条件极值
条件极值拉格朗日乘数法

Fx (x0 , y0 , z0 )(x x0 ) Fy (x0 , y0 , z0 )( y y0 ) Fz (x0 , y0 , z0 )(z z0 ) 0
通过点M ( x0 , y0 , z0 )而垂直于切平面的直线
称为曲面在该点的法线.
法线方程为
x x0 y y0 z z0 Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )
法平面方程:
Fy Gy
Fz Gz
x
x0
Fz Gz
Fx Gx
y
y0
Fx Gx
Fy Gy
z
z0
0
例2、求曲线 x2 y2 z2 6 , x y z 0 在点
( 1 ,-2 ,1)处的切线及法平面方程。
解:
2 y 2z
T
1
1
即:
2z 2x ,
11
2x 2y
, 1
1
1, 2 ,1
T
1
,
y
' t
2t
,
z
' t
3t 2
在( 1 ,1 ,1 )点对应参数为 t = 1
T
1
,
2
,
3
切线方程:
x1 y1 z1
1
2
3
法平面方程:( x - 1)+2 ( y - 1 )+( z - 1 )=0
即: x + 2 y + 3 z = 6
2
y x
:
z
x
M0 x0 , y0 , z0
f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ) z z0 , 曲面在M处的法线方程为
高等数学第18章第4节条件极值

第十八章 隐函数定理及其应用§4条件极值以往所讨论的极值问题,其极值点的搜索范围是目标函数的定义域,但是另外还有很多极值问题,其极值点的搜索范围还受到各自不同条件的限制.例如 要设计一个容量为V 的长方形开口水箱,试问水箱的长ֽ宽ֽ高各等于多少时,其表面积最小?为此,设水箱的长ֽ宽ֽ高分别为z y x ,,,则表面积为.)(2),,(xy yz xz z y x S ++=依题意,上述表面积函数的自变量不仅要符合定义域的要求)0,0,0(>>>z y x ,而且还须满足条件.V xyz = (1)这类附有约束条件的极值问题称为条件极值问题.结论1:条件极值问题的一般形式是在条件组................)(,,2,1,0),,,(21n m m k x x x n k <== ϕ (2)的限制下,求目标函数..........),,,(21n x x x f y = (.3.).的极值.....☆ 求条件极值的方法: 转化为无条件极值1、 用消元法将条件极值化为无条件极值问题来求解有时可以把条件极值问题化为无条件极值问题. 如上面的例子,由条件(1)解出xy V z =,并代入函数),,(z y x S 中,得到.)11(2),,(),(xy xy V xy V y x S y x F ++== 然后按)0,0(),(=y x F F ,求出稳定点32V y x ==,并有3221V z =.最后判定在此稳定点上取得最小面积3243V S =.注.:1)在一般情形下要从条件组(2)中解出m 个变元并不总是可能的.下面我们介绍的拉格朗日乘数法就是一种不直接依赖消元而求解条件极值问题的有效方法.2、用拉格朗日乘数法在多数情况下较难把条件极值直接(例如消元法)转化为无条件极值, 需要用一种求条件极值的专用方法, 这就是拉格朗日乘数法.(1) 从较简单的情况入手设ϕ,f 均为二元函数,欲求函数),(y x f z = (4)在条件 0),(:=y x C ϕ (5) 的限制下的极值问题.我们有以下结论.结论2:若函数...),(y x f z =在.0),(=y x ϕ的附加条件下......,.在点..),(00y x 取得极值....,.则.0),(00=y x ϕ, .又如果...),(y x f z =在点..0P 可微、...0),(=y x ϕ在点..0P 的某邻域内能惟一确定可微的.............隐函数...)(x g y =,.则有...0)()()()(0000=-P P f P P f x y y x ϕϕ (8) 上述等式等价于.......⎪⎭⎪⎬⎫==+=+.0)(,0)()(,0)()(0000000P P P f P P f y y x x ϕϕλϕλ (9) 如果引入辅助变量........λ和辅助函数.....),,(),(),,(y x y x f y x L λϕλ+= (10)则.(9)...中三式就是.....⎪⎭⎪⎬⎫===+==+=.0)(),(,0)()(),,(,0)()(),,(000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕϕλλϕλλλ (11)这样就把条件极值问题..........(4),(5).......转化为讨论函数.......(10)....的无条件极值问题.......... 事实上:①0),(00=y x ϕ显然.②∵0),(=y x ϕ在点0P 的某邻域内能惟一确定可微的隐函数)(x g y =,∴0x x =必定是))(,(x g x f z =的极值点,所以,由),(y x f z =在0P 可微,)(x g y =在0x 可微,得到.0)('),(),(00000=+x g y x f y x f y x (6) 又 .),(),()('00000y x y x x g y x ϕϕ-= (7)把(7)代入(6)后又得到.0)()()()(0000=-P P f P P f x y y x ϕϕ (8)③由(8)可知方程组⎩⎨⎧=+=+0)()(0)()(0000P b P af P b P af y y x x ϕϕ 有非零解,不妨设0≠a ,令a b=0λ代如上试可得⎩⎨⎧=+=+0)()(0)()(000000P P f P P f y y x x ϕλϕλ.考虑到条件0),(00=y x ϕ即得⎪⎭⎪⎬⎫==+=+.0)(,0)()(,0)()(0000000P P P f P P f y y x x ϕϕλϕλ (9)④引入辅助变量λ和辅助函数),,(),(),,(y x y x f y x L λϕλ+= 则(9)中三式就是⎪⎭⎪⎬⎫===+==+=.0)(),(,0)()(),,(,0)()(),,(000000000000000P y x L P P f y x L P P f y x L y y y x x x ϕϕλλϕλλλ ▋注.:1)上述结论就把条件极值问题转化为讨论函数(10)的无条件极值问题。
条件极值

现在引入函数 L ,称它为拉格朗日函数:
L ( x, y , u , v ) = f ( x, y, u , v) + ag ( x, y, u , v) + β h( x, y, u , v)
我们知道,函数 L 存在极值的必要条件为
Lx = 0, Ly = 0, Lu = 0, Lv = 0,
dF = dL = Lx dx + Ly dy + Lu du + Lv dv,
从而 F 的二阶微分有
d 2 F = d (dL)
= (dLx )dx + (dLy )dy + (dLu )du + Lu d 2u + (dLv )dv + Lv d 2 v,
但因为在极值点满足必要条件 Lu = 0 和 Lv = 0 ,所以
其中函数 g 和 h 都具有对各个变元的连续偏导数,并且 , 它们的雅可比行列式
D ( g , h) ≠ 0, D (u , v)
我们要求函数 f ( x, y, u, v) 在限制条件
g(x, y,u,v) = 0,h(x, y,u,v) = 0
先来考虑极值的必要条件.
下的极值.
若函数 f ( x, y, u, v) 在某一点 M ( x, y, u, v) 达到极值,这里
α , β 称为拉格朗日乘数,也称为待定乘数.由于
D ( g , h) ≠ 0, D (u , v)
总能求得不全为零的 α 和 β 使
∂f ∂g ∂h +α +β = 0, ∂u ∂u ∂u ∂f ∂g ∂h +α +β = 0, ∂v ∂v ∂v
这时, (4) 式化为
条件极值——精选推荐

于是 grad f ( x0, y0 ) 和 gradg(x0, y0 ) 平行 .
再假定 gradg(x0, y0 ) ≠ 0 , 于是存在常数 λ ,使得 grad f (x0, y0 ) = λgradg(x0, y0 ) .
f (x, y) 称为目标函数 ;g(x, y) = 0 称为约束条件 .
此时 (x0, y0 ) 称为问题的一个解.
二元函数条件极值的拉格朗日乘子法
为了求解条件极值问题:
⎧min f (x, y)
⎩⎨s.t g(x, y) = 0 .
1
构造辅助函数 L(x, y,λ) = f (x, y) − λg(x, y) .
⎪⎧min(max)
⎨ ⎪⎩s.t.
x2 +
f (x, y) = y2 −1= 0
x2
+
2x2
y
+
y2
.
1
构造辅助函数
L(x, y,λ) = f (x, y) − λg(x, y) .
L( x, y, z,λ ) = x2 + 2x2 y + y2 − λ ( x2 + y2 − 1) .
列方程组:
3
3
3
例3 要设计一个容量为V0 的长方体开口水箱, 试问
水箱长、宽、高等于多少时所用材料最省?
解 设 x , y , z 分别表示长、宽、高, 则问题为求x , y ,
z 使在条件 x y z = V0 下水箱表面积 S = 2(xz + y z) + x y
极值的判断条件

极值的判断条件
极值是指函数在某一点上取得最大值或最小值的点。
在二元函数中,判断极值的条件主要有两种:
1.首先需要判断该点是否在函数的定义域内,如果不在,那么它
不可能是极值点。
2.其次判断该点是极大值还是极小值,需要通过函数在该点的一
阶导数和二阶导数来判断,主要有如下条件:
•如果该点处的一阶导数为0,并且二阶导数大于0,那么这个点是函数的极小值点。
•如果该点处的一阶导数为0,并且二阶导数小于0,那么这个点是函数的极大值点。
•如果该点处的一阶导数为0,并且二阶导数等于0,那么这个点可能是局部极值也可能不是,需要进一步分析。
注意,在这些条件中,一阶导数的符号也是很重要的。
对于函数的极值点的判断条件可能有其他的表述方式,这取决于具体的数学理论,请注意区分。
条件极值问题

条件极值问题条件极值问题(ConstrainedExtremumProblem)优化分析中一个重要的问题,它涉及优化函数(通常称之为目标函数)以最大或最小值来求解约束关系(约束条件)的问题,它体现了一类技术问题的结构特点。
条件极值问题的数学模型是如下的:最优化问题:$min f(x_1,x_2,…,x_n)s.t. g_1(x_1,x_2,…,x_n)le 0g_2(x_1,x_2,…,x_n)le 0vdotsg_m(x_1,x_2,…,x_n)le 0$其中,f(x_1,x_2,…,x_n)是一个最小或最大等式,决定一组变量$x_1,x_2,…,x_n$的最优结果;约束条件$g_1(x_1,x_2,…,x_n)le 0,g_2(x_1,x_2,…,x_n)le 0,…,g_m(x_1,x_2,…,x_n)le 0$存在某种性质的约束,在确定最优值的同时,需要满足这些约束条件。
下面我们将详细介绍条件极值问题的定义及其特点,以及它的数学分析方法。
一、定义在经济学、工程学等多学科领域,条件极值问题都是指有约束条件的最优化问题。
特别是在经营管理中,对于生产、营销、财务以及组织等方面的活动,通常都存在许多约束条件,比如预算限制、市场限制、原料限制、生产能力限制等,这些所有限制令管理者仅能在有限的条件内进行有效决策,最终实现更大的效益最大化。
二、特点1、有限条件。
条件极值问题的最大特点是在确定最优解的同时,要满足一系列约束条件,这些条件是有限的。
2、多变量。
条件极值问题的解有时可能需要多个变量,这就要求模型中所有变量都要满足约束条件,而且变量间可能还要相互交互作用,综合起来十分复杂。
3、抗干扰能力强。
条件极值问题的模型具有良好的抗干扰能力,即对于环境因素的变化,其解的变化不会太大,使模型具有一定的稳定性。
三、数学分析方法条件极值问题的数学分析方法一般是求解方程组的方法,分析的过程往往由数学模型的构造、数学解法和有效的计算方法三部分组成。
条件极值简介

11.3条件极值
极值问题
不带约束条件的极值问题,称为
无条件极值问题.
附有约束条件的极值问题,称为
条件极ห้องสมุดไป่ตู้问题.
高州师范学院
11.3条件极值
极值问题特点
无条件极值问题的特点:
其极值点的搜索范围是目标函数的定 义域.
条件极值问题的特点:
其极值点的搜索范围还要受到自变量 附加条件的限制.
这种方法称为拉格朗日乘数法, 辅助函数(x, y, )称为拉格朗日函数, 辅助变量 称为拉格朗日乘数.
高州师范学院
11.3条件极值
推广: 一般而言
求目标函数: y f ( x1 , x2 , , xn ) 在约束条件组 F1 ( x1 , x2 ,..., xn ) 0 F ( x , x ,..., x ) 0 2 1 2 n (m n) .............................. Fm ( x1 , x2 ,..., xn ) 0 下的条件极值.
高州师范学院
11.3条件极值
例如P204例7:水箱设计问题
目标函数: S ( x, y, z ) xy 2 xz 2 yz ( x 0, y 0, z 0) 约束条件: xyz V .
高州师范学院
11.3条件极值
条件极值问题的一般形式
求目标函数: y f ( x1 , x2 , , xn ) 在满足函数方程组(限制条件) F1 ( x1 , x2 ,..., xn ) 0 F2 ( x1 , x2 ,..., xn ) 0 (1) (m n) .............................. Fm ( x1 , x2 ,..., xn ) 0 下的极值. 这就是条件极值.函数方程组 称为联系方程组.
极值的判定方法详解

极值的判定方法详解极值是数学中一个重要的概念,它在优化问题、微积分和数学建模等领域中有着广泛的应用。
判定一个函数的极值是数学分析中的基本问题之一,本文将详细介绍极值的判定方法。
一、极值的定义在数学中,给定一个函数f(x),如果存在一个点x0,使得在x0的某个邻域内,对于任意的x,都有f(x)≤f(x0)或f(x)≥f(x0),则称f(x0)为函数f(x)的极大值或极小值,同时称x0为极值点。
二、一阶导数法判定极值一阶导数法是判定极值的常用方法之一。
根据函数的导数可以判断函数在某一点的增减性,从而判定极值。
1. 极值点的必要条件若函数f(x)在x0处可导且x0为极值点,则f'(x0)=0。
这是极值点的必要条件,但不是充分条件。
2. 极值点的充分条件若函数f(x)在x0处二阶可导,且f'(x0)=0,f''(x0)>0,则x0为f(x)的极小值点;若f''(x0)<0,则x0为f(x)的极大值点。
三、二阶导数法判定极值二阶导数法是判定极值的另一种常用方法。
通过函数的二阶导数可以判断函数在某一点的凹凸性,从而判定极值。
1. 极值点的必要条件若函数f(x)在x0处可导且x0为极值点,则f''(x0)=0。
这是极值点的必要条件,但不是充分条件。
2. 极值点的充分条件若函数f(x)在x0处二阶可导,且f''(x0)>0,则x0为f(x)的极小值点;若f''(x0)<0,则x0为f(x)的极大值点。
四、边界点和无界区间的极值判定除了在内部点判定极值外,还需要考虑函数在边界点和无界区间的极值情况。
1. 边界点的极值判定若函数f(x)在区间[a, b]上连续,在(a, b)内可导,且在a处或b处的导数不存在,则f(x)在[a, b]上的极值点可能出现在a或b处。
2. 无界区间的极值判定若函数f(x)在区间(-∞, +∞)上连续,在(-∞, +∞)内可导,且当x→±∞时,f(x)趋于某个常数L,则f(x)在(-∞, +∞)上的极值点可能出现在x→±∞时。