基于Hough变换的直线检测程序

合集下载

利用Hough变换实现直线的快速精确检测

利用Hough变换实现直线的快速精确检测

第13卷 第2期2008年2月中国图象图形学报Journal of I m age and GraphicsVol .13,No .2Feb .,2008收稿日期:2006204225;改回日期:2006210217第一作者简介:滕今朝(1970~ ),男,讲师。

2007年于海军航空工程学院获测试计量仪器与科学专业硕士学位。

主要从事电气自动化、检测技术方面的教学和研究。

E 2mail:t w rite@利用Hough 变换实现直线的快速精确检测滕今朝1) 邱 杰2)1)(威海职业学院机电工程系,威海 264210) 2)(海军航空工程学院,烟台 264000)摘 要 利用Hough 变换对直线进行检测,通常存在“速度缓慢、结果不够精确”的问题,本文提出了“分式查表法”,能在大幅度减少Hough 变换的总计算量的情况下,检测精度保持最高,从而使超大型图像中,直线的实时、精确检测成为可能。

关键词 Hough 变换 参数空间 精度 分式查表法中图法分类号:TP391.41 文献标识码:A 文章编号:100628961(2008)022*******Fa st and Prec ise D etecti on of Stra i ght L i n e w ith Hough Tran sformTE NG J in 2zhao 1),Q I U J ie2)1)(E lectro m echanical Engineering D epart m ent,W eihai V ocational College,W eihai 264210)2)(College of N avy A viation Engineering,Yantai 264000)Abstract Pr oble m s as l ow s peed or inaccurate results in the p r ocess of line detecti on with Hough Transf or m re main unsatisfact orily s olved .This paper puts f or ward a ne w l ook 2up table t o decrease the computati on distinctly and keep ing the highest p recisi on .It offers the possibility in real 2ti m e app licati ons es pecially in large i m age .Keywords Hough Transf or m,para meter s pace,p recisi on,table l ook 2up1 引 言Hough 变换具有优异的鲁棒性和极佳的抗干扰能力,利用Hough 变换进行直线检测,是图像分析和计算机视觉的一个重要内容。

Hough变换检测直线

Hough变换检测直线

Hough 变换检测直线实验报告一,实验要求用hough 算法检测图像中的直线算法。

使用这一算法来求一幅图像中的所有大于规定长度的直线段,设规定的长度为20点。

二,Hough 变换简介Hough 变换是图像处理中从图像中识别几何形状的基本方法之一。

Hough 变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。

这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。

图1 Hough 变换)sin(sin cos 00θαθθρ+=+=A y x如上图所示,在图像空间,直线上一点),(00y x 转换到参数空间就是一条曲线,而且,图像空间同一直线上的点转换到参数空间的曲线一定相交于一点,即参数空间各曲线的交点对应着图像空间的一条直线,这样,检测参数空间曲线交点就检测出了图像空间的直线。

三,实验过程和结果分析用Hough 变换之前, 首先要对图像进行边缘检测的处理,也即霍夫线变换的直接输入只能是边缘二值图像。

本实验基于VS2008和OPENCV 来实现。

实验的步骤如下:(1)读入图像,转换成灰度图像OPENCV 中用cvLoadImage 函数来读取图像,函数原型:IplImage* cvLoadImage( const char* filename, int flags=CV_LOAD_IMAGE_COLOR );filename :要被读入的文件的文件名(包括后缀);flags :指定读入图像的颜色和深度;例如:cvLoadImage( fileame, -n1 ); //默认读取图像的原通道数cvLoadImage( filename, 0 ); //强制转化读取图像为灰度图 cvLoadImage( filename, 1 ); //读取彩色图(2)进行边缘检测本实验选择Canny算子的边缘检测,OPENCV中用Canny函数来进行Canny 算子的边缘检测,函数原型为:void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3 );image:单通道输入图像edges:单通道存储边缘的输出图像threshold1 :第一个阈值threshold2 :第二个阈值aperture_size :算子内核大小3,对检测出的二值图像进行Hough变换OPENCV中用cvHoughLines2函数来进行Hough变换,函数原型为:CvSeq* cvHonghLines2(CvArr* image,void* line_storage,int mehtod,double rho,double theta,int threshold,double param1 =0,double param2 =0);Image:输入8-比特、单通道(二值)图像line_storage:检测到的线段存储仓Method:Hough 变换变量,是下面变量的其中之一CV_HOUGH_STANDARD ——传统或标准Hough 变换CV_HOUGH_PROBABILISTIC——概率Hough 变换CV_HOUGH_MULTI_SCALE ——传统Hough 变换多尺度变种Rho:以象素为单位的距离精度,一般取1Theta:以弧度为单位角度精度,一般取CV_PI/180Threshold:阈值参数,当在一条直线上的像素点数大于threshold时,才将该直线作为检测结果显示出来,该值越大,得到直线越少。

基于Hough变换的平行直线检测改进算法研究

基于Hough变换的平行直线检测改进算法研究
摘 要 : 根 据 经 典 Ho g u h变 换 检 测 空 间 直 线 的 原 理 , 提 出 了 一 种 基 于 Ho g 变 换 的 平 行 直 线 检 uh
测 改进 算 法 ,将 采 集 到 的 图像 进 行 二值 化 处理 ,再 使 用 Sb l 子 对 该二 值 化 图像进 行 边缘 检 测 , oe 算 对 边 缘 检 测 得 到 的 图像 进 行 H u h 变 换 和 峰 值 点 检 测 , 峰 值 点 得 到 直 线 段 图像 , 后 使 用 本 文 提 出的 og 由 最
Ho h r n f r ug ta s o m
LV M e g n
(ol e f If mao c ne n E g er g, asa U i ri , iha ga 6 0 4, hn ) C l g o n r t n S i c ad n i e n Y nh n n es y Qn u ndo 0 60 C ia e o i e n i v t
中 图 分 类 号 :T 3 14 P 9 .1 文 献 标 识 码 :A 文 章 编 号 :1 7 — 7 0 2 1 17 0 2 — 3 6 4 7 2 (0 0 1 — 0 7 0
Re e r h o he m p o e pa a ll i de e to ag rt m ba e o s ac f t i r v d r le l ne t c i n l o ih sd n
K y wo d e r s: Ho g r n fr l a al lln ee t n;t r s od v l e u h t s i ;p r l i e d tc i a ol e o h e h l a u
在 遥 感 图 像 中 , 江 河 上 桥 梁 目标 的 识 别 具 有 重 要 对 意 义 。 由 于 桥 梁 的 最 突 出特 征 在 于 桥 体 的 平 行 直 线 , 所

用Hough变换检测直线和圆.

用Hough变换检测直线和圆.

特殊图像变换1、 HoughLines功能:利用 Hough 变换在二值图像中找到直线格式:CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, double theta, int threshold,double param1=0, double param2=0 ;参数:image:输入 8-比特、单通道 (二值图像,其内容可能被函数所改变line_storage:检测到的线段存储仓. 可以是内存存储仓 (此种情况下,一个线段序列在存储仓中被创建,并且由函数返回),或者是包含线段参数的特殊类型(见下面)的具有单行/单列的矩阵(CvMat*。

矩阵头为函数所修改,使得它的cols/rows将包含一组检测到的线段。

如果line_storage是矩阵,而实际线段的数目超过矩阵尺寸,那么最大可能数目的线段被返回(线段没有按照长度、可信度或其它指标排序.method:Hough 变换变量,是下面变量的其中之一:CV_HOUGH_STANDARD - 传统或标准 Hough 变换. 每一个线段由两个浮点数(ρ, θ 表示,其中ρ 是点与原点 (0,0 之间的距离,θ 线段与 x-轴之间的夹角。

因此,矩阵类型必须是CV_32FC2 type.CV_HOUGH_PROBABILISTIC - 概率 Hough 变换(如果图像包含一些长的线性分割,则效率更高. 它返回线段分割而不是整个线段。

每个分割用起点和终点来表示,所以矩阵(或创建的序列)类型是 CV_32SC4.CV_HOUGH_MULTI_SCALE - 传统 Hough 变换的多尺度变种。

线段的编码方式与CV_HOUGH_STANDARD 的一致。

rho:与象素相关单位的距离精度theta:弧度测量的角度精度threshold:阈值参数。

如果相应的累计值大于threshold,则函数返回的这个线段. param1:第一个方法相关的参数:∙对传统 Hough 变换,不使用(0.∙对概率 Hough 变换,它是最小线段长度.∙对多尺度 Hough 变换,它是距离精度rho的分母 (大致的距离精度是rho而精确的应该是rho / param1 .param2:第二个方法相关参数:∙对传统 Hough 变换,不使用 (0.∙对概率 Hough 变换,这个参数表示在同一条直线上进行碎线段连接的最大间隔值(gap, 即当同一条直线上的两条碎线段之间的间隔小于param2时,将其合二为一。

hough变换检测直线算法

hough变换检测直线算法

Hough变换检测直线算法是一种在图像处理中检测直线的方法。

其基本思想是将原始图像中的直线通过某种变换,在新空间中寻找能够描述直线的参数,从而检测出原始图像中的直线。

Hough变换检测直线算法的实现步骤如下:
1.图像预处理:将原始图像进行灰度化处理,以便于后续的处理。

2.边缘检测:使用边缘检测算法(如Canny算法)对预处理后的图像进行边
缘检测,得到二值化的边缘图像。

3.参数空间变换:将边缘图像中的直线按照一定的参数空间进行变换,将直
线的参数表示为参数空间中的一个点。

4.投票和阈值处理:在参数空间中,对每个点进行投票,并设置一个阈值,
将超过阈值的点作为候选直线。

5.直线拟合:对候选直线进行拟合,得到最终的直线方程。

Hough变换检测直线算法的优点是能够检测出图像中的直线,并且对直线的小幅度弯曲具有一定的鲁棒性。

数字图像处理—Hough变换直线检测,matlab实现

数字图像处理—Hough变换直线检测,matlab实现

数字图像处理—Hough变换直线检测,matlab实现实验八 Hough变换直线检测一、实验目的理解Hough变换的原理,了解其应用;掌握利用Hough变换进行直线检测的处理过程及编程方法。

二、实验内容利用Hough变换检测直线通常先进行边缘检测,得到只包含边缘的二值图像。

再通过Hough变换,在参数空间检测图像共线点的数量得到直线参数,从而实现直线检测。

1、读入图像(图像需有直线或直线性边缘)2、进行图像边缘,得到二值图像3、实现Hough变换,检测出图像中的直线方程4、输出结果三、实验要求1、编写代码,完成各项实验内容2、总结实验中遇到问题及解决方案,书写实验报告%Hough变换clc;clear;close all f=imread('line.bmp'); %若是彩色图片转灰度化if length(size(f))>2f=rgb2gray(f);end%figure(1)subplot(121);imshow(f); %利用edge函数进行边缘检测j=edge(f,'Sobel');subplot(122);imshow(j); [row,col]=size(j);pinfang=round((row*row+col*col)^0.5);A=zeros(2*pinfang,180);for m=1:rowfor n=1:colif j(m,n)>0for thera=1:180r=thera/180*pi; %角度转弧度rho=round(m*cos(r)+n*sin(r));%ρ=cosθ+sinθrho=rho+pinfang+1;%-l:l转换到1:2l+1A(rho,thera)=A(rho,thera)+1;endendendend[rho,thera]=find(A>40);%交点超过60条线的点,ma,na为参数空间的坐标点nma=length(rho);for i=1:nmahold onm=1:row;%rho=ma(i)-1;r=thera(i)/180*pi;n=(rho(i)-pinfang-m*cos(r))/(0.00001+sin(r));plot(n,m,'r'); end。

一种基于改进Hough变换的直线快速检测算法


A s at H u ht nfr ( T s oua o f n e ci u s outeson i n sigdt. b t c : o g a s m H )i app l t lo l edt t nd e oi b s s t os a dmi n a r r o ro r i e o t tr n e s a
确地检测出图像 中相应的直线。实验表 明 , 与传统 H u h og 变换相 比, 改进后的算法计算量小 , 节省 内存 , 无需先验知识 , 且抗干 扰性有显著提高 , 并降低了误检率和漏检率 。 关键词 : 像素点聚类 ; 感知编组 ;随机 H uh变换 ;直线检测 ; og 快速检测
D a ui , h oWe,H a gSn l g C e i y u nR j o Z a i un ogi , h nJ ne a n a
(tt KyL bo o e Ss m, eat etfEetcl n i e n ,Tig u nv sy Bin 08 , hn ) Sa e a e fPw r yt Dp r n o l r a E gn r g s h aU ir t, eig1 0 4 C i e m ci ei n ei j 0 a
第3卷 第1 1 2期 21 00年 1 2月
仪 器 仪 表 学 报
C i e e J u n lo ce t cI s u n h n s o r a f ini n t me t S i f r
V0.31 1 No 2 .1
De e.2 0 Ol

种 基 于 改 进 Ho g u h变 的 直 线 快 速 检 测 算 法 木 8 ) 0 04
( 清华大学电机系电力系统 国家重点实验室 摘

一种新的基于hough变换的直线识别方法

一种新的基于hough变换的直线识别方法
Hough变换是一种基本的几何转换,可以将点集与特定形状的关系转换为参数空间中的直线集合。

Hough变换在计算机视觉领域中被广泛应用,尤其是在图像分析和模式识别中的直线检测中。

传统的Hough变换直线识别算法通常使用二维参数空间(斜率和
截距),但这种方法存在计算复杂度高,噪音敏感等问题。

为了解决
这些问题,近年来出现了一种新的基于Hough变换的直线识别方法,
该方法使用极坐标参数空间(角度和距离),具有较高的鲁棒性和计
算效率。

该方法的实现过程首先将图像进行边缘检测,然后将边缘点转换
为极坐标系下的参数空间点。

在极坐标参数空间中,一条直线将对应
一个点附近的集合,而这个集合可以通过匹配算法进行识别,最终确
定直线的参数。

这种基于Hough变换的直线识别方法可以有效地应对图像噪声和
复杂背景的影响,同时具有较高的计算效率和识别精度。

在实际应用中,可以将该方法与其他图像处理算法相结合,实现更为准确的目标
检测和跟踪。

总之,基于Hough变换的直线识别方法是计算机视觉领域中一种
非常实用的技术,其应用范围广泛,从工业检测到日常生活都具有重
要的应用价值。

因此,我们需要不断探索和研究该方法的优化和改进,以更好地满足实际需要。

hough变换提取直线(Matlab实现)

Hough变换提取直线一、实验目标实现用Hough变换检测直线的算法二、实验内容1、读入图像选取有较多直线及部分曲线以作对比的图像作为实验素材,这里我们必须使用彩色图像(有些看似灰度图像的实际属性也是彩色图像),原因下面有详解。

2、检测图像边缘如果一个像素落在图像中某一个物体的边界上,那么它的邻域将成为一个灰度级变化的带。

对这种变化最有用的两个特征是灰度的变化率和方向,他们分别用梯度向量的幅度和方向来表示。

边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。

有若干种算子可以使用,大多数是基于方向导数掩模求卷积的方法。

如Roberts算子,Sobel算子,Prewitt算子,Log算子等。

这里采用Log算子提取图像边缘,再用均值滤波去除边缘图像噪声。

3、实现Houg变换,检测出图像中的直线Hough变换是一种利用图像的全局特征将特定形状的边缘连接起来,形成连续平滑边缘的一种方法。

它通过将源图像上的点影射到用于累加的参数空间,实现对已知解析式曲线的识别。

这里先对边缘图像进行二值化处理,然后再用hough变换提取直线,最后用红色标记之。

因为处理过程中需使用灰度图像,但最后无法给灰度图像赋颜色(会出错或效果不好),只能给彩色图像赋颜色,故最初输入时请使用彩色图像。

4、Matlab代码如下:f=imread('3.png');%读入彩色图像,注意不能使用灰度图像o=f; %保留彩色原图f=rgb2gray(f);%将彩色图像转换为灰度图像,f=im2double(f);figure();subplot(2,2,1);imshow(o);title('原图');[m,n]=size(f);%得到图像矩阵行数m,列数nfor i=3:m-2for j=3:n-2%处理领域较大,所以从图像(3,3)开始,在(m-2,n-2)结束l(i,j)=-f(i-2,j)-f(i-1,j-1)-2*f(i-1,j)-f(i-1,j+1)-f(i,j-2)-2*f(i,j-1)+16*f(i,j)-2*f(i,j+1)-f(i,j+2)-f(i+1,j-1)-2*f(i+1,j)-f(i+1,j+1)-f(i+2,j);%LoG算子endendsubplot(2,2,2);imshow(l);title('LoG算子提取图像边缘');[m,n]=size(l);for i=2:m-1for j=2:n-1y(i,j)=l(i-1,j-1)+l(i-1,j)+l(i-1,j+1)+l(i,j-1)+l(i,j)+l(i,j+1)+l( i+1,j-1)+l(i+1,j)+l(i+1,j+1);y(i,j)=y(i,j)/9; %LoG算子提取边缘后,对结果进行均值滤波以去除噪声,为下一步hough变换提取直线作准备endendsubplot(2,2,3);imshow(y);title('均值滤波器处理后')q=im2uint8(y);[m,n]=size(q);for i=1:mfor j=1:nif q(i,j)>80; %设置二值化的阈值为80q(i,j)=255; %对图像进行二值化处理,使图像边缘更加突出清晰elseq(i,j)=0;endendendsubplot(2,2,4);imshow(q);title('二值化处理后');%Hough变换检测直线,使用(a,p)参数空间,a∈[0,180],p∈[0,2d]a=180; %角度的值为0到180度d=round(sqrt(m^2+n^2)); %图像对角线长度为p的最大值s=zeros(a,2*d); %存储每个(a,p)个数z=cell(a,2*d); %用元胞存储每个被检测的点的坐标for i=1:mfor j=1:n%遍历图像每个点if(q(i,j)==255)%只检测图像边缘的白点,其余点不检测for k=1:ap = round(i*cos(pi*k/180)+j*sin(pi*k/180));%对每个点从1到180度遍历一遍,取得经过该点的所有直线的p值(取整) if(p > 0)%若p大于0,则将点存储在(d,2d)空间s(k,d+p)=s(k,d+p)+1;%(a,p)相应的累加器单元加一 z{k,d+p}=[z{k,d+p},[i,j]'];%存储点坐标elseap=abs(p)+1;%若p小于0,则将点存储在(0,d)空间 s(k,ap)=s(k,ap)+1;%(a,p)相应的累加器单元加一z{k,ap}=[z{k,ap},[i,j]'];%存储点坐标endendendendendfor i=1:afor j=1:d*2 %检查每个累加器单元中存储数量if(s(i,j) >70) %将提取直线的阈值设为70lp=z{i,j};%提取对应点坐标for k=1:s(i,j)%对满足阈值条件的累加器单元中(a,p)对应的所有点进行操作o(lp(1,k),lp(2,k),1)=255; %每个点R分量=255,G分量=0,B分量=0o(lp(1,k),lp(2,k),2)=0;o(lp(1,k),lp(2,k),3)=0; %结果为在原图上对满足阈值要求的直线上的点赋红色endendendendfigure,imshow(o);title('hough变换提取直线');5、实验结果附:两个参数的调节1.二值化图像的细节多少可以通过对二值化的阈值调节来控制,阈值越大,细节越少。

基于改进hough变换的直线图形快速提取算法

基于改进hough变换的直线图形快速提取算法摘要:Hough变换是一种重要的图形学算法,它可以快速提取出图像中的直线特征信息。

但由于Hough变换的实现比较复杂,其计算时间较长,在实际应用中,采用Hough变换算法容易发生计算量众大的问题。

为了改善Hough变换算法计算量过大问题,本文提出了一种基于改进Hough变换的快速直线提取算法。

实验结果表明,改进Hough 变换算法与传统Hough变换算法相比,可以显著提高直线提取的准确率和速度。

关键词:Hough变换;改进Hough变换;直线提取1.言1.1 Hough变换Hough变换(HT)是一种非常有效的图像处理技术,它可以快速提取图像中的几何形状信息,如线、圆、椭圆等。

Hough变换的英文原意是“域(Field)”,它是由梯度下降算法的简单概念演变而来,依据的原理类似于一个投票机制,先将图像上的点变换到一种新的域中,再对域内的相同特征进行计数,最后根据计数情况判断出特征形状。

HT算法可以快速提取图像中的几何形状,其优势是显而易见的:现有的其他算法都基于梯度变化函数,只能提取到图像中比较明显的几何形状;而HT算法可以根据相应的几何形状计算出对应的几何参数,从而实现更精确的图像表示。

1.2进Hough变换当前Hough变换的应用范围日益广泛,目前主要的应用有纹理分析、面部识别等。

然而,Hough变换虽然能够快速提取出图像中的几何特征,但实现起来非常复杂,其计算时间较长,在实际应用中,采用Hough变换算法容易发生计算量众大的问题。

为了改善Hough变换算法计算量过大问题,近年来提出了一种改进的Hough变换算法(Improved Hough Transform,IHT),它可以有效地提高直线提取的准确率和速度。

2.法原理2.1进Hough变换算法的基本原理改进的Hough变换算法基于Hough变换的基本原理,主要用于直线提取。

根据Hough变换的基本原理,图像中的点可以通过变换到一个新的域中,根据计数结果判断出特征形状,改进的Hough变换算法也是基于此原理演变而来的,但它引入了一种新的算法,可以有效地减少计算量,加快直线提取的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告题目基于Hough变换的直线检测程序专业电子信息工程班级电子2013-02班学号20131573姓名陈涛指导教师黄进电气工程学院二〇一六年九月至二〇一六年十二月课程设计任务书摘要直线检测是图像处理中一个特别重要的研究课题,作为图像分割处理的基础。

在图像处理领域,直线特征经常是被用于高层处理,所以直线检测对于数字图像处理有着重要的意义。

同时在图像处理中,对直线的识别和定位也是很重要的。

例如在工程项目上经常要进行直线检测,对直线物体或图标进行模式识别和定位。

图像处理是人类视觉延伸的重要手段之一,可以达到使人们看到任意波长所测得的图像的目的。

图像处理是使用计算机对图像进行分析,以达到所需结果的技术,因而又称影像处理。

图像处理一般指数字图像处理。

数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值.图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。

数字图像处理技术发展很快,给定形状图像的检测问题也是各种工程事项中经常碰到的一类问题,类直线形状图形的检测是其中主要的一类。

本文给出Hough变换的基本原理。

针对图像空间的直线检测问题,提出基于Hough变换的检测算法。

关键词:Hough变换;边缘检测;直线检测目录第一章绪论 (1)1.1数字图像处理与直线检测 (1)1.1.1图像工程 (1)1.1.2数字图像处理 (2)1.2图像检测技术发展历史及现状 (5)1.3直线检测课题存在的问题 (6)第二章编程工具和环境搭建 (7)2.1 OpenCV (7)2.2 Microsoft Visual Studio (8)2.3 环境搭建 (9)2.3.1安装OpenCV (9)2.4 OpenCV常用数据结构用法介绍 (11)第三章直线检测算法的实现 (13)3.1 Hough变换 (13)3.2 Hough变换原理 (13)3.3 基于Hough变换的直线检测的实现 (14)3.3.1直线检测的流程 (15)3.3.2直线检测算法分析 (15)3.3.3函数分析 (16)3.3.4显示程序运行的结果 (17)第四章结论 (18)参考文献 (19)附录 (20)第一章绪论1.1 数字图像处理与直线检测1.1.1 图像工程图像工程是将图像技术发展过程中出现的各种新理论、新方法、新技术、新设备等进行综合研究和集成应用的一个整体框架,科分为3个层次:(1)图像处理(Image Processing)强调在图像之间进行一定程度地变换,功能上主要是满足对图像进行加工处理以达到改善图像的视觉效果并为自动识别做好铺垫,或对图像进行压缩编码以减少所需存储空间和时间、传输通路的要求。

(2)图像分析(Image Analysis)图像分析是指对图像中感兴趣的目标进行检测和测量,以获得目标的客观信息从而建立对图像的描述。

图像分析是一个从图像到数据的过程。

这里的数据可以是对目标特征测量的结果,或是基于测量的符号表示,其主要是以观察者为中心研究客观世界。

图像分析是图像工程中层的操作,分割和特征值提取把原来以像素描述的图像转变为比较简单的非图形式的描述。

(3)图像理解(Image Understanding)图像理解进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)。

图像理解是处于图像工程最高层的操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理可以有许多类似之处。

本次课程设计直线段的检测属于图像分析阶段,对其研究的意义在于:直线段是图像的基本组成元素,任何图形微观上都是由直线段组成:直线段的检测为图像分析阶段中更高层的处理诸如目标的表达提取和识别提供数据支持,它的影响可以达到图像理解阶段。

在实际应用中,道路识别、建筑物识别、医学图像分析、航空和卫星图像分析等领域都需要借重于直线检测技术。

1.1.2 数字图像处理数字图像处理(Digital Image Processing)又称为计算机图像处理,简单的说就是将图像信号转换成数字信号并利用计算机进行处理的过程。

数字图像处理常用方法有以下几个方面:(1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

(2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

(3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

(4)图像分割:图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

因此,对图像分割的研究还在不断深入之中,是图像处理中研究的热点之一。

(5)图像描述:图像描述是图像识别和理解的必要前提。

作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。

对于特殊的纹理图像可采用二维纹理特征描述。

随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

(7)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

应用工具数字图像处理的工具可分为三大类:第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中。

第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法。

第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

数字图像处理的应用:(1)数字图像处理的典型应用:【图像压缩和传输(或者叫着图像通信也可以)】(如:静态图像JPEG压缩标准;动态MPEG标准,电信上类似的标准是H.264,娱乐上的MP4也属于这方面),主要研究内容是研发更有效的图像的编解码算法(现在已经有很多硬件实现的编解码芯片了,具体性能指标和适用的标准不同);(2)生物识别为数字图像处理在【信息安全】领域的应用(包含指纹识别、虹膜识别、人脸识别等),当然交通系统使用的车牌识别也是类似的技术。

通用模式是:图像预处理(如去噪、增强等)+不变特征提取+与特征库中特征进行匹配=> 识别;生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。

除了CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。

此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。

【医疗影像处理】:CT成像,核磁共振MRI,超声,X线成像。

主要研究内容:图像去噪,图像增强,图像识别,3维可视化等等(3)而真正集中了最先进软硬件数字图像处理的应用领域是:军事:首先图像数据类型上包含所有的成像频段能获取的影像(如无线电(雷达成像)、红外、可见光、紫外、X线。

你把电磁光谱拉开看就明白),用声音回波来成像也可以,如声纳。

千万不要片面地理解图像就是可见光成像,那是人眼的局限。

军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。

目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。

主要包含这些研究内容:目标捕获目标锁定目标跟踪(4)飞机遥感和卫星遥感技术中。

许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。

对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。

从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。

因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。

如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。

这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。

这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。

现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。

相关文档
最新文档