2008年山东高考数学文科试题及答案 2
2008文科数学高考真题全国卷Ⅱ试卷答案.doc

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 提示:1、αα,0sin < 在第三或四象限,0tan >α,α在第一或三象限α∴为第三象限角2、}1,0,1{},21|{-=∈<≤-=⋂Z x x x N M3、555==d4、)(x f 为奇函数5、c a b x x e <<∴<<-∴<<-0ln 1116、当⎩⎨⎧=-=22y x 时,83min -=-=y x Z7、ax y 2'=,当1=x 时,122,2'=∴==a a a y 8、如图,,60,32oSAO SA =∠=则6,3,360sin =∴==⋅=AB AO SA SO o CDS636312=⨯=∴V 9、444)1()1()1(x x x -=+- ,x ∴的系数为414-=-C 10、)4sin(2cos sin )(π-=-=x x x x f )(x f ∴最大值为211、设1||=AB ,则3=AC ,13||||2-=-=CB AC a ,1||2==AB C ,21322+==∴ace 12、1O 与2O 的公共弦为AB ,球心为O,AB 中点 为C ,则四边形C OO O 21为矩形,所以OC AC AC OA OC O O ⊥===,1||,2|||,|||213||||||22=-=∴AC OA OC二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 13、20)2(7)32(4)32,2(=∴=+-+∴++=+λλλλλλ ;14、42036310316=--C C C ; 15、设),(),(2211y x B y x A ,),(444122122121222x x y y x y x y -=-∴⎪⎩⎪⎨⎧==14121212=+=--y y x x y y AB ∴所在直线方程为22-=-x y 即x y =,又4,04212==⇒⎩⎨⎧==x x xy xy , 22||||211||24||2||12==∴==-=∆OF AB S OF x x AB ABF ;注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =. ···················· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ········· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ·········· 8分所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=.····· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ······················ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ······················· 7分 当0d =时,20420200S a ==. ··················· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ·················· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ················ 6分 (Ⅱ)12B C C =+, ······················· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ······· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ··················· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余. 于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ······················ 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥, 故1A HG ∠是二面角1A DE B --的平面角. ·············· 8分EF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ············ 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.AB CD E A 1B 1C 1D 1 FH G依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DB DE D =,所以1A C ⊥平面DBE . ······················ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ············· 9分1AC <>,n 等于二面角1A DE B --的平面角, 11114cos 42A C A C A C<>==,n n n . 所以二面角1A DE B --的大小为arccos 42. ············ 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ········· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ·························· 9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ·················· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ········ 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ······················· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==.··············9分又AB==,所以四边形AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号.所以S的最大值为····12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+····························9分===当222x y=时,上式取等号.所以S的最大值为.········12分2008年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题答案解析:一、选择题 ( 本大题 共 12 题, 共计 60 分) 1、(5分) C 由sin α<0得α在三,四象限. tan α>0得α在一,三象限. 故α在第三象限.2、(5分) B 依题M={-2,-1,0,1},N={-1,0,1,2,3},从而M∩N={-1,0,1},故选B.3、(5分) D 由点到直线的距离公式知原点到已知直线的距离是.4、(5分) C∵f(x)=f(-x),∴f(x)=-x 是奇函数.∴f(x)的图象关于坐标原点对称. 5、(5分) C a=lnx,b=2lnx=lnx 2,c=ln 3x. ∵x∈(e -1,1),∴x>x 2. 故a >b,排除A 、B.∵e -1<x <1,∴-1<lnx <ln1=0. ∴lnx<ln 3x.∴a<c.故b <a <c,选C. 6、(5分) D 作出可行域.令z=0,则l 0:x-3y=0,平移l 0在点M(-2,2)处z 取到最小,最小值为-8.7、(5分) A y=ax2,y′=2ax,∴y′|x=1=2,∵切线与直线2x-y-6=0平行,∴2a=2,∴a=1.8、(5分) B作图,依题可知SO=2sin60°=2·=3,CO=2·cos60°=2·=.∴底面边长为.从而VS—ABCD =SABCD·SO=×()2×3=6.9、(5分) A(1-)4(1+)4=[(1-)(1+)]4=x4-4x3+6x2-4x+1, ∴x的系数为-4.10、(5分) B f(x)=sinx-cosx=sin(x-),故f(x)max=.11、(5分) B∵A、B为两焦点且双曲线过C点,∴|CA|-|CB|=2a,2c=a′.不妨设AB=BC=a′,则AC=a′.∴e==.12、(5分) C依题意有示意图截面示意图为其中AH 为公共弦长的一半,OA 为球半径,∴OH=.故选C.二、填空题 ( 本大题 共 4 题, 共计 20 分) 13、(5分) 2 λa +b =λ(1,2)+(2,3)=(λ+2,2λ+3), ∵λa +b 与c 共线,∴(λ+2)·(-7)-(2λ+3)·(-4)=0. 解出λ=2. 14、(5分) 420 N==420.15、(5分) 2 设A(x 1,y 1),B(x 2,y 2),∴y 12=4x 1, y 22=4x 2.两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2). 又y 1+y 2=2×2=4,∴,即k AB =1.∴lAB:y-2=x-2,即y=x.∴x2-4x=0.∴x1+x2=4,x1x2=0.∴|AB|===.点F到AB的距离d=.∴S△A BF=××=2.16、(5分) 两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题 ( 本大题共 6 题, 共计 70 分)17、(10分) 解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以的面积.18、(12分) 解:设数列的公差为,则,,.由成等比数列得,即,整理得,解得或.当时,.当时,,于是.19、(12分) 解:记分别表示甲击中9环,10环,分别表示乙击中8环,9环,表示在一轮比赛中甲击中的环数多于乙击中的环数,表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ),.(Ⅱ),,,.20、(12分) 解法一:依题设,,.(Ⅰ)连结交于点,则.由三垂线定理知,.在平面内,连结交于点,由于,故,,与互余.于是.与平面内两条相交直线都垂直,所以平面.(Ⅱ)作,垂足为,连结.由三垂线定理知,故是二面角的平面角.,,.,.又,..所以二面角的大小为.解法二:以为坐标原点,射线为轴的正半轴,建立如图所示直角坐标系.依题设,.,.(Ⅰ)因为故,.又,所以平面.(Ⅱ)设向量是平面的法向量,则,.故,.令,则,,.等于二面角的平面角,.所以二面角的大小为.21、(12分) 解:(Ⅰ).因为是函数的极值点,所以,即,因此.经验证,当时,是函数的极值点.(Ⅱ)由题设,.当在区间上的最大值为时,,即.故得.反之,当时,对任意,,而,故在区间上的最大值为.综上,的取值范围为.22、(12分) 解:(Ⅰ)依题设得椭圆的方程为,直线的方程分别为,.如图,设,其中,且满足方程,故.①由知,得;由在上知,得.所以,化简得,解得或.(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,.又,所以四边形的面积为=,当,即当时,上式取等号.所以的最大值为.解法二:由题设,,.设,,由①得,,故四边形的面积为,当时,上式取等号.所以的最大值为.。
2008年普通高等学校招生全国统一考试数学卷(山东.文)含详解

2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图。
2008年数学(文科)试卷(山东卷)(word版+详细解析)

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,, 的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( D ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.选A.xxA .B .C .D .4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限. 在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .0解析:本小题主要考查四种命题的真假。
易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题 有一个。
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2D.4.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣87.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣18.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.189.(5分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.410.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.211.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5 分)从10 名男同学,6 名女同学中选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.(5 分)已知F 是抛物线C:y2=4x 的焦点,A,B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】GC:三角函数值的符号.【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组.【解答】解:sinα<0,α在三、四象限;tanα>0,α在一、三象限.故选:C.【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2 D.【考点】IT:点到直线的距离公式.【分析】用点到直线的距离公式直接求解.【解答】解析:.故选:D.【点评】点到直线的距离公式是高考考点,是同学学习的重点,本题是基础题.4.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.7.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣1【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.【解答】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0 平行∴有2a=2∴a=1故选:A.【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.8.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.18【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题.【分析】先求正四棱锥的高,再求正四棱锥的底面边长,然后求其体积.【解答】解:高,又因底面正方形的对角线等于,∴底面积为,∴体积故选:B.【点评】本题考查直线与平面所成的角,棱锥的体积,注意在底面积的计算时,要注意多思则少算.9.(5 分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.4【考点】DA:二项式定理.【分析】先利用平方差公式化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x 的指数为1 求得展开式中x 的系数.【解答】解:=(1﹣x)4(1﹣x)4的展开式的通项为T r+1=C4r(﹣x)r=(﹣1)r C4r x r令r=1 得展开式中x 的系数为﹣4故选:A.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定想问题的工具.10.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.2【考点】H4:正弦函数的定义域和值域;HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据两角和与差的正弦公式进行化简,即可得到答案.【解答】解:,所以最大值是故选:B.【点评】本题主要考查两角和与差的正弦公式和正弦函数的最值问题.三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题.11.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】根据题设条件可知2c=|AB|,所以,由双曲线的定义能够求出2a,从而导出双曲线的离心率.【解答】解:由题意2c=|AB|,所以,由双曲线的定义,有,∴故选:B.【点评】本题考查双曲线的有关性质和双曲线定义的应用.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.10 610 6 10 6 10 6二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设向量 ,若向量与向量共线,则 λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解. 【解答】解:∵a=(1,2),b=(2,3), ∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λα+b 与向量 c=(﹣4,﹣7)共线, ∴﹣7(λ+2)+4(2λ+3)=0, ∴λ=2. 故答案为 2【点评】考查两向量共线的充要条件.14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的不同选法共有 420种(用数字作答)【考点】D5:组合及组合数公式. 【专题】11:计算题;32:分类讨论.【分析】由题意分类:①男同学选 1 人,女同学中选 2 人,确定选法;②男同学 选 2 人,女同学中选 1 人,确定选法;然后求和即可.【解答】解:由题意共有两类不同选法,①男同学选 1 人,女同学中选 2 人,不同选法 C 1C 2=150; ②男同学选 2 人,女同学中选 1 人,不同选法 C 2C 1=270;共有:C 1C 2+C 2C 1=150+270=420 故答案为:420【点评】本题考查组合及组合数公式,考查分类讨论思想,是基础题.15.(5 分)已知 F 是抛物线 C :y 2=4x 的焦点,A ,B 是 C 上的两个点,线段 AB, 的中点为 M (2,2),则△ABF 的面积等于 2 .【考点】K8:抛物线的性质.【专题】5D :圆锥曲线的定义、性质与方程. 【分析】设 A (x 1,y 1),B (x 2,y 2),则=4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2),利用中点坐标公式、斜率计算公式可得 k AB ,可得直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,与抛物线方程联立可得 A ,B 的坐标,利用弦长公式可得|AB |,再利用点到直线的距离公式可得点 F 到直线 AB 的距离 d ,利用三角形面积公式求得答案.【解答】解:∵F 是抛物线 C :y 2=4x 的焦点,∴F (1,0).设 A (x 1,y 1),B (x 2,y 2),则, =4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2), ∵线段 AB 的中点为 M (2,2),∴y 1+y 2=2×2=4,又=k AB ,4k AB =4,解得 k AB =1,∴直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,联立 ,解得,,∴|AB |==4.点 F 到直线 AB 的距离 d=,∴S △ABF ===2,故答案为:2.【点评】本题主要考查了直线与抛物线相交问题弦长问题、“点差法”、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】(Ⅰ)先利用同角三角函数的基本关系求得sinA 和sinB 的值,进而根据sinC=sin(A+B)利用正弦的两角和公式求得答案.(Ⅱ)先利用正弦定理求得AC,进而利用三角形面积公式求得三角形的面积.【解答】解:(Ⅰ)∵在△ABC 中,A+B+C=180°,sinC=sin(180﹣(A+B))=sin(A+B)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以△ABC 的面积S=BC•AC•sinC=×5××=.【点评】本题主要考查了同角三角函数的基本关系的应用和正弦的两角和公式的应用.考查了学生对三角函数基础知识的理解和灵活运用.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.【考点】85:等差数列的前n 项和.【专题】54:等差数列与等比数列.【分析】先设数列{a n}的公差为d,根据a3,a6,a10 成等比数列可知a3a10=a62,把d 和a4 代入求得d 的值.再根据a4 求得a1,最后把d 和a1 代入S20 即可得到答案.【解答】解:设数列{a n}的公差为d,则a3=a4﹣d=10﹣d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.由a3,a6,a10 成等比数列得a3a10=a62,即(10﹣d)(10+6d)=(10+2d)2,整理得10d2﹣10d=0,解得d=0 或d=1.当d=0 时,S20=20a4=200.当d=1 时,a1=a4﹣3d=10﹣3×1=7,于是=20×7+190=330.【点评】本题主要考查了等差数列和等比数列的性质.属基础题.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(Ⅰ)甲、乙的射击相互独立,在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.【解答】解:记A1,A2 分别表示甲击中9 环,10 环,B1,B2 分别表示乙击中8环,9 环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(I)甲、乙的射击相互独立在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到∴P(A)=P(A1•B1+A2•B1+A2•B2)=P(A1•B1)+P(A2•B1)+P(A2•B2)=P(A1)•P(B1)+P(A2)•P(B1)+P(A2)•P(B2)=0.3×0.4+0.1×0.4+0.1×0.4=0.2.(II)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,P(C2)=[P(A)]3=0.23=0.008,∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.【点评】考查运用概率知识解决实际问题的能力,包括应用互斥事件和相互独立事件的概率,相互独立事件是指两事件发生的概率互不影响,这是可以作为一个解答题的题目,是一个典型的概率题.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出 平面 DA 1E 和平面 DEB 的法向量,求二者的数量积可求二面角 A 1﹣ DE ﹣B 的大小. 【解答】解:解法一:依题设知 AB=2,CE=1.(I ) 连接 AC 交 BD 于点 F ,则BD ⊥AC .由三垂线定理知,BD ⊥A 1C .(3 分)在平面 A 1CA 内,连接 EF 交 A 1C 于点 G , 由于,故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C=∠CFE ,∠CFE 与∠FCA 1 互余.于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD ,EF 都垂直,所以 A 1C ⊥平面 BED .(6 分)(II ) 作 GH ⊥DE ,垂足为 H ,连接 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1﹣DE ﹣B 的平面角.(8 分),. ,又, ..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9 分)等于二面角A1 ﹣DE﹣B 的平面角,所以二面角A1﹣DE﹣B 的大小为.(12分)【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.【考点】6C:函数在某点取得极值的条件;6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】16:压轴题.【分析】(Ⅰ)导函数在x=2 处为零求a,是必要不充分条件故要注意检验(Ⅱ)利用最大值g(0)大于等于g(2)求出a 的范围也是必要不充分条件注意检验【解答】解:(Ⅰ)f'(x)=3ax2﹣6x=3x(ax﹣2).因为x=2 是函数y=f(x)的极值点,所以f'(2)=0,即6(2a﹣2)=0,因此a=1.经验证,当a=1 时,x=2 是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3﹣3x2+3ax2﹣6x=ax2(x+3)﹣3x(x+2).当g(x)在区间[0,2]上的最大值为g(0)时,g(0)≥g(2),即0≥20a﹣24.故得.反之,当时,对任意x ∈ [0 ,2] ,==≤0,而g(0)=0,故g(x)在区间[0,2]上的最大值为g(0).综上,a 的取值范围为.【点评】当函数连续且可导,极值点处的导数等于零是此点为极值点的必要不充分条件,所以解题时一定注意检验.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2= = = ,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.。
2008高考山东数学文科试题含答案(全word版)

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( )A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( )A .1516B .2716-C .89D .18xxA .B .C .D .6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )AB .5 C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A . BC .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)x a fx b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101ba -<<<-D .1101ab --<<<x俯视图 正(主)视图 侧(左)视图第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = . 15.已知2(3)4log 3233x f x =+, 则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.ABCMPD21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ+-+12)cos()2x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+-⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=. 所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 19.(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,ABCM PD O又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此4PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB5=, 此即为梯形ABCD 的高, 所以四边形ABCD的面积为2425S ==.故1243P ABCD V -=⨯⨯= 20.(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, 又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--, 即112()1n n n nS S S S ---=-,所以11112n n S S --=, 又1111S b a ===. 所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列. 由上可知1111(1)22n n n S +=+-=, 即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++. 因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列,因此28113491a b q ==-. 又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e(2)32x f x x x ax bx -'=+++1e (2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =.因为当(2)x ∈-∞-,(01) ,时,()0f x '<;当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e3x f x x x x -=--, 故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得2ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=.(Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠, ()A A A x y ,. 解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Ak k OA x y k k k +=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠, 所以222MO OA λ=,即2222220(1)45k x y k λ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k =-, 即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠,所以2225420x y λ+=, 故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+. 解法一:由于22214AMB S AB OM = △ 2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++ 22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OM k k+=+++++2224554920(1)20k k k +++==+, 又22112OA OMOA OM + ≥,409OA OM ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△.当k 不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409.。
2008年高考山东卷(文科数学)

2008年普通高等学校招生全国统一考试文科数学(山东卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}Ma a a a a =的集合M 的个数是A .1B .2C .3D .4 2. 2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 A .i B .i - C .1± D .i ±3.函数ln cos y x =(22ππx -<<)的图象是4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-≤=⎨+->⎩,则1()(2)f f 的值为 A .1516 B .2716- C .89D .18 6.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A .9π B .10π C .11π D .12π7.不等式252(1)x x +≥-的解集是 A .1[3,]2- B .1[,3]2- C .1[,1)(1,3]21 D .1[,1)(1,3]2-8.已知ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .向量(3,1)m =-,(cos ,sin )n A A =.若m n ⊥,且cos cos sin a B b A c C +=,则角A ,B 的大小分别为 A .6π,3π B .23π,6π C .3π,6π D .3π,3πA B C .3 D .8510.已知cos()sin 6παα-+=7sin()6πα+的值是 A ..532 C .45- D .54 11.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是正(主)视图俯视图 侧(左)视图A .227(3)()13x y -+-= B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223()(1)12x y -+-=12.已知函数()log (21)x a f x b =+-(1a >,1a ≠)的图象如图所示,则a ,b 满足的关系是A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆C :226480x y x y +--+=,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x ,y 满足约束条件20510000x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为2π. (Ⅰ)求()8πf 的值;(Ⅱ)将函数()y f x =的图象向右平移6π个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者1A 、2A 、3A 通晓日语,1B 、2B 、3B 通晓俄语,1C 、2C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求1A 被选中的概率; (Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB ∥DC ,PAD ∆是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.ABC DMP20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数1a ,2a ,4a ,7a ,构成的数列为{}n b ,111b a ==,n S 为数列{}n b 的前n 项和,且满足221nn n nb b S S =-(2n ≥). (Ⅰ)证明数列1{}nS 成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481-=a 时,求上表中第k (3k ≥)行所有项的和.21.(本小题满分12分)设函数2122()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分1414分) 已知曲线1C :1x ya b+=(0a b >>)所围成的封闭图形的面积为2C的内切圆半径为3,记2C 为以曲线1C 与坐标轴的交点顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB ∆的面积的最小值.1a 2a 3a 4a 5a 6a 7a 10a9a 8a。
2008年普通高等学校招生全国统一考试数学卷山东文含详解
2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分) 已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
2008年高考文科数学试题及参考答案(山东卷)
答 案 : ( 5, 5, 5); (1, 1, 1).
2
(08数学一)
6 . (11 分 ) f ( x ) 1 x (0 x ), 展 开 成 余 弦 级 数 , 并求级数
(08数学一)
( 1) n
2
n1
的 和.
n1
答案: f (x) 1
2
3
(11年数学一)
( B ) f (0 ) 1, f (0 ) 0, ( D ) f (0 ) 1, f (0 ), 0.
( A ) f (0 ) 1, f (0 ) 0, ( C ) f (0 ) 1, f (0 ) 0,
xy 0
6. 设 函 数 F ( x , y )
(08数学四)
答 案 : (1)d z
1
1
[( 2 x )d x ( 2 y )d y ];
(2)
u x
2 (1 2 x ) ( 1)2 Nhomakorabea7
2011考研真题
------高数下册部分题
8
1. 已 知 函 数 f ( x , y )具 有 二 阶 连 续 的 偏 导 数 , 且 f (1, y ) 0, f ( x , 1) 0, f ( x , y )d x d y a ,其 中 D {( x , y ) 0 x 1, 0 y 1},
D
计 算 二 重 积 分 xyf xy ( x , y )d x d y .
D
(11年数学一,二)
2 . 设 z f ( xy , yg ( x )), 其 中 函 数 f 具 有 二 阶 连 续 的 偏 导 数 , 函 数 g ( x ) 可 导 且 在 x 1处 取 得 极 值 g (1 ) 1, 求 z
2008高考全国卷Ⅱ数学文科试卷含答案(全word版)-推荐下载
A.1
B. 2
C.3
C. 3
D.18
11.设 △ABC 是等腰三角形, ABC 120 ,则以 A,B 为焦点且过点 C 的双曲线的离
心率为( )
1 2
A.
2
1 3
B.
2
C. 1 2
12.已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的圆心距等于( )
;
.
19.(本小题满分 12 分) 甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲 击中 8 环,9 环,10 环的概率分别为 0.6,0.3,0.1,乙击中 8 环,9 环,10 环的概率分别 为 0.4,0.4,0.2. 设甲、乙的射击相互独立. (Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率; (Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
A.1
B. 3
C.2
C.0,1 2,
D. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)
22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点, 直线 y=kx(k>0)与 AB 相交于点 D,与椭圆相交于 E、F 两点.
(Ⅰ)若
,求 k
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)
参考答案与试题解析
双曲线的离心率为( )
A.
B.
C.
D.
12.(5 分)已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆,若两
圆的公共弦长为 2,则两圆的圆心距等于( )
A.1
B.
C.
D.2
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.(5 分)设向量
,若向量
与向量
共线,
则 λ=
.
14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名
充要条件①
;
充要条件②
.
(写出你认为正确的两个充要条件)
三、解答题(共 6 小题,满分 70 分) 17.(10 分)在△ABC 中,cosA=﹣ ,cosB= .
(Ⅰ)求 sinC 的值; (Ⅱ)设 BC=5,求△ABC 的面积.
18.(12 分)等差数列{an}中,a4=10 且 a3,a6,a10 成等比数列,求数列{an}前 20 项的和 S20.
【解答】解:sinα<0,α 在三、四象限;tanα>0,α 在一、三象限. 故选:C. 【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一
全部,二正弦,三切值,四余弦,它们在上面所述的象限为正
2.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试山东文科数学试题及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( )A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)x a f x b a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = . 15.已知2(3)4log 3233x f x =+, 则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式; (Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性;ABCMPD(Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试答案1.B 解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B.2.D解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.A解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos x 的值域可以确定.选A.4.C 解析:本小题主要考查四种命题的真假。
易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中, 真命题 有一个。
选C.5.A 解析:本小题主要考查分段函数问题。
正确利用分段函数来进行分段求值。
(2)4,f = 11115()1.(2)41616f f f ⎛⎫∴==-= ⎪⎝⎭选A. 6.D 解析:本小题主要考查三视图与几何体的表面积。
从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=选D 。
7.D 解析:本小题主要考查分式不等式的解法。
易知1x ≠排除B;由0x =符合可排除C; 由3x =排除A, 故选D 。
也可用分式不等式的解法,将2移到左边直接求解。
8.C解析:本小题主要考查解三角形问题。
sin 0A A -=;3A π∴=2sin cos sin cos sin ,A B B A C ⇒+=2sin cos sin cos sin()sin sin A B B A A B C C +=+==,.2C π=π6B ∴=.选C. 本题在求角B 时,也可用验证法.9.B解析:本小题主要考查平均数、方差、标准差的概念及其运算。
100409060103,100x ++++==2222121[()()()]n S x x x x x x n ∴=-+-++-22221[202101301102]100=⨯+⨯+⨯+⨯ 1608,1005==S ⇒=选B.10.C解析主要考查三角函数变换与求值。
3cos()sin sin 62παααα-+=+=14cos 25αα=,714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭选C.11.B解析:本小题主要考查圆与直线相切问题。
设圆心为(,1),a 由已知得|43|11,2().52a d a -==∴=-舍选B.12.A 解析:本小题主要考查正确利用对数函数的图象来比较大小。
由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<11l o gl o g l o g 10,a aa b a⇒-=<<=101a b -∴<<<.选A. 二、填空题13.221412x y -= 解析:本小题主要考查圆、双曲线的性质。
圆22:6480C x y x y +--+= 20680,y x x =⇒-+=得圆C 与坐标轴的交点分别为(20),,(40),, 则22,4,12,a c b ===所以双曲线的标准方程为221412x y -=14.4解析:本小题主要考查程序框图。
1110.8248++>,因此输出 4.n =15.2008解析:本小题主要考查对数函数问题。
22(3)4log 32334log 3233,x x f x =+=+2()4l o g 233,f x x ⇒=+8(2)(4)(8)(2)f f ff∴++++=222282334(l o g 22l o g 23l o g 28l o g 2)18641442008.⨯+++++=+= 16.11 解析:本小题主要考查线性规划问题。
作图(略)易知可行域为一个四角形,其四个顶点分别为(0),,0(0),,2(20),,(35),,验证知在点(35),时取得最大值11.三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12)cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+-⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭.因为0ω>,且x ∈R ,所以πcos 06ϕ⎛⎫-= ⎪⎝⎭.又因为0πϕ<<,故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭.由题意得2ππ22ω= ,所以2ω=.故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫== ⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫- ⎪⎝⎭的图象,所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 19.(Ⅰ)证明:在ABD △中,由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD , 又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此42PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB=, 此即为梯形ABCD 的高, 所以四边形ABCD的面积为24S ==.故1243P ABCD V -=⨯⨯= 20.(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-, ABCM PD O又12n n S b b b =+++ ,所以1212()1()n n n n n n S S S S S S ---=--,即112()1n n n nS S S S ---=-, 所以11112n n S S --=,又1111S b a ===. 所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+. 所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== , 所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列,因此28113491a b q ==-. 又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)k k k k b q S k q k k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e (2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-, 所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =.因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的. (Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--, 故21321()()e (e )x x f x g x x x x x ---=-=-,令1()e x h x x -=-,则1()e 1x h x -'=-.令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤,所以()h x 在(]1x ∈-∞,上单调递减.故(]1x ∈-∞,时,()(1)0h x h =≥;因为[)1x ∈+∞,时,()0h x '≥,所以()h x 在[)1x ∈+∞,上单调递增.故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥, 故对任意()x ∈-∞+∞,,恒有()()f x g x ≥.22.解:(Ⅰ)由题意得2ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =. 因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠, ()A A A x y ,. 解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Ak k OA x y k k k +=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠, 所以222MO OA λ=,即2222220(1)45k x y k λ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k =-,即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ ,又220x y +≠,所以2225420x y λ+=, 故22245x y λ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+. 解法一:由于22214AMB S AB OM = △ 2222180(1)20(1)44554k k k k ++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=△. 当k不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OM k k +=+++++2224554920(1)20k k k +++==+, 又22112OA OMOA OM + ≥,409OA OM ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=△. 当k不存在时,140429AMB S ==>△. 综上所述,AMB △的面积的最小值为409.。