《实数》复习题
第六章 实数复习题---解答题(含解析)

人教版七下第六章实数复习题---解答题一.解答题(共46小题)1.(2018秋•东营区校级期末)若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.2.(2018秋•临淄区校级期中)一个正数的两个平方根分别是2a﹣2和a﹣4,求这个正数.3.(2018秋•宜兴市校级期中)求下列式子中的x:(x﹣1)2=04.(2018秋•宝安区校级月考)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.5.(2018秋•江阴市校级月考)求下列各式中x的值:(1)9x2﹣25=0(2)2(x+1)2﹣32=06.(2018春•越秀区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?7.(2018秋•宁波期中)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.8.(2018春•天河区校级期中)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.9.(2018春•临朐县期中)(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.10.(2017春•三亚校级月考)已知:字母a、b满足.求的值.11.(2016春•龙潭区校级期中)已知a、b满足+=0,解关于x的方程(a+2)x+b2=1﹣a.12.(2018秋•沭阳县期末)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.13.(2018秋•北碚区期末)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.14.(2018秋•南关区校级期中)已知A=是b+3的算术平方根,B=是a﹣2的立方根,求5A﹣2B的值.15.(2018春•柳州期末)计算:|﹣|+16.(2018春•黄陂区期中)已知和互为相反数,求x+y的平方根.17.(2018秋•农安县期末)已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+|a+b|.18.(2018秋•定兴县期末)如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T 表示的数为;MT=.(用含t的代数式填空)19.(2018秋•凤凰县期末)如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.20.(2018秋•莲湖区期中)如图,点A表示的数为﹣,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+2﹣2)的值.21.(2018秋•临川区校级月考)(1)解方程:﹣27=0.(2)比较大小与.22.(2018秋•邗江区校级期末)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c的平方根.23.(2018秋•临川区校级月考)已知:2+的小数部分为a,5﹣的小数部分为b,计算a+b的值.24.(2018秋•沙坪坝区校级月考)已知5+的小数部分是a,整数部分是m,5﹣的小数部分是b,整数部分是n,求(a+b)2015﹣mn的值.25.(2018•益阳)计算:|﹣5|﹣+(﹣2)2+4÷(﹣).26.(2018•苏州)计算:|﹣|+﹣()2.27.(2018•大庆)求值:(﹣1)2018+|1﹣|﹣.28.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)29.(2018秋•东阳市期末)计算:(1)(﹣2.4)+﹣×(﹣4)2+(2)﹣22﹣|﹣7|+3+2×(﹣)30.(2018秋•太仓市期末)计第:(1)(﹣)×(﹣)﹣﹣(﹣2)2;(2)+6x﹣x2.31.(2018秋•历城区期末)计算(1)﹣+﹣(2)﹣432.(2018秋•河口区期末)(1)计算:;(2)若(2x﹣1)3=﹣8,求x的值.33.(2018秋•北仑区期末)计算:(1)()×12;(2)﹣32+.34.(2018秋•延庆区期末)计算:+﹣+|1﹣|.35.(2018秋•象山县期末)计算:(1)|﹣2|++(﹣1)2018(2)﹣22﹣24×(﹣+)36.(2018秋•常熟市期末)计算:.37.(2018秋•越城区期末)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)201738.(2018秋•上城区期末)计算:(1)(﹣3)+(﹣5)(2)+(3)÷(﹣)+(﹣)2×2139.(2018秋•玄武区期末)计算:+()2﹣.40.(2018秋•金牛区期末)计算下列各题(1)(2)41.(2018秋•顺义区期末)计算:.42.(2018秋•密云区期末)计算:43.(2018秋•罗湖区期末)计算(1)(2)44.(2018秋•鸡东县期末)(1)计算:++(2)解方程:2(x﹣5)=5﹣3x(3)解方程:﹣x=1﹣45.(2018秋•香坊区期末)计算(1)+﹣(2)﹣|﹣|46.(2018秋•冷水江市期末)计算:﹣12+(﹣2)3×﹣×(﹣)人教版七下第六章实数复习题---解答题参考答案与试题解析一.解答题(共46小题)1.(2018秋•东营区校级期末)若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.2.(2018秋•临淄区校级期中)一个正数的两个平方根分别是2a﹣2和a﹣4,求这个正数.【分析】根据平方根的定义和相反数得出2a﹣2+a﹣4=0,求出a=2,求出2a﹣2=2,即可得出答案.【解答】解:一个正数的两个平方根分别是2a﹣2和a﹣4,∴2a﹣2+a﹣4=0,∴a=2,∴2a﹣2=2,∴这个正数为2的平方是4.3.(2018秋•宜兴市校级期中)求下列式子中的x:(x﹣1)2=0【分析】根据平方根的定义直接开平方即可求出(x﹣1)的值,然后解方程即可求出x的值.【解答】解:∵(x﹣1)2=0,∴x﹣1=0,解得x=1.4.(2018秋•宝安区校级月考)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.【分析】根据平方根的定义即可求出答案.【解答】解:(1)5x2=15,x2=3,x=;(2)x﹣1=±3,x=4或x=﹣2.5.(2018秋•江阴市校级月考)求下列各式中x的值:(1)9x2﹣25=0(2)2(x+1)2﹣32=0【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用平方根的定义计算得出答案.【解答】解:(1)9x2﹣25=0x2=,故x=±;(2)2(x+1)2﹣32=0则(x+1)2=16,故x+1=±4,解得:x=3或﹣5.6.(2018春•越秀区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:设正方形的边长为x厘米.依题意得:x2=9×9+24×6,即x2=225,∴x=15.答:正方形的边长为15厘米.7.(2018秋•宁波期中)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.【分析】(1)根据平方根、立方根、算术平方根的定义即可求出答案.(2)求出d+3c的值后即可求出该数的平方根.(3)将a、b、c、d的值代入原式即可求出答案.【解答】解:(1)由题意可知:a=64,b=±11,c=﹣3,d=25;(2)当c=﹣3,d=25时,∴d+3c=25+3×(﹣3)=25﹣9=16,因此它的平方根为±4;(3)当a=64,b=±11,c=﹣3,d=25时,∴a﹣b2+c+d=64﹣121﹣3+25=﹣35.8.(2018春•天河区校级期中)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.【分析】根据=x,=2,z是9的算术平方根,可以求得x、y、z的值,从而可以解答本题.【解答】解:∵=x,=2,z是9的算术平方根,∴x=5,y=4,z=3,∴=,即2x+y﹣z的平方根是.9.(2018春•临朐县期中)(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.【分析】(1)根据+(1﹣b)=0和二次根式有意义的条件,可以求得a、b的值,从而可以求得所求式子的值;(2)根据立方根的定义求出x2﹣2=2,再根据平方根的定义即可解答本题.【解答】解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.10.(2017春•三亚校级月考)已知:字母a、b满足.求的值.【分析】首先利用非负数的性质求得a,b的值,然后根据=﹣即可对所求的式子进行化简求值.【解答】解:根据题意得:,解得:.原式=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.11.(2016春•龙潭区校级期中)已知a、b满足+=0,解关于x的方程(a+2)x+b2=1﹣a.【分析】根据非负数的性质列出算式,求出a、b的值,再代入一元一次方程解方程即可求解.【解答】解:∵+=0,∴3a﹣9=0,b﹣=0,解得a=3,b=,则方程变形为(3+2)x+2=1﹣3,解得x=﹣0.8.12.(2018秋•沭阳县期末)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.【分析】(1)先将x2的系数化为1,再利用平方根的定义计算可得;(2)两边都除以8,再利用立方根的定义得出x+1的值,从而得出答案.【解答】解:(1)∵4x2﹣81=0,∴4x2=81,则x2=,∴x=±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x=.13.(2018秋•北碚区期末)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【分析】(1)根据一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44﹣x的值,再根据立方根的定义即可解答.【解答】解:(1)∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10(2)∵a=﹣10,∴3﹣a=13,2a+7=﹣13.∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5.14.(2018秋•南关区校级期中)已知A=是b+3的算术平方根,B=是a﹣2的立方根,求5A﹣2B的值.【分析】根据题意列出方程组,求出方程组的解得到a与b的值,进而确定出A与B的值,代入原式计算即可求出值.【解答】解:∵A=是b+3的算术平方根,B=是a﹣2的立方根,∴,解得:,∴A=2,B=1,则原式=10﹣2=8.15.(2018春•柳州期末)计算:|﹣|+【分析】根据差的绝对值是大数减小数,可化简绝对值,根据二次根式的加减,可得答案.【解答】解:原式=﹣+=.16.(2018春•黄陂区期中)已知和互为相反数,求x+y的平方根.【分析】根据立方根互为相反数的被开方数互为相反数,可得答案.【解答】解:由题意,得x﹣2+y﹣2=0,解得x+y=4==±2.17.(2018秋•农安县期末)已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+|a+b|.【分析】根据数轴判定a、b与0的大小,然后根据绝对值的性质即可求出答案.【解答】解:由数轴知b<a<0,∴a﹣b>0,a+b<0,∴|a﹣b|=a﹣b,|a+b|=﹣(a+b)=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.18.(2018秋•定兴县期末)如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=15;t=1时,点Q表示的数是6;当t=3时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t.(用含t的代数式填空)【分析】(1)根据两点间距离的定义,线段的和差定义计算即可;(2)根据线段的中点定义,可得MN=MP+NP=(AP+BP)=AB;(3)根据线段的中点定义,线段和差定义计算即可;【解答】解:(1)AB=9﹣(﹣6)=15,t=1时,BQ=3,OQ=6,设t秒后相遇,由题意(2+3)t=15,t=3,故答案为15,6,3(2)答:MN长度不变,理由如下:∵M为AP中点,N为BP中点∴MP=AP,NP=BP,∴MN=MP+NP=(AP+BP)=AB=7.5.(3)则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t;故答案为t﹣6,9﹣t,15﹣t;19.(2018秋•凤凰县期末)如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【分析】(1)利用正方形ABCD的面积为16,可得AB长,再根据AO=1,进而可得点B表示的数;(2)①先根据正方形的面积为16,可得边长为4,当S=4时,分两种情况:正方形ABCD向左平移,正方形ABCD向右平移,分别求出数轴上点A′表示的数;②当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,再根据点E,F所表示的数互为相反数,列出方程即可求得t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.20.(2018秋•莲湖区期中)如图,点A表示的数为﹣,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+2﹣2)的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出n的值;(2)把n的值代入,再根据绝对值的性质、实数运算的法则计算即可得解.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示﹣,点B所表示的数为n,∴n=﹣+2;(2)|n+1|+(n+2﹣2)=|﹣+2+1|+(﹣+2+2﹣2)=3﹣+=3.21.(2018秋•临川区校级月考)(1)解方程:﹣27=0.(2)比较大小与.【分析】(1)先移项,去分母,然后利用直接开平方法解题;(2)利用作差法比较大小.【解答】解:(1)﹣27=0(x﹣2)2=81x﹣2=±9x1=11,x2=﹣7;(2)﹣==.∵4<5<5.0625,∴2<<2.25,∴4<4<9,∴9﹣4>0,∴>0,即﹣>0,∴>.22.(2018秋•邗江区校级期末)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c的平方根.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴3a﹣b+c=16,3a﹣b+c的平方根是±4.23.(2018秋•临川区校级月考)已知:2+的小数部分为a,5﹣的小数部分为b,计算a+b的值.【分析】估算确定出a与b的值,即可求出所求.【解答】解:∵4<6<9,∴2<<3,即4<2+<5,2<5﹣<3,则a=2+﹣4,b=5﹣﹣2,则a+b=2+﹣4+5﹣﹣2=1.24.(2018秋•沙坪坝区校级月考)已知5+的小数部分是a,整数部分是m,5﹣的小数部分是b,整数部分是n,求(a+b)2015﹣mn的值.【分析】先估算出的范围,再求出a、m、b、n的值,再代入求出即可.【解答】解:∵2<<3,∴m=7,a=5+﹣7=﹣2+,n=2,b=5﹣﹣2=3﹣,∴(a+b)2015﹣mn=(﹣2++3﹣)2015﹣7×2=1﹣14=﹣13.25.(2018•益阳)计算:|﹣5|﹣+(﹣2)2+4÷(﹣).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=026.(2018•苏州)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=327.(2018•大庆)求值:(﹣1)2018+|1﹣|﹣.【分析】直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣1﹣2=﹣2.28.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.29.(2018秋•东阳市期末)计算:(1)(﹣2.4)+﹣×(﹣4)2+(2)﹣22﹣|﹣7|+3+2×(﹣)【分析】(1)直接利用有理数混合运算计算得出答案;(2)直接利用有理数混合运算计算得出答案.【解答】解:(1)(﹣2.4)+﹣×(﹣4)2+=﹣2.4+1.2﹣10﹣5=﹣16.2;(2)﹣22﹣|﹣7|+3+2×(﹣)=﹣4﹣7+3﹣1=﹣9.30.(2018秋•太仓市期末)计第:(1)(﹣)×(﹣)﹣﹣(﹣2)2;(2)+6x﹣x2.【分析】(1)直接利用二次根式的性质化简进而得出答案;(2)利用二次根式的性质分别化简得出答案.【解答】解:(1)(﹣)×(﹣)﹣﹣(﹣2)2=3+2﹣8=3﹣6;(2)+6x﹣x2=+6x×﹣x2×=+2x﹣=3x.31.(2018秋•历城区期末)计算(1)﹣+﹣(2)﹣4【分析】(1)直接化简二次根式以及立方根进而计算即可;(2)直接化简二次根式进而计算即可.【解答】解:(1)原式=2﹣+﹣3=﹣3;(2)原式=﹣4=10﹣4=6.32.(2018秋•河口区期末)(1)计算:;(2)若(2x﹣1)3=﹣8,求x的值.【分析】(1)根据实数的运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=5+(﹣3)﹣(4﹣)=﹣2﹣4+=﹣6+;(2)由题意可知:2x﹣1=﹣2,∴x=.33.(2018秋•北仑区期末)计算:(1)()×12;(2)﹣32+.【分析】(1)根据实数的运算法则即可求出答案.(2)根据实数的运算法则即可求出答案.【解答】解:(1)原式=8+9﹣6=11;(2)原式=﹣9+4+1+3=﹣1.34.(2018秋•延庆区期末)计算:+﹣+|1﹣|.【分析】根据实数的运算即可求出答案.【解答】解:原式=3+2﹣2+﹣1=4﹣1.35.(2018秋•象山县期末)计算:(1)|﹣2|++(﹣1)2018(2)﹣22﹣24×(﹣+)【分析】根据实数的运算法则即可求出答案.【解答】解:(1)原式=2++1=3.5;(2)原式=﹣4﹣2+20﹣9=5.36.(2018秋•常熟市期末)计算:.【分析】先计算算术平方根、立方根和乘方,再计算加减可得.【解答】解:原式=4﹣﹣3=1﹣=.37.(2018秋•越城区期末)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)2017【分析】(1)先计算绝对值和算式平方根、立方根,再计算加减可得;(2)利用乘法分配律计算,再计算加减可得;(3)先计算立方根、取绝对值符号,再去括号,计算加减可得;(4)先计算乘方和算术平方根,再计算加减可得.【解答】解:(1)原式=1+﹣2=﹣1=;(2)原式=﹣15+20﹣24=20﹣39=﹣19;(3)原式=2﹣﹣(2﹣)=0;(4)原式=﹣4+4+﹣1=﹣.38.(2018秋•上城区期末)计算:(1)(﹣3)+(﹣5)(2)+(3)÷(﹣)+(﹣)2×21【分析】(1)根据有理数的加法法则计算可得;(2)先计算算术平方根和立方根,再计算加法即可得;(3)根据实数的混合运算顺序和运算法则计算可得.【解答】解:(1)(﹣3)+(﹣5)=﹣(3+5)=﹣8;(2)+=4+(﹣4)=0;(3)原式=×(﹣)+×21=﹣2+=﹣.39.(2018秋•玄武区期末)计算:+()2﹣.【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:原式=3+2﹣=.40.(2018秋•金牛区期末)计算下列各题(1)(2)【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简得出答案.【解答】解:(1)=2﹣3+=﹣3;(2)=﹣(3﹣)÷+﹣=﹣3++﹣=﹣3.41.(2018秋•顺义区期末)计算:.【分析】先进行乘方和乘法运算,再进行除法运算,然后进行加减运算.【解答】解:原式=﹣9﹣8﹣81÷(﹣27)=﹣8+3=﹣.42.(2018秋•密云区期末)计算:【分析】先化简二次根式、计算零指数幂和负整数指数幂、取绝对值符号,再计算加减可得.【解答】解:原式=2﹣1+4+=3+3.43.(2018秋•罗湖区期末)计算(1)(2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【解答】解:(1)=3×3﹣×4+4×﹣2=9﹣2+﹣2=8﹣2;(2)=5﹣6﹣(5+1﹣2)=﹣1﹣6+2=﹣7+2.44.(2018秋•鸡东县期末)(1)计算:++(2)解方程:2(x﹣5)=5﹣3x(3)解方程:﹣x=1﹣【分析】(1)先计算算术平方根和立方根,再计算加减可得;(2)根据解一元一次方程的步骤依次计算可得;(3)根据解一元一次方程的步骤依次计算可得.【解答】解:(1)原式=3﹣3+5=5;(2)2x﹣10=5﹣3x,2x+3x=5+10,5x=15,x=3;(3)2(2x﹣1)﹣12x=12﹣3(3x﹣2),4x﹣2﹣12x=12﹣9x+6,4x﹣12x+9x=12+6+2,x=20.45.(2018秋•香坊区期末)计算(1)+﹣(2)﹣|﹣|【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=0.1﹣2﹣=﹣2.4;(2)原式=﹣+=.46.(2018秋•冷水江市期末)计算:﹣12+(﹣2)3×﹣×(﹣)【分析】直接利用立方根的性质以及算术平方根的性质分别化简各数进而得出答案.【解答】解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3。
第六章 实数复习题---选择题(含解析)

人教版七下第六章实数复习题---选择题一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.163.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.15.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=56.(2018•南京)的值等于()A.B.﹣C.±D.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 8.(2018•安顺)的算术平方根是()A.B.C.±2 D.29.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣6411.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.114.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣717.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣418.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣320.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)221.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1 22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是023.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.128.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣130.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者035.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0 38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣141.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣142.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.445.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和947.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=7249.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6人教版七下第六章实数复习题---选择题参考答案与试题解析一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x【分析】由负数没有平方根得出关于x的不等式,解之可得.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.1【分析】根据平方根的性质即可求出答案.【解答】解:由题意可知:2m﹣4+3m﹣1=0,解得:m=1,∴2m﹣4=﹣2所以这个数是4,故选:C.5.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5 【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.6.(2018•南京)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.8.(2018•安顺)的算术平方根是()A.B.C.±2 D.2【分析】直接利用算术平方根的定义得出即可.【解答】解:=2,2的算术平方根是.故选:B.9.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个【分析】各式计算得到结果,利用负数定义判断即可.【解答】解:因为﹣(﹣5)=5,|﹣|=,﹣22=﹣4,﹣,所以负数有﹣1,﹣22,﹣,故选:B.10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣64【分析】首先求得平方是=4的数,然后求立方即可.【解答】解:=4,则这个数是±2,则立方是:±8.故选:C.11.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④【分析】根据平方根的定义和性质及算术平方根的定义逐一判断可得.【解答】解:①﹣是2的一个平方根,正确;②﹣4没有算术平方根,错误;③的平方根是±2,正确;④0有平方根,是0,错误;故选:C.12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数【分析】根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根进行分析即可.【解答】解:A、﹣81没有平方根,故原题错误;B、=9的平方根是±3,故原题错误;C、平方根等于它本身的数是0,故原题错误;D、一定是正数,故原题正确;故选:D.13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.14.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣【分析】根据非负数的性质即可得到结论.【解答】解:原式=﹣(a+1+1)=﹣(a+1)﹣1=﹣()2﹣1=﹣[()2﹣+﹣]﹣1=﹣(﹣)2﹣,.当=时,有最大值﹣,故选:D.16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣7【分析】依据非负数的性质可求得a、b的值,然后再代入计算即可.【解答】解:由题意可知:=0,∴a﹣3=0,b+4=0,解得:a=3,b=﹣4.∴b﹣a=﹣4﹣3=﹣7.故选:D.17.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.18.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.20.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)2【分析】直接利用算术平方根以及立方根的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:A、﹣15÷3=﹣5,故此选项错误;B、=3,故此选项错误;C、无法化简,故此选项错误;D、(﹣3)2=(+3)2,正确.故选:D.21.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1【分析】根据立方根、平方根和算术平方根计算判断即可.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是0【分析】根据算术平方根和平方根及立方根的定义逐一求解可得.【解答】解:A.5是25的算术平方根,此选项说法正确;B.1的立方根是1,此选项说法错误;C.﹣1没有平方根,此选项说法正确;D.0的平方根与算术平方根都是0,此选项说法正确;故选:B.23.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、25的平方根是±5,故选项错误;B、﹣22的算术平方根是2,负数没有平方根,故选项错误;C、0.008的立方根是0.2,故选项错误;D、是的一个平方根,故选项正确.故选:D.24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、﹣是分数,属于有理数;故选:B.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:在,﹣2018,,π这四个数中,无理数是π,故选:D.26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,,5,3.121212…,中无理数有π、,故选:B.27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.28.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.30.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.【分析】直接利用实数的性质结合算术平方根以及倒数的定义分析得出答案.【解答】解:=4,则4的算术平方根为2,故2的倒数是:.故选:C.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b【分析】根据实数的性质,相反数的意义,算术平方根的定义解答即可.【解答】解:A.若=a,则a≥0,故本选项错误;B、若a与b互为相反数,则与也互为相反数,故本选项正确;C、若=()2,则a为任意实数,b≥0,故本选项错误;D、若a>b>0,a=9,b=5时,则<b,故本选项错误;故选:B.34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者0【分析】根据立方根,平方根的定义选择即可.【解答】解:A、一个正数的平方根有两个,它们互为相反数,故本选项错误;B、一个非零数的立方根,不是正数就是负数,故本选项错误;C、如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个,故本选项正确;D、如果一个数的平方根是这个数本身,那么这个数是0,故本选项错误;故选:C.35.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b【分析】根据绝对值的定义即可求解.【解答】解:由图可得:﹣1<a<0,1<b<2∴a<b,|a|<|b|,a+b>0,a>﹣b.故选:B.36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.41.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣3与﹣1即可.【解答】解:∵﹣3<﹣1<0<1,∴﹣3是最小的实数,故选:C.42.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣【分析】依据正数大于零,零大于负数,正数大于一切负数解答即可.【解答】解:﹣2<﹣<0<3,所以最大的数是3.故选:B.43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N,故选:B.44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.4【分析】估算出的大小,即可求得a的值.【解答】解:∵4<8<9,∴2<2<3,∴a=2,a+1=3,故选:B.45.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间【分析】先估算出的范围,再求出1﹣的范围,即可得出选项.【解答】解:∵3<<4,∴﹣4<﹣<﹣3,∴﹣3<1﹣<﹣2,即1﹣在﹣2到﹣3之间,故选:C.46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【分析】先将+进行平方,然后估算得到即可.【解答】解:(+)2=39+2=39+,∵21<<23,∴60<39+<61,∴+的运算结果应在7和8之间,故选:C.47.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.49.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i【分析】直接利用已知得出变化规律,进而得出答案.【解答】解:∵i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,∴每4个一循环,∵2018÷4=504…2,∴i2018=i2=﹣1,故选:A.50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.中小学教育资源及组卷应用平台21世纪教育网。
实数复习题

实数复习题1.下列说法正确的是( ).A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根2.估算√5+√15的运算结果应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间3.√81的平方根是()A.3 B.−3C.±3D.±94.√625的平方根是()A.5 B.±5 C.25 D.±255.阅读理解∵√4<√5<√9,即2<√5<3,∴1<√5-1<2,∴√5-1的整数部分为1,小数部分为√5-2.解决问题:已知a是√17−3的整数部分,b是√17−3的小数部分,求(-a)3+(b+4)2的平方根.6.化简求值:(1)已知a是√13的整数部分,√b=3,求√ab+54的平方根.(2)已知:实数a,b在数轴上的位置如图所示,化简:√(a+1)2+2√(b−1)2−|a−b|.7.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是√57的整数部分,求a +2b +c 的算数平方根。
8.√33的整数部分为m ,小数部分为n ,求n −32m9.已知m n m n m n -+的值.10.如果一个正数的两个平方根是a+1和2a ﹣22,求出这个正数的立方根.11.若6-√13的整数部分为x ,小数部分为y ,则(2x +√13)y 的值是___.12.归纳并猜想:(1)____;(2)的整数部分为____;(3) ____;(4)猜想:当n 为正整数时,____,小数部分为____. 13.已知a ,b 为两个连续的整数,且a <√28<b ,则a +b =____.14______.15.一个数的算术平方根等于它本身,则这个数的立方根是_____________.16.若√x −3+|1+y|=0,则x ﹣y=_____.参考答案1.B【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或1 ;C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.2.D【解析】分析:由于本题含有两个无理数,直接估算误差较大,故采用平方法进行估算.设x=√5+√15,则x2=20+ 10√3,得出37<20+10√3<40,故√37<x<√40,由6<√37<7,6<√40<7,即可得出答案.详解:设x=√5+√15,则x2=20+10√3.∵1.7<√3<2,∴17<10√3<20,∴37<20+10√3<40,∴√37< x<√40.∵6<√37<7,6<√40<7,∴6<x<7.即√5+√15的运算结果应在6到7之间.故选D.点睛:本题主要考查了估算无理数的大小,正确得出1.7<√3<2是解答本题的关键.3.C【解析】【分析】根据平方根的定义求出即可.【详解】∵√81=9,∴√81的平方根是±3,故选:C.【点睛】本题考查了平方根和算术平方根的应用,能理解平方根的定义是解此题的关键.4.B【解析】【分析】先求出√625=25,然后再利用平方根的定义求25的平方根即可.【详解】√625=25,25的平方根是±5,所以√6255的平方根是±5,故选B.【点睛】本题考查了算术平方根以及平方根,熟练掌握平方根的求解方法是解题的关键.5.±4.【解析】【分析】根据阅读材料的方法先确定出√17的范围,继而得到a、b的具体数值,然后再代入式子(-a)3+(b+4)2求值,最后再根据平方根的定义进行求解即可.【详解】∵√16<√17<√25,即4<√17<5,∴1<√17-3<2,∴√17-3的整数部分为1,小数部分为√17-4,即a=1,b=√17-4,∴(-a)3+(b+4)2=-1+17=16,16的平方根是±4,即(-a)3+(b+4)2的平方根是±4.【点睛】本题考查了无理数的估算,阅读题,通过阅读材料找到解决此类问题的方法是关键.6.(1)±3;(2)2a+b﹣1.【解析】分析:(1)由于3<√13<4,由此可得√13的整数部分a的值;由于√b=3,根据算术平方根的定义可求b,再代入√ab+54计算,进一步求得平方根.(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵3<√13<4,∴a=3.∵√b=3,∴b=9,∴√ab+54=√3×9+54=9,∴√ab+54的平方根是±3;(2)由数轴可得:﹣1<a<0<1<b,则a+1>0,b﹣1>0,a﹣b<0,则√(a+1)2+2√(b−1)2﹣|a ﹣b|=a+1+2(b﹣1)+(a﹣b)=a+1+2b﹣2+a﹣b=2a+b﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.7.4.【解析】∵2a-1的平方根是±3,3a+b-9的立方根是2,∴2a-1=9,3a+b-9=8,解得:a=5,b=2;又有7<√57<8 ,c是√57的整数部分,可得c=7;则a+2b+c=16;故算术平方根为4.故答案为:4.8.√33−252【解析】试题分析:根据二次根式的估算,求出其整数部分,然后用其减去整数部分即可求出小数部分,然后代入求值即可.试题解析:∵25<33<36∴5<√33<6∴m=5∴n =√33−5∴n −32m =√33−5−32×5=√33−252 9.1313【解析】试题分析:根据二次根式的估算,可知求出用二次根式表示的m 、n ,然后代入求值即可.4,∴m=3,3, ∴m n m n-+33-. 10.4【解析】【分析】根据一个正数的两个平方根互为相反数,可得出关于a 的方程,解出即可.【详解】由题意知a+1+2a ﹣22=0,解得:a=7,则a+1=8,∴这个正数为64,∴这个正数的立方根为4.【点睛】本题考查了平方根的定义和性质,立方根的定义,熟练掌握一个正数的两个平方根互为相反数是解题的关键. 11.3【解析】【分析】先估算3<√13<4,再估算2<6−√13<3,根据6-√13的整数部分为x,小数部分为y,可得: x=2, y=4−√13,然后再代入计算即可求解.【详解】因为3<√13<4,所以2<6−√13<3,因为6-√13的整数部分为x,小数部分为y,所以x=2, y=4−√13,所以(2x+√13)y=(4+√13)(4−√13)=16−13=3,故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.12.l 2 3 n n【解析】试题解析:(1)121;(2)2<3的整数部分为2;(3),3<43;(4)猜想:当n为正整数时,n,小数部分为:n.13.11【解析】【分析】先根据算术平方根的意义进行估算求√28范围,5<√28<6,继而可得:a=5,b=6,最后将数值代入即可求解.【详解】因为5<√28<6,所以a=5,b=6,所以a+b=5+6=11,故答案为:11.【点睛】本题主要考查无理数的估算,解决本题的关键是要熟练掌握无理数估算的方法.14,所以6.15.1或0【解析】根据算术平方根的意义,可知只有正数和0有算术平方根,0和1 算术平方根是本身.0的立方根是0,1的立方根是1.故答案为:1或0.16.4【解析】【分析】根据算术平方根和绝对值表示非负数,再根据非负数的非负性质可得:x−3=0,1+y=0,解得x=3,y=−1,然后代入计算即可.【详解】因为√x−3+|1+y|=0,所以x−3=0,1+y=0,解得x=3,y=−1,所以x﹣y=3-(−1)=4,故答案为:4.【点睛】本题主要考查非负数的非负性质,解决本题的关键是要熟练掌握非负数的非负性质.。
实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
《常考题》初中七年级数学下册第六单元《实数》经典复习题(含答案解析)

一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±4D 解析:D【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可;【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩,解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±;故选:D .【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键. 3.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.5.若a =b =-,c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .c a b >>C .b a c >>D .c b a >> D解析:D【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.6.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个B .2个C .3个D .4个C 解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.8.如图,在数轴上表示A B 、,点B 关于点A 的对称点为C ,则点C表示的数为()A31B.13C.23D32C解析:C【分析】首先根据表示13A、点B可以求出线段AB的长度,然后根据点B 和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【详解】解:∵表示13A、点B,∴AB3−1,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1−31)=3故选:C.【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.-的整数部分相9.已知无理数m55π同,则m为()π-A5B10C51D.5解析:C【分析】5m的整数部分与小数部分,进而可得答案.【详解】π≈,解:因为253, 3.14-的整数部分为1,552,5π所以无理数m的整数部分是152,m=+=.所以15251故选:C.【点睛】5m的整数部分与小数部分是解题的关键.10.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.二、填空题11.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.(1)9334;(2)这个数用十进制表示为51或102【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得化简成24a+b=12c 根据abc 的取值范围分别将a 从1开始取值验证即可得到答案【详解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 12.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.(1);(2)22;(3)-1【分析】(1)先去括号同时将小数化为分数再计算加减法;(2)先计算乘方再计算乘除法最后计算加减法;(3)先计算乘方和绝对值再计算加减法【详解】(1)==;(2)==20解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.16.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA 之间的距离为圆的周长=πA 点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA 之间的距离为圆的周长=π,A 点在原点的左边.∴A 点对应的数是-π.∵π>3.14,∴-π<-3.14.故A 点表示的数是-π.若点B 表示-3.14,则点B 在点A 的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.18.(1)求x 的值:2490x -=;(2(1)或;(2)4【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可【详解】解:(1)或(2)原式=5+2﹣3=4【点睛】本题考查的是实数的运算熟知实数混合运算解析:(1)32x =或32x =-;(2)4 【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.19.8的相反数是_______,平方得9的数是________.﹣8±3【分析】根据相反数和平方根的定义及性质解答即可【详解】解:8的相反数是-8;∵∴平方得9的数是±3【点睛】本题考查了相反数和平方根的定义及性质解题关键是理解相反数和平方根的定义及性质解析:﹣8 ±3.【分析】根据相反数和平方根的定义及性质解答即可.【详解】解:8的相反数是-8;∵23=9 ,()2-3=9∴平方得9的数是±3.【点睛】本题考查了相反数和平方根的定义及性质,解题关键是理解相反数和平方根的定义及性质.20_____,1-12π的绝对值是 __.【分析】(1)的平方根首先计算的是=5然后计算5的平方根需要注意平方根有两个;(2)判断相反数需要先判断原数的正负然后求出相反数;(3)求绝对值需要先判断原数的正负然后求出绝对值正数的绝对值是它本身解析:212π- 【分析】两个;(2)判断相反数需要先判断原数的正负,然后求出相反数;(3)求绝对值需要先判断原数的正负,然后求出绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是零.【详解】解:(1,5的平方根为:(2)∵, ∴, ∴-=-2)=2.(3)∵1-12π<0, ∴112π-=112π⎛⎫-- ⎪⎝⎭=12π-. 【点睛】本题考查实数的基础运算,重要的是先判断出原数的正负,然后再求出相反数、绝对值,求平方根需要注意原数,有可能需要先进行一步计算.三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.24.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.25. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.26.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.27.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.28.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可; (2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.。
(完整版)初一下学期实数复习数学试题

一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009) 2.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,23.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1 B .-1 C .2017 D .-20174.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12B .24C .27D .30 5.若9a ,小数部分为b ,则2a +b 等于( ) A .12B .13C .14D .156.已知T 132,T 276,T 31312,⋯,Tn 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220217.已知n 是正整数,并且n -1<3n ,则n 的值为( ) A .7B .8C .9D .108.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 9.设n 为正整数,且n <65<n+1,则n 的值为( ) A .5B .6C .7D .810.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .4二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2﹣2和﹣2,则M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.已知57+的小数部分是a ,57-的小数部分是b ,则2019()a b +=________. 13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.16.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.17.220a b a --=,则2+a b 的值是__________;18.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.19.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.20.定义运算“@”的运算法则为:2@6 =____.三、解答题21.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 22.阅读材料:求值:2342017122222+++++⋯+, 解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-. 请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)23.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 24.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<,可得304034<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________.25.11,将这个数减去其整数部分,差∵232<<,∴的整数部分为2,小<<,即2323数部分为)2。
实数知识点总复习含答案解析
【解析】
【分析】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
【详解】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
解:∵ ,
∴ ,
10与9的距离小于16与10的距离,
∴与 最接近的是3.
故选:A.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
【答案】B
【解析】
分析:直接利用2< <3,进而得出答案.
详解:∵2< <3,
∴3< +1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
10.若 则 的值是()
A.2 B、1 C、0 D、
【答案】B
【解析】
试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.
【详解】
,
∴25的算术平方根是:5.
故答案为:5.
【点睛】
本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.
19.估计 的值是在()
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
【答案】B
【解析】
解:由于16<19<25,所以4< <5,因此6< +2<7.故选B.
点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
4.在-3.5, ,0, ,- ,- ,0.161161116…(相邻两个6之间依次多一个1)中,无理数有()
A.1个B.2个C.3个D.4个
【答案】C
实数复习题含答案
实数复习题含答案一、选择题1. 下列各数中,是实数的是()A. -3√2B. √(-1)C. √2D. 1/0答案:A2. 若a是实数,下列表达式中不可能为实数的是()A. a^2B. a^3C. a^4D. 1/a答案:D3. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 1 ≤ x ≤ 3D. 0 ≤ x ≤ 4答案:A二、填空题1. 若实数x满足x^2 - 4x + 4 = 0,那么x的值为____。
答案:22. 一个实数的绝对值等于它自己,那么这个实数是____。
答案:非负数3. 若实数a和b满足a + b = 5,且a - b = 3,那么a和b的值分别是____和____。
答案:4,1三、解答题1. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。
证明:根据平方和公式,有(a+b)^2 = a^2 + 2ab + b^2而2(a^2 + b^2) = 2a^2 + 2b^2由于2ab ≤ 2a^2 + 2b^2(根据基本不等式),所以(a+b)^2 ≤ 2(a^2 + b^2)。
2. 已知实数x满足x^2 - 5x + 6 = 0,求x的值。
解:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3) = 0因此,x的值为2或3。
四、应用题1. 一个长方形的长是宽的两倍,且面积为24平方米。
求长方形的长和宽。
解:设长方形的宽为x米,则长为2x米。
根据面积公式,有x * 2x = 24即 x^2 = 12解得x = √12 = 2√3因此,长方形的宽为2√3米,长为4√3米。
五、综合题1. 已知实数a,b,c满足a < b < c,且a + b + c = 1。
证明:1/a > 1/b + 1/c。
证明:由于a < b < c,所以1/a > 1/b > 1/c。
中考数学总复习第1课 实数
【精选考题 6】 (2013·浙江衢州) 4-23÷|-2|×(-7+ 5).
点评:(1)本题考查实数的运算,难度较小. (2)熟练掌握实数的运算法则是解题的关键.
解析: 4-23÷|-2|×(-7+5) =2-8÷2×(-2) =2+8=10.
.
【解析】 原式=3×9.42-3×9.42=0.
【答案】 0
考点剖析
考点一 实数的分类
知识清单
正整数 自然数 整数 0
负整数
有理数
正分数 有限小数或无
实数
分数 负分数 限循环小数
正无理数 无理数 负无理数 无限不循环小数
根据需要,我们也可以按符号进行分类,如:
正实数
实数 零
负实数
考点点拨
1.实数的概念及分类常以选择题和填空题的形式出现,题目 难度一般较小.对于实数的分类,应用较多的为按正、负 分类,在分类讨论及探索性问题中也常常涉及实数分类的 知识.
真题体验
1.(2013·浙江金华)在数 0,2,-3,-1.2 中,属于负整
数的是
()
A.0
B.2
C.-3
D.-1.2
【解析】 本题易错选 D,需注意读题,本题题干中要选
的是负整数,所以应满足两个条件:(1)负数:(2)整数,只
有-3 符合,故选 C.
【答案】 C
2.(2013·浙江宁波)-5 的绝对值为
值永远是非负的,绝对值的非负性往往也是题中的隐 含条件.数轴上 a,b 所表示的两个点之间的距离即为 |a-b|.
【精选考题 3】 (2013·浙江舟山)-2 的相反数是 ( )
实数知识点总复习附答案解析
实数知识点总复习附答案解析一、选择题1.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .3B .3C .3D .3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-13OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,33,∴3C 点在原点左侧,∴C 表示的数为:3故选A . 【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.2.已知,x y 为实数且110x y +-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】 由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.3.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .4.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-22=, 3.14,3=-是有理数;,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,① 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).5.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.6.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.7.下列各式中,正确的是( )A 3=-B 2=±C 4=D 3=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】3=,原选项错误,不符合题意;2=,原选项错误,不符合题意;4=,原选项正确,符合题意;D. 3≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.8.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( ) A .3B .3-C .1-D .6- 【答案】D【解析】【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩ ∴21x y =⎧⎨=-⎩ 所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.9.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.10.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.11.如图,表示8的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,∴2.583<<8的点在数轴上表示时,所在C 和D 两个字母之间.故选:A .【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.12.下列式子中,计算正确的是( )A 0.6B 13C ±6D 3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.6-=A 中计算错误;B 13==,所以B 中计算错误;C 6=,所以C 中计算错误;D 选项中,因为3=-,所以D 中计算正确;故选D.13.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.14.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.15.若x 2=16,则5-x 的算术平方根是( )A .±1B .±3C .1或9D .1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x 2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x 的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.16.在-1.414,0,π,227,3.14, 3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.18.若x 使(x ﹣1)2=4成立,则x 的值是( )A .3B .﹣1C .3或﹣1D .±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x 1=3,x 2=-1.故选C .19.实数 )A 3<<B .3<C 3<< D 3<< 【答案】D 【解析】【分析】先把3化成二次根式和三次根式的形式,再把3和310,25做比较即可得到答案. 【详解】 解:∵33792==∴3910=<,3327532=>, 故325310<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.20.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D 【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》复习题
一、填空题
1
的算术平方根是 , 38-=________,38-=_________。
2、已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为 米。
3
2(1)0,b -== 。
4
、已知x y y +=则= 。
5、
在实数范围内成立,其中
a 、x 、y 是两两不相等的实数,则22223x xy y x xy y +--+的值是 。
6、已知a 、b 为正数,则下列命题成立的:
若3
2,1;3,6, 3.2a b a b a b +=≤+=≤+=≤若;若
根据以上3个命题所提供的规律,若a+6=9
≤ 。
7、已知实数a
满足21999,1999a a a -=-=则 。
8
、
已
知实
数
211,,a-b 0,24c
a b c c c ab
-+=满足则的算术平方根是 。
9、已知x 、y 是有理数,且x 、y
满足22323x y ++=-,则x+y= 。
10、由下列等式:
===…… 所揭示的规律,可得出一般的结论是 。
11、已知实数a
满足0,11a a a +=-++=那么 。
12
、设A B ==则A 、B 中数值较小的是 。
13、在实数范围
内
解
方
程12 5.28,
y -=则
x= ,y= . 14、使式
子
有意义的x 的取值范围是 。
15、
若101,6,a a a +
= 且的值为 。
16、一个正数x 的两个平方根分别是a+1和a-3,则a= ,x= .
17、写出一个只含有字母的代数式,要求:(1)要使此代数式有意义,字母必须取全体实数;(2)此代数式的值恒为负数。
。
18、实数a ,b ,c 在数轴上的对应点如图所示,化
简
c
b c b a a ---++2=
________________。
19、若a,b 满足|4-a 2|+a+b a+2 =0,则2a+3b
a 的值是
20、把下列各数分别填入相应的集合里
-|-3|,21.3,-1.234,-
22
7
,0,-9 ,-3-18 , -Л
2
,8 , ( 2 - 3 )0,3-
2
,1.2121121112......中
无理数集合{ } 负分数集合{ }
整数集合{ } 非负数集合{ }
二、选择题:
1
( )
A 、-6
B 、6
C 、±6 D
2、下列命题:①(-3)2
的平方根是-3 ;②-8的立方根是-2;
③算术平方根是3;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( )
A 、1个
B 、2个
C 、3个
D 、4个
3
、若3,b a b +a ,则的值为( ) A 、0 B 、1 C 、-1 D 、2 4
,a b ===( ) A 、
10ab B 、310ab C 、100ab D 、3100
ab 5
、使等式2(x =成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定 6
、如果0,a ( )
A
、 B
、- C
、 D
、- 7、下面5
个数:1
3.1416,
1ππ
-,其中是有理数的有( )
A 、0个
B 、1个
C 、2个
D 、3个
8、下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的。
正确的个数是( )
A 、1
B 、2
C 、3
D 、4 三、计算题 1、(1)2
)13
4(-
- (2)23)1(1-+- (3))33(3- (4)
)2
12(2-
(5)
22322+- (6)332)52()25(--
2
、
(
1
) 已
知
2
2
(20,
(
)
y x y y z x z -++-=求的平方根。
(2
)设
a 2,小数部分为
b ,求-16ab-8b 的立方根。
(
3
)
若
,,
53
04
2
0x y x y x y
m
-
++
+-
-试求
的算术平方根。
(4)设a 、b 是两个不相等的有理数,试判断实
3、(1)已知2m-3和m-12是数p 的平方根,试求p 的值。
(2)已知m ,n
是有理数,且2)(370m n +-+=,求m ,n 的值。
(3)△ABC 的三边长为a 、b 、c ,a 和b
2440b b -+=,求c 的取值范围。
(4
)已知19932(4a
x a
-=+,求x 的个位数字。
4、已知0525
22=-++-x
x x y ,求7(x +y )-20的立方根。
5、实数a、b、c在数轴上的对应点如图所示,其中|a|=|c| 试化简:|b-c|-|b-a|+|a-c-2b|-|c-a|。