11-微量元素地球化学

合集下载

微量元素地球化学

微量元素地球化学
有很低成分比例的溶质的溶液称为稀溶液。微量元素在岩石矿物中的分布
正是这种状态。如玄武岩中的镍橄榄石,其中的(Mg,Fe)2SiO4为溶剂,而
Ni2SiO4就是溶质。对于Ni2SiO4而言,这种橄榄石就是一种稀溶液。在稀溶
液中,溶质和溶质间的作用是微不足道的,而溶质和溶剂的相互作用制约
着溶质和溶剂的性质,亨利定律和拉乌尔定律就是用来描述这种性质的。

拉乌尔定律:

拉乌尔定律是稀溶液所遵循的另一规律,它是基于在溶剂中加入非挥
发性溶质后溶剂活度降低而得出的。其表述为“稀溶液中溶剂的活度等于
纯溶剂的活度乘以溶液中溶剂的摩尔分数”,即为
其中,aoj为纯溶剂的活度,Xj为溶剂的摩尔数, aj为溶液中溶剂的活度。


溶剂在全部浓度范围内都符合
拉乌尔定律的溶液称为理想溶液。
ratio),优先进入晶体。 如在碱性长石中Ba2+ (1.44 Å) 或Sr2+ (1.21 Å) 替代K+
(1.46 Å)时,需要有一个Al3+ 替代 Si4+来维持电价平衡。
主要的微量元素代替




橄榄石中Ni替代Fe2+和Mg2+ 。
尖晶石和磁铁矿中Cr和V 替代Fe3+ 。
斜长石中 Sr 替代 Ca 。
Nb,Ta,Zr,Hf等),稀土元素(La,Ce,Nd等),过渡族元素(Fe
,Co,Ni,Cu,Zn等)。
c.按地球化学作用过程分类:当固相(结晶相)和液相(熔体相,流体
相)共存时,若微量元素易进入固相,称为相容元素(Compatible
element)。反之,若微量元素易进入液相,称为不相容元素(

微量元素地球化学原理(第二版)(赵振华)PPT模板

微量元素地球化学原理(第二版)(赵振华)PPT模板
第二节稀溶液与亨利定律
01
一、亨利定 律
02
二、亨利定 律的适用范

第二章微量元素 地球化学基本概 念及有关理论问 题
第三节能斯特定律和分配系 数
二、分配系 数的测定
一、分配系 数
三、影响分 配系数的因 素
第二章微量元素地球化 学基本概念及有关理论 问题
第四节岩浆形成和演化过程的微 量元素地球化学模型
一、部分熔融 模型
三、结晶作用 模型
五、围岩混染 和分离结晶联 合作用(afc) 的模型
01
03
05
02
二、分离熔融 模型
04 四、混合模型
06
六、能量限制 分离结晶混染 (ec afc)模 型
第二章微量元素 地球化学基本概 念及有关理论问 题
第四节岩浆形成和演化过程 的微量元素地球化学模型
七、与时间相关 的分离结晶混染
ow)
08
第五章地球形成演化过程中的微量 元素
第五章地球形成演化过程中的微量元素
第一节太阳系星云、 陨石与地球成分
第二节月球的形成与 演化
第三节玻璃陨石的成 因
第四节地壳与大气圈 地球化学与演化
第五节地幔化学组成 及地球化学演化的微
统计分析法
04
四、元素丰度 与矿产储量和
资源潜力
07
第四章微量元素与构造背景判别
第四章微量元素与构 造背景判别
第一节微量元素识别板块 构造背景的地球化学依据
第二节不同类型岩石的构 造背景判别
第三节一些特殊类型构造 背景的识别
第四节微量元素用于构造 背景判别的限制
第四章微量元素 与构造背景判别
第一节微量元素识别板块构造 背景的地球化学依据

微量元素地球化学

微量元素地球化学

第一章 微量元素的分类
亲气元素 atmophile
组成地球大气圈的主要元素,惰性气体元 素,以及主要呈易挥发化合物存在的元素,如 氢、氮、碳、氧等
亲铁元素
亲铜பைடு நூலகம்素
在陨石中
在地球中
亲石元素 (在硅酸盐中)
Fe、Cr、 Ni、Co、 Ru、Rh、 Pd、Os、 Ir、Pt、
Au
S、Se、 S、Se、Te、 O、S、P、Si、Ti、 P、As、 As、Sb、Bi、 Zr、Hf、Th、F、Cl、 Cu、Ag、 Ga、In、Tl、 Br、I、Sn、B、Al、 Zn、Cd、 (Ge)、 (Sn)、 Ga、Sc、Y、REE、 (Ti)、V、 Pb、Zn、Cd Li、Na、K、Rb、 Cr、 Mn、 Hg、Cu、Ag、 Cs、Be、Mg、Ca、 Fe、(Ca) (Au)、Ni、Pd、 Sr、Ba、(Fe)、V、
第一章 微量元素的分类
• 地壳主要由O、Si、Al、Fe、Ca、Mg、Na、 K、Ti等九种元素组成,这九种元素占地壳 总重量的99%左右
• 因此这九种元素通常被称为主要元素(常 量元素),其它元素被统称为次要元素、 微量元素、痕量元素、杂质元素或稀有元 素等
第一章 微量元素的分类
• 常量元素(>0.1%)——能形成独立矿物相,
• Schmidt A, Weyer F.John J, Brey GP, 2009. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget, Geochimica et Cosmochimica Acta, 73( 2): 455-468

第五章微量元素地球化学2011

第五章微量元素地球化学2011

第四章微量元素地球化学第一节微量元素地球化学基本原理一、微量元素概念(是相对的概念)主量元素(主要元素、常量元素):岩石的主要组成部分,含量>0.1wt%,通常用氧化物的重量百分数来表示(wt%);微量元素(痕量元素、痕迹元素):难以形成独立矿物,浓度<0.1%,通常用ppm或ppt表示。

Gast(1968)对微量元素的定义是:不作为体系中任何相的主要化学计量组分存在的元素。

微量元素的另一定义为,在所研究的地球化学体系中,其地球化学行为服从稀溶液定律(亨利定律,Henry’s Law)的元素。

常(主)量和微量元素在自然界中是相对的概念,常因所处的体系不同而相互转化。

如Cr在大多数地壳岩石中为微量元素,但在超基性岩中可呈常量元素;Fe在岩石中是常量元素,但在有机物中多为微量元素;Zr在岩石中是微量元素,但在锆石中为常量元素;K在地壳整体中是主量元素,但它在陨石中却被视为微量元素。

在自然界中,主要的常量元素的含量变化范围有限(多小于1个数量级),而微量元素的变化范围较大(常达2个数量级),明显超过常量元素。

例如:SiO2在基性、中基性、中酸性和酸性岩浆的平均含量分别约为45、52、65和75 (wt%),其相对变化量为1.7;Rb在基性、中基性、中酸性和酸性岩浆的平均含量分别约为0.2、4.5、100和200 ppm,相对变化量为1000。

二、微量元素的特点1、微量元素的概念难以用严格的定义进行描述;2、自然界“微量”元素的概念是相对的,应基于所研究的体系;3、低浓度(活度)是微量元素的核心特征,在宏观上表现常为不能形成自己的独立矿物(相),近似服从稀溶液定律(亨利定律)。

三、微量元素在共存相中的分配规律地球化学过程中元素的地球化学行为在实质上表现为,当所在的介质条件发生变化时,其在相关共存的各相(液—固、固—固等)之间发生重新分配过程。

自然过程总量趋向于达到不同尺度的平衡,元素在平衡条件下,相互共存各相之间的分配取决于元素及矿物的晶体化学性质(内因)及物理化学条件(外因)。

微量元素地球化学111页PPT

微量元素地球化学111页PPT
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
谢谢!
微量元素地球化学
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

微量元素地球化学参考文档

微量元素地球化学参考文档
25
方法存在的问题: ❖ 难以证明是否达到平衡以及难以选纯矿物; ❖ 为了精确测定微量元素,实验过程中元素
的浓度远远高于自然体系。 ❖ 这些都是目前应用于解决实际问题的难题。
迄今以实验方法测得的分配系数数据尚不多 见。
26
2. 实测法:
斑晶-基质法 直接测定天然岩浆岩(火山岩)微 量元素含量。
火山岩中斑晶矿物代表熔体结晶过程中的固相, 基质或淬火熔体代表熔体相—岩浆,两相中微量元素 比值即为该元素的分配系数。
16
放射性产热元素(Radiogenic productheat elements) U、Th、40K(40K占K总量的极小部分)三种 元素,在研究地壳热结构、热状态方面有特 殊意义。 U、Th、40K是放射性元素,在自然蜕变过 程中产生热量,从而限制了岩石圈(地幔、 地壳)的热状态。
17
3.亨利定律:稀溶液定律
23
kDT kD,1 x1 kD,2 x2 kD,n xn
用岩石中所有矿物简单分配系数与岩石中各矿 物含量乘积之和表达:
式中:KjDi 为元素i在j矿物中的简单分配系数, Xj为i在j矿物中的重量百分数;n为与熔浆达到平衡 的矿物总数。
24
分配系数测定
两种方法求得分配系数,为进行实际问题研究的基本理 论参数。 根据能斯特定律,分配系数测定由两部分组成:平衡体 系中固相(结晶相)和液相(基质)的微量元素浓度。 计算分配系数。 1 .实验法:针对自然地质作用,设计各种给定条件,如 岩浆的酸度进行实验。 初始物质选择: ❖ 化学试剂法-试剂合成玻璃物质; ❖ 天然岩石;使一种矿物和熔体,或者两种矿物达到平 衡,并使微量元素在两相中达到溶解平衡,淬火后产物 分离测定含量,测定该元素在两相中浓度,得出分配系 数。

微量元素地球化学特征

微量元素地球化学特征

微量元素地球化学特征微量元素是指地球地壳中含量较低的元素,它们在自然界中的含量通常为百分之一或更少。

尽管微量元素的含量不高,但它们在地球化学中起着重要的作用。

本文将从地球化学的角度探讨微量元素的特征。

首先,微量元素的地球化学特征表现为它们在地壳和岩石中的广泛分布。

地球地壳中主要的元素有氧、硅、铝、铁等,而微量元素则包括锌、铜、锰、镁、锶等。

这些微量元素分布在不同类型的岩石中,如岩浆岩、沉积岩和变质岩等。

微量元素的含量受到地质作用的影响,如地壳运动、火山喷发、沉积过程等都会影响微量元素的分布。

其次,微量元素在地球化学循环中具有重要的作用。

微量元素可以进入大气、水体、土壤和生物体中,通过地球系统的各种过程进行循环。

例如,微量元素可以通过岩石的风化和侵蚀进入水体中,通过生物的摄取和代谢进入生物体中。

微量元素的循环对于维持地球生态系统的平衡和稳定非常重要。

此外,微量元素还可以作为地球化学指示物来研究地球系统的演化和环境变化。

由于微量元素的地球化学行为与它们的电子结构和原子半径等特性有关,因此微量元素在不同环境中的行为也会有所区别。

通过研究微量元素在岩石、水体和土壤中的分布和变化,可以了解地球系统的演化历史和环境变化过程。

最后,微量元素对生物体的生长和发育也具有重要的影响。

微量元素作为生物体的重要组成部分,参与了生物体内许多重要的生化过程。

例如,微量元素可以作为酶的辅助因子,参与调节酶的活性和催化生化反应。

此外,微量元素还可以影响植物的生长和产量,对动物的免疫系统和生殖系统也有一定的影响。

综上所述,微量元素在地球化学中具有重要的特征。

它们广泛分布于地壳和岩石中,参与了地球系统的循环过程,可以作为地球化学指示物来研究地球演化和环境变化,对生物体的生长和发育也有重要影响。

对微量元素的研究不仅有助于扩展我们对地球系统的认识,还对于农业生产、环境保护和人类健康具有重要意义。

微量元素地球化学

微量元素地球化学

微量元素地球化学1.2地球化学的发展现代地球科学有三个基本学科:地质学、地球物理学和地球化学。

大约在20世纪40年代末和50年代初,地球化学成为一门独立的学科。

在这里,作为一门独立学科的重要标志,以学科命名的课程在一些高校开设,以学科命名的科研教学单位开始出现,以学科命名的学术期刊问世。

目前,地球起源、全球板块构造理论和区域成矿分析等许多重大地球科学理论问题的解决,都有赖于这三个基础学科的密切合作。

地球化学的发展大致经历两个主要阶段;一是经典地球化学阶段,着重研究元素的丰度、分布和迁移,研究的手段主要是无机化学、晶体化学和分析化学的方法;二是近代地球化学阶段。

随着各项技术的发展(宇航技术、高温高压实验技术、核物理探测技术等),地球化学的研究领域不断扩展,朝着地球内部和宇宙空间发展,形成了以研究地幔为对象的深部地球化学和研究陨石、月球、宇宙尘的宇宙化学。

除研究元素外,还发展了同位素研究,建立了同位素地球化学。

在研究手段上更加注意了物理化学、热力学和动力学的理论和方法,发展了各种地球化学的模式研究,形成了地球化学全面发展的新时期。

1.2.1经典地球化学的三个代表1.克拉克(f.w.clarke,1847―1931)美国化学家克拉克是地球化学的创始人。

他重点研究了地壳中化学元素的分布和丰度。

他和同事H.s.Washington gton发表的地壳平均化学成分和地球化学数据是最早的地球化学著作。

克拉克的地球化学研究主要在美国地质调查局进行。

本世纪初,华盛顿卡内基研究所成立了地球物理实验室,后来地磁系(DTM)开辟了实验地球化学的新方向。

2.维尔纳茨基(в.и.верналскиǔ,1863―1945)俄罗斯矿物学家维尔纳茨基开创了生物地球化学和同位素地球化学的研究。

出版了《地球化学概论》一书。

他首先提出了地球化学旋转的概念,并用它来解释化学元素在连续的地球化学过程中的演化历史。

他的学生费尔斯曼开创了区域地球化学和地球化学勘探方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.微量元素分配系数
2)实验测定法 通过实验使一种矿物和一种液体(熔体或溶液)处于平衡, 或使两种矿物达到平衡,并使微量元素在两相中达到 溶解平衡,然后测定该元素在两相中的浓度,得出分 配系数。分为两类:化学试剂合成和直接采用天然物 质为初始物质法
存在的问题:
1. 难于证明平衡是否达到的问题; 2. 难将矿物与富集微量元素的相分离干净; 3. 难于将淬火时在晶体周围形成的杂质清除掉; 4. 实验采用的微量元素浓度远远高于自然体系。
Olivine Opx
Rb
0.010 0.022
Sr
0.014 0.040
Ba
0.010 0.013
Ni
14
5
Cr
0.70
10
La
0.007 0.03
Rare Earth Elements
Ce
0.006 0.02
Nd
0.006 0.03
Sm
0.007 0.05
Eu
0.007 0.05
Dy
0.013 0.15
15.74 3.79 7.13
57.94 0.87
17.02 3.27 4.04
MnO
0.41
0.20
0.14
MgO
31.24
6.73
3.33
CaO
5.05
9.47
6.79
Na2O K2O H2O+
0.49
2.91
3.48
0.34
1.10
1.62
3.91
0.95
0.83
Rhyolite Phonolite
1.微量元素概念
微 量 元 素 分 类 图
2.微量元素分配系数
2.1亨利定律 - 稀溶液定律 在电解质溶液中,由于离子之间相互制约作用的存在, 使得离子不能发挥出其浓度数值所示的作用,于是引入 了活度。 活度(ai):在相j中组分i在给定压力P、温度T和组成时
的化学势μ与在标准态时的化学势μ0之差。
(KD or D) «1
compatible elements are concentrated in the solid
(KD or D) »1
2.微量元素分配系数
Which are incompatible? Why?
Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks
1.微量元素概念
微量元素难以形成独立相,在矿物中主要存在形式: (1) 吸留(occlusion):在晶体的增生中吸附在晶面的杂 质被后来增生的晶层所圈闭; (2) 在固溶体中呈类质同象替代主要组分:在晶体晶 格的规则位置,微量元素替代主要组分; (3) 间隙固溶体(interstitial solid solution):与上类似, 只是微量元素占据的是晶格中的间隙位置。
分配系数可以浅略理解成在晶体/溶体的体系中,元素 进入晶体的能力 不相容元素:K或D1,倾向于富集在熔体相 相容元素:K或D 1,倾向于富集在结晶相 微量元素的相容或不相容,取决于所涉及的体系,及矿 物与熔体的类型。
2.微量元素分配系数
incompatible elements are concentrated in the melt
➢元素的地球化学迁移、活度积、共同离子效应、 盐效应、胶体及其特征、标准电极电位或标准氧化 -还原电位、地球化学梯度和地球化学障 ➢水-岩化学作用的基本类型 ➢络合物的不稳定常数的意义 ➢介质pH值对元素迁移的控制、 ➢氧化还原反应的地球化学意义 ➢风化壳的分带及硅、铝和铁的分异演化 ➢矽卡岩化
五、微量元素地球化学
7 0.955
0.01
6.8 29
34 1.345
0.01 2.00 7.4
0.056 0.001 0.148 0.544 2
0.092 0.007 0.082 0.843 2
0.230 0.026 0.055 1.340 2
0.445 0.102 0.039 1.804 1
0.474 0.243 0.1/1.5* 1.557 1
72.82 56.19
0.28
0.62
13.27 19.041.482.791.11
2.03
0.06
0.17
0.39
1.07
1.14
2.72
3.55
7.79
4.30
5.24
1.10
1.57
Total
98.75 99.06
99.3 99.50 99.23
1.微量元素概念
相容元素(Compatible elements): 岩浆结晶或固相部 分熔融过程中偏爱矿物相的微量元素; 不相容元素(Incompatible elements): 岩浆结晶或固相 部分熔融过程中偏爱熔体或溶液相的微量元素。 也称 为亲岩浆元素(hygromagmatophile)。 高场强元素(high field strength elements-HFSE): 离子 半径小的高电荷阳离子 (离子电位>3.0)。Zr, Hf, Nb, Ta, Th, U, Ti, REE。 低场强元素(low field strength elements-LHSE): 离子半 径大的低电荷阳离子(离子电位<3.0)。 又称大离子亲 石元素(large ion lithophile elements-LILE)。K, Rb, Cs, Sr, Ba。 此组元素更活泼, 特别在涉及流体相的 体系中。
根据能斯特定律,分配系数应该由两部分组成:平衡体 系中固相(结晶相)和液相(基质)的微量元素浓度。 目前最常采用的有两种方法:直接测定法和实验测定法
2.微量元素分配系数
1)直接测定法:斑晶-基质法 直接测定地质体中两平衡共存相中元素浓度,并按能
斯特分配定律计算元素的分配系数。 测定火山岩中斑晶矿物和基质(斑晶代表结晶过程中形
0.582 1.940 0.023 2.024 1
0.583 4.700 0.020 1.740 1.5
0.542 6.167 0.023 1.642 1.4
0.506 6.950 0.019 1.563
* Eu3+/Eu2+ Italics are estimated
2.微量元素分配系数
总分配系数 n D= Wi • KDi i 1 n为含元素i的矿物数,Wi为每种矿物在集合体中所占 的重量百分数, KDi为元素在每种矿物与熔体间的简单 分配系数。
1.微量元素概念
1.2 微量元素地球化学分类 Major elements: 主量(常量)元素-大多数地质物质中 含量大于0.1%的元素: O,Si,Al,Fe,Ca, Na, K, Mg。造岩矿物的基本组成。 用氧化物质量百分比表示。
Trace elements: 微量元素-大多数地质作用中含量小 于0.1%的元素。 除主量 (总重量丰度占99%左右)以外 呈微量 (<0.1wt%)的元素。
即:
Xi() Xi()
K•K Kh h(( ))
KD(T,p)
2.微量元素分配系数
能斯特分配定律—在给定溶质、溶剂及温度和压力下, 微量元素i在两相间的浓度比值为常数KD,它与温度和 压力有关,与i的浓度无关(在一定浓度范围内)。两相中 的浓度比值就是能斯特分配系数(摩尔分配系数)。
分配系数:
2.微量元素分配系数
1.微量元素概念
1.1微量元素概念
定义1:将各种地质体系中呈微量或痕量(<0.1wt%)的 元素称为微量或痕量元素。
定义2:构成物质的常量元素之外,用现代分析技术可 以检测出的所有元素。
定义3:矿物中不记入分子式而在该矿物中存在的元素。 如锆石(ZrSiO4)中的Zr,铬铁矿(FeCr2O3)中的Cr和 独居石(Ce,La)PO4中的Ce和La等
成的矿物,基质代表熔体相),或测定现代火山熔岩流 中矿物与淬火熔 体(玻璃)以及测 定岩石中共存矿 物(求得元素的 矿物/矿物分配 系数)。
2.微量元素分配系数
存在的问题: ① 很难证明整体斑晶和熔体是否达到了平衡(矿物
成分带状分布)
② 用手工或磁选难以获得纯矿物(基质污染,不透 明矿物掺入)
③ 难于知道体系在什么条件(温度压力)下达到平衡 以及在岩浆冷却和上涌过程中已存在的斑晶是否 发生过某种再平衡或蚀变
(矿物相)与β(液相)的体系中,溶质i(微量元素)在两
相之间平衡分配的条件是它们在两相之间的化学势相等:
μiα=μiβ μiα和μiβ分别为微量元素i在α相和β相中的化学位。
用热力学活度 表示: μi()=μi0()+RTlnai() μi()=μi0()+RTlnai()
ai() ai()
e(i0()i0()〕 /RTK(T,p)
如由60%橄榄石,25%斜方辉石,10%单斜辉石和 5%石榴石组成的假想石榴石橄榄岩,KD(Ce)橄榄石/熔体= 0.001,KD(Ce)斜方辉石/熔体=0.003,KD(Ce)单斜辉石/熔体=0.1, KD(Ce)石榴石/熔体=0.02,Ce的总分配系数:
DCe=0.6×0.001+0.25×0.003+0.1×0.1+ 0.05×0.02=0.012
2.微量元素分配系数
2.1亨利定律 - 稀溶液定律(ai=KhXi)
2.微量元素分配系数
2.2能斯特定律
Comp. I
实验观察:
在共存相和中加入组份I,平衡后组份 I 在和相中的浓度比例保持为常数, 而与加入的组份I的量无关。
2.微量元素分配系数
2.2能斯特定律 在一定温度(T)和压力(P)条件下,对包含两相α
相关文档
最新文档