非极性的活性炭 4. 特殊吸附作用的分子筛:碱及碱土金属的 硅铝酸盐(沸石),多孔性。
当试样由载气携带进入色谱 柱与固定相接触时,被固定 相溶解或吸附。 随着载气的不断通入,被溶 解或吸附的组分又从固定相 中挥发或脱附, 挥发或脱附下的组分随着载 气向前移动时又再次被固定 相溶解或吸附。 随着载气的流动,溶解、挥 发,或吸附、脱附的过程反 复地进行。
2、气相色谱流程
1-载气钢瓶;2-减压阀; 3-净化干燥管;4-针形 阀;5-流量计;6-压力表; 4-针形阀;5-流量计;6压力表;9-热导检测器; 10-放大器;11-温度控制 器;12-记录仪;
固定液一般为高沸点有机物,均匀涂在担体 表面,呈液膜状态。
1)对固定液的要求 选择性好:填充柱:r2,1>1.15,毛细管柱r2,1>1.08 热稳定性好 化学稳定性好 对试样各组分有适当的溶解能力 黏度低、凝固点低

浅析气相色谱分析(GC)实验中需注意的几个问题

浅析气相色谱分析(GC)实验中需注意的几个问题

浅析气相色谱分析(GC)实验中需注意的几个问题摘要:在化工生产实验分析中,气相色谱法占据着十分重要的地位。

由于该方法具有灵敏度高、分离效果好、选择性强,以及适合于对烃类易挥发的有机化合物、碳氢化合物进行分析等优点,因此已被广泛应用于化工生产检验检测分析中。

鉴于此,文章结合笔者多年工作经验,对气相色谱分析(GC)实验中需注意的几个问题提出了一些建议,仅供参考。

关键词:气相色谱分析(GC);实验中需注意的几个问题;方法引言气相色谱法是利用物质的沸点、极性、吸附特性等差异来实现多组分物质的分离,预处理的试验气体样品(高温除湿、过滤器中的颗粒物去除)作为载体气体(惰性气体)的推进导入列中,各种成分倾向于在流相和固定相之间分配,或者形成吸附平衡,因为载体气体流动持续的同时,样品成分在列中反复吸附/分析过程不是将浓度大的成分分配给载体气体,而是将浓度大的成分分配给固定相,然后流出热量,流出热量后由探测器检测出,电信号和时间按照记录形成色谱图,成分根据探测器检测到的时间(保留时间tR)表征不同的成分,根据与电信号的大小和成分浓度成正比的关系进行量化。

1、气相色谱仪(GC)的基本原理气相色谱仪是一种以氮(N2)为载体气体的色谱分析仪器,其原理主要是利用该化合物沸点、极性和吸附特性的差异来分离混合物。

要分析的样品在气化室气化时,作为惰性气体(即载体气体,也称为流化相)包含在柱内,柱内含有液体或固体固定相,样品的每个成分倾向于在流化相和固定相之间形成分配或吸附平衡。

根据载体气体的流动,样品成分在运动过程中经过多次分配或吸附、解吸,载体气体中浓度较高的成分首先从色谱柱中流出,固定相中浓度较高的成分分配后流出。

成分从热中流出时,进入探测器进行测量,常用的探测器包括电子捕捉检测器(ECD)、氢火焰探测器(FID)、火焰光度探测器(FPD)和热传导检测器(TCD)。

色谱法将保存时间量化为定性和峰值区域。

气相色谱图由5个主要系统组成:气体道路系统、注入系统、分离系统、温度控制系统和测试记录系统,只有掌握这5个主要系统原理,才能降低分析结果的实验偏差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定仪器配置
进样装置和进样方式 依据分析目的、样品性质以及所选色谱柱 色谱柱类型 色谱柱的选择是确立监测分析有机污染物方法的关键。 载气的选择 气相色谱法最常用的载气是氢气、氮气、氦气
.
检测器的选择
根据所分析物质的特定性质差异
确定初始条件
进样 量
要根据样品浓度、色谱柱容量和检测器灵敏度来 确定。可适当考虑加大进样量 温度 设置
• 以填埋气的五种永久性气体的测定为例子
• 王海燕等在垃圾监测实验的气相色谱方法 研究中采用北京分析仪器厂生产的 SP3420型气相色谱仪,利用热导检测器( TCD ) 分析CO2和CH4, 以氢气为载气,色谱柱内装 固定相 GDX-104。
• 邹建文等在稻田 CO2、CH4 和 N2O排放通量 测定方法研究中改装配有火焰离子检测器 (FID) 和电子捕获检测器 (ECD)的气相色谱仪 Agilent 4890D可同步分析稻田 CO2、CH4 和 N2O的排放通量
ቤተ መጻሕፍቲ ባይዱ
方法的验证
• 方法的验证就是证明所开发方法的实用性 和可靠性。
• 实用性一般指所用仪器配置是否全部可购 得,样品处理方法是否简单易操作,分析 时间是否合理,分析成本是否可被同行接 受等。 • 可靠性则包括定量的线性范围、检测限、 方法回收率、重复性、重现性和准确度等。
实例
• 开始确定测定方法前,应该进行文献的查 阅,若文献中已有相同样品的分析方法, 那就会大大加快方法开发的过程,只要在 此基础上做一些必要的优化即可。
包括进样口温度、色谱柱温度和检测器温度。进样口温度 即要保证待测样品全部气化;色谱柱温度则要保证短时间 内样品全部分离,包括恒温分析和程序升温检测器;检测 器温度要满足检测器灵敏度的要求。
开始按各种载气流速高10%来设定,再根据分离 情况进行调节
载气 流速
分离条件优化
在实际工作中,一般是首先满足分离度的要 求,然后提高分析灵敏度,最后再考虑尽可能 缩短分析时间。
• 分离目的:分离出填埋气里的CH4、CO2、O2 、 N2 、 N2O并进行定量测定 • 样品性质:垃圾填埋气不需要预处理,可直 接进样 • 仪器配置: 进样装置:医用注射器或六通阀 载气:氢气或氦气 色谱柱:选用碳分子筛 检测器:TCD
确定初始操作条件:
色谱柱:2m×3mm的不锈钢柱; 固定相:60~80目的TDX-01; 载气:高纯氢气(条件允许的话采用氦气); 柱流量:50ml/min; 柱温:80℃; 进样口温度:120℃ 汽化室温度:120℃; 检测器温度:150℃; 池电流:50mA; 进样量:4ml。
气相色谱方法的开发
目录
1
前言 方法开发的一般步骤
2 • 3
实例
一、前言
对于分析人员,当接到一个分析任务时,有时没有 现成的分析方法,这就需要分析人员针对所使用 的色谱仪,所要分析的样品,建立一套完整的分析 方法; 鉴于色谱法的飞跃进展,有时分析人员对现成的 分析方法需要做某些变更以改变分离效果,取得 了可接受的准确度和精密度后应用于分析工作 中,这就是气相色谱分析方法的开发。
二、方法开发的一般步骤
样品来源分析 确定仪器配置 确定初始条件
分离条件优化 定性与定量分析 方法的验证
样品来源分析
分离目的 • 是否已知样品所有成分的化学性质,即是否 需要定性分析? • 是否需要解析出样品的所有成分? • 是否需要定量分析,需要多高的精密度? 样品性质 • 样品的形态:固体、液体还是气体? • 样品可能含有的组分:是否需要预处理? • 样品的沸点范围?
最经常的工作除了更换色谱柱外,就是改 变色谱柱温和载气流速,其中柱温对分离 结果的影响要比载气的影响大。
定性和定量分析
• 定性:对于简单的样品,可通过标准物质对 照来定性。对于复杂的样品,则要通过保留 指数定性或GC/MS来定性。
• 定量:气相色谱定量方法包括面积百分比 法、归一化法、外标法、内标法、标准加 入法。基层监测站最常用的方法是外标
推荐
• 网站:仪器信息网 • 书籍:色谱技术系列丛书(化学工 业出版社) 图解气相色谱技术与应用(科学出 版社)
相关文档
最新文档