数学史上的三次危机无理数的发现
三次数学危机——长达一个世纪的关于数学基础问题上的争论

三次数学危机——长达⼀个世纪的关于数学基础问题上的争论悖论的产⽣科学的发展今天,超模君⼜“⼿痒”想要码字了,奈何⼀时找不到话题,正在⽆⽐纠结时,⼩天⼀语惊醒梦中最近评论区不是有好多要求超模君介绍什么什么的吗?难道你忘了?⼈:最近评论区不是有好多要求超模君介绍什么什么的吗?是的,这位 Z(⼩朋友?),你被翻牌了!数学史上的三次⼤危机吧。
那超模君今天来讲讲数学史上的三次⼤危机1、⽆理数的发现希伯索斯发现边长为1的正⽅形的对⾓线在公元前580~568年间,古希腊毕达哥拉斯学派的希伯索斯长度(根号2)既不是整数,也不能⽤整数之⽐来表⽰。
(传送门)这不仅严重地违背了毕达哥拉斯学派的信条(万物皆为数),也冲击了当时希腊⼈的传统见解。
当时希腊数学家们对此深感不安,希伯索斯还因此遭到沉⾈⾝亡的惩处。
⽆理数的发现以及芝诺悖论(传送门)引发了第⼀次数学危机。
过了两百年,希腊数学家欧多克斯和阿契塔斯两⼈给出了“两个数的⽐相等”的新定义,建⽴起⼀套完整的⽐例论,其中巧妙避开了⽆理数这⼀“逻辑上的丑闻”,并保留住与之相关的⼀些结论,缓解了这次数学危机。
然⽽,“世界万物皆为整数或整数⽐”的错误并没有解决,欧多克斯只是借助⼏何⽅法,直接避免⽆理数的出现。
直到1872年,德国数学家对⽆理数作出了严格的定义,⽆理数本质被彻底搞清,⽆理数在数才真正彻底、圆满地解决了第⼀次数学危机。
学中合法地位的确⽴,才真正彻底、圆满地解决了第⼀次数学危机2、贝克莱悖论⼗七世纪后期,⽜顿、莱布尼茨创⽴微积分学,成为解决众多问题的重要⽽有⼒的⼯具,并在实际应⽤中获得了巨⼤成功。
然⽽,微积分学产⽣伊始,迎来的并⾮全是掌声,在当时它还遭到了许多⼈的强烈攻击和指责,原因在于当时的微积分主要建⽴在⽆穷⼩分析之上,⽽⽆穷⼩后来证明是包含逻辑⽭盾的。
原来,在1734年,英国哲学家乔治·贝克莱出版了名为《分析学家或者向⼀个不信神数学家的进⾔》的⼀本书。
在这本书中,贝克莱对⽜顿的理论进⾏了攻击,指出求x2的导数时,会出现如下⽭盾:依靠双重错误得到了不科学却正确的结果。
数学三大危机简介

数学三大危机简介数学三大危机第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数根号2的诞生。
小小根号2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的根号2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的,史称“第一次数学危机”。
第二次数学危机出现第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如反掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
自然辩证法考试题

1 数学史上的三大危机及解决办法三次数学危机:1 毕达哥拉斯学派发现无理数,第一次数学危机。
希帕苏斯因泄露秘密被抛入大海。
2 微积分危机四伏。
基本概念、定律未严格建立。
直到19世纪,数学完成严密化之后,前两次数学危机才解决。
微积分的严密化。
柯西、韦尔斯特拉斯奠定了数学分析的现代基础。
建立了实数、复数公理化体系第三次数学危机的起因:罗素---策梅罗悖论。
2 什么是公理化原则?基于对公理化方法的彻底考察,希尔伯特第一次系统的提出了公理化方法的基本原则。
这些基本原则是:一、相容性:由公理出发不能推出矛盾的命题,即无矛盾性,通俗讲就是自圆其说。
这一条原则主要侧重于在定理层次规范公理。
二、独立性:公理相互独立,任何一条公理不能由其余公理推出(否则即为定理)。
这一条原则主要侧重于就公理本身来规范公理。
三、完备性:公理对于证明公理系统成立的充分性。
这一条原则主要侧重于从整个公理体系规范公理。
以此为基础提出了著名的“希尔伯特纲领”:建立起形式化公理系统之后,一切数学系统内的定理都是可证的;并且一切数学真理都是这个公理系统的定理,即,数学是完备的。
简单说,希尔伯特要求数学体系要达到将下述三者完全融为一体的境界:就构成要素而言毫无欠缺,就每一个构成要素而言都是真理,就整个体系的秩序化而言没有任何内在矛盾。
3 什么是科学精神?自由[然]科学的目的是为了追求真理,而真理的本性是自由——自由非主观状态,自由是内在的必然性,自由是至高的必然性。
平等1、所有学科没有高低贵贱之分,数学并不比文学更高,历史学也并不比逻辑学更高。
文科与理科平等一如。
2、所有从事科学研究的人没有高低贵贱之分,科学面前人人平等。
3、科学超越阶级,超越国家,因为科学的对象是真理,而真理是不受阶级、国家立场束缚的,相反,任何阶级、国家、个人必须遵循真理和规律。
普遍主义、不谋私利、天下为公。
博爱科学的人文底蕴。
有两个互补的维度:博与爱。
“博”就是科学要使人对人生和宇宙具有极为开阔的理解,如此才能将人带入更伟大更本真生存的境界;“爱”就是科学要为谋求全人类的自由和幸福而服务。
数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学的三次危机

从哲学上来看,矛盾是无处不存在的,即便以确定无疑着称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
数学史上的三次危机

数学史上的三次危机1 无理数的发现——第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算数、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不可能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,欧多克斯和狄德金于1872年给出的无理数的解释和现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学家观点有极大冲击。
这表明,几何学的某些真理和算数无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的。
从此希腊人开始重视演绎推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!2 无穷小量是零吗?——第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
他指出:“牛顿在求的导数时,采取了先给以增量0,应用二项式,从中减去以求得增量,并除以0以求出的增量与增量之比,然后又让0消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续——先设有增量,又令增量为零,也即假设没有增量。
数学史上的三次危机及其解决

论数学史上的三次数学危机学号:100521026 姓名:付东群摘要:数学发展从来不是完全直线,而是常常出现悖论。
历史上一连串的数学悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。
数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。
危机的产生、解决,又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。
关键词:数学危机;无理数;微积分;集合论;悖论;引言:数学史不仅仅是单纯的数学成就的编年记录。
数学的发展决不是一帆风顺,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至面临危机。
数学史也是数学家们克服困难和战胜的斗争记录。
无理数的发现,微积分和非欧集合的创立,乃至费马定理的证明......这样的例子在数学史上不胜枚举,他们可以帮助人们了解数学创造的完美过程。
对这种创造的过程的了解则可以使我们从前人的探索与奋斗中西区教益,获得鼓舞和增强信心。
第一次数学危机(无理数的产生)第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
(一)、危机的起源毕达哥拉斯学派认为“万物皆数”,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。
后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。
毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为1的正方形对角线不能用整数来表示,这就产生了这个无理数。
这无疑对“万物皆数”产生了巨大的冲击,由此引发了第一次数学危机【1】。
(二)、危机的解决由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史上的三次危机无理数的发现数学史上的三次危机
无理数的发现 ?? 第一次数学危机
大约公元前,世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为"四艺"
整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为,的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第,卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命~
无穷小是零吗 , ?? 第二次数学危机
18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量,,应用二项式(x+0)n,从中减去xn以求得增量,并除以,以求出xn的增量与x的增量之比,然后又让,消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续??先设x有增量,又令增量为零,也即假设x没有增量。
"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。
无穷小量究竟是不是零,无穷小及其分析是否合理,由此而引起了数学界甚至哲学界长达一个半世纪的争论。
导致了数学史上的第二次数学危机。
18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。
其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
悖论的产生 --- 第三次数学危机
数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论中的第一个悖论。
两年后,康托发现了很相似的悖论。
1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素悖论曾被以多种形式通俗化。
其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。
当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸,"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大厦动摇了。
无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第,卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。