6.2《立方根》课件(人教新课标)
新人教版《立方根》课件PPT下载

3 a 3 a;
根据立方根的意义填空:
(1)因为 23=8,所以8的立方根是( 2 );
(2)因为(
1 2
)3
=0.125,所以的立方是(
);1
2
(3)因为( 0)3 =0,所以0的立方根是( 0);
(4)因为 (-2)3 =-8,所以-8的立方根是( -2);
()
(5)任何有理数都有立方根,它不是正数就是负数。( )
比较下列各组数的大小. (1) 3 9与2.5
解: ( 3 9)3 =9; 3; 9 15.625 3 9 2.5
(2) 3 3与 3 2
( 3 3)3 3; ( 3)3 27 28
3 27 8
3 3 3 2
若 3 x 2, y2 4,求 x 2 y的值.
立方根
1、知道立方根的概念,初步学会用根号表示一个数的立方根。 2、知道开立方与立方互为逆运算,会用立方运算求某些数的立 方根。 3、体会一个数的立方根的唯一性,分清一个数的立方根与平方 根的区别。
重点 立方根的概念和求法。 难点 求一个数的立方根。
要制作一种容积为27m3的正方体形状的包装箱,这种包装 箱的边长应该是多少?
解:依次按键: (2)因为( )3 =0.
(1)用含a的代数式表示出点C,D的坐标;
2ndF
3、体会一个数的立方根的唯一性,分清一个数的立方根与平方根的区别。
343=
显示:7 一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根或三次方根。
用计算器计算
,,,
(精确到),并总结你发现的规律。
所以, 343 =7. 由于一个数的立方根可能是无限不循环小数,所以我们可3 以利用计算器求一个数的立方根或它的近似值.
立方根优秀课件

类似开平方运算,求一个数的立方根的运算叫作“开立方”. 立方
+3
开立方
27
-3
-27
+5
பைடு நூலகம்125
-5
-125
提示:“开立方”与“立方”互为逆运算.
平方根与立方根的区别和联系 平方根
立方根
正数 两个,互为相反数 一个,为正数
性 质
0
0
0
负数 没有平方根
一个,为负数
表示方法
被开方数的 范围
a 非负数
3a 可以为任何数
根,也叫做a的三次方根.记作 3 a .
立方根的表示:
一个数a的立方根可以表示为:
根指数
3a
被开方数
读作:三次根号 a, 其中a是被开方数,3是根指数,3不能省略.
立方根的性质: (1)一个正数有一个正的立方根; (2)一个负数有一个负的立方根, (3)零的立方根是零. 注:1.立方根是它本身的数有1, -1, 0;
∴217
的立方根是
1 3
,
3
即
1 27
1 3
(4)∵ (0.4)3 0.064
3 0.064 0.4
(5)∵03 =0
3 0 0
针对练习
1.下列说法正确的是( B ) A.负数没有立方根 B.-9的立方根是3 9 C. 3 9 =3 D.任何正数都有两个立方根,它们互为相反数
知识点二 立方根的有关计算
解:依次按键: 2ndF 3 3 4 3 = 显示:7 所以 3 343=7. 依次按键: 2ndF 3 - 1 . 3 3 1 显示:-1.1 所以 3 1.331= 1.1.
不同的计 算器的按 键方式可 能有所差 别!
《立方根》优质课件

掌握立方根的概念和计算方法。
详细描述
通过问题引导,让学生了解立方根的概念和计算方法。使用具体的例子和练习题,让学 生掌握如何计算立方根,并能够灵活运用。
小组讨论
总结词
了解立方根在实际生活中的应用。
VS
详细描述
通过小组讨论的形式,让学生了解立方根 在实际生活中的应用,如计算体积、解决 实际问题等。鼓励学生从实际生活中寻找 立方根的应用案例,并分享自己的想法和 体验。
如果两个数的立方差等于这两个数 的差,即a³-b³=(a-b)(a²+ab+b²) ,那么这两个数就叫做一组勾股数 。
立方根的乘法法则
如果两个数的立方积等于这两个数 的积,即a³*b³=ab*a²b²,那么这 两个数就叫做一组勾股数。
立方根的估算方法
利用近似值估算
对于一些比较大的数,我们可以通过近似值来估算其立方根的值。例如,对于1000左右的数,我们可以取10的 立方等于1000来估算其立方根的值。
课堂互动:尝试解决一些实际问题
总结词
培养学生解决实际问题的能力。
详细描述
通过课堂互动的形式,让学生尝试解决一些 与立方根相关的实际问题。鼓励学生积极参 与,提出自己的解决方案,并与其他同学进 行交流和讨论。教师可以根据学生的实际情 况给予指导和帮助。
06
课堂小结与作业布置
本节课的总结与回顾
01
在物理学中,立方根可以用来计算一 些材料的密度和弹性模量。例如,在 计算金属材料的密度时,可以使用立 方根来计算金属材料的原子半径和晶 格常数。
04
立方根的几何意义与图形表示
立方根的几何意义
定义
立方根是指一个数的立方等于另 一个数时,这个数就是被开方数
《立方根》优秀课件

CHAPTER 03
立方根在实数范围内的应用
立方根与实数的大小关系
立方根与实数的大小关系
对于任意实数a,都有立方根³√a存在,且立方根的大小与原 数的大小关系保持一致,即当a>1时,³√a>1;当0<a<1时 ,0<³√a<1;当a<0时,³√a<0。
立方根大小关系的应用
通过立方根大小关系的判断,可以求解一些实数范围内的不 等式,进行数值大小的比较和排序。
立方根的图形表示
立方根函数的图像
y=³√x的图像是一个单调递增的函数,经过原点和第一象限,当x>0时,函数图像在直线y=x的上方。
立方根在坐标系中的表示
在坐标系中画出y=³√x的图像,通过图像的直观展示,可以更好地理解立方根的性质和在实数范围内的变化情况 。
立方根的实际应用举例
求解方程的解
利用立方根可以求解一些形如 x³-a=0的方程,通过移项得到 x³=a,然后开立方即可求得方
《立方根》优秀课件
2023-11-12
目 录
• 立方根的概念与性质 • 立方根的运算方法 • 立方根在实数范围内的应用 • 立方根的拓展与提高
CHAPTER 01
立方根的概念与性质
立方根的定义
定义
如果一个数的立方等于另一个数,那么这个数就是另一个数的立方根。
表示方法
正数的立方根用“√ ̄”表示,如√ ̄a表示a的立方根;负数的立方根用“√ ̄”表示,如-√ ̄a表示a的负立方根。
程的解。
计算体积
在物理学和化学中,经常需要计算 立方体的体积,通过求解立方体的 边长(即立方根),可以轻松得到 体积的值。
工程设计
在工程设计中,有时需要用到立方 根进行计算,比如计算材料的强度 、稳定性等指标,以确保工程的安 全性和稳定性。
人教版《立方根》演示课件初中数学2ppt

求一个数的立方根. (2)
(3)-4
一个正数有两个平方根,它们互为相反数;零的平方根是零,负数没有平方根.
注意:被开方数是带分数
立方根和平方根的区别 2、知道开立方与立方互为逆运算,会用立方运算求某些数的立方根.
-16有平方根吗?________
1、知道立方根的概念,初步学会用根号表示一个数的立方根.
a 表示非负数a的平方根(或非负数a的二次方根) (1)当1-a²=0时,a²=1,即a=±1
(2) 如果一个数的立方根是这个数的本身,那么这个数一定 是零 ( )
(1)当1-a²=0时,a²=1,即a=±1
,所以 的立方根是( )
立方根是它本身的数有哪些?
注意:被开方数是带分数 所以, 1-a²=0、或1、-1 0的平方根是________。
__=__ 3 2 7
仔细观察,你能得出什么结论:
3 a3 a
例2 求下列各式的值:
(1)3 64
( 2) 3 1 8
解: (1) 3 64 = 4
(3) 3
27 64
(2) 3 1 1
8
2
(4)
10 32
27
(3) 3
27 64
=
3 4
10 (4) 3 2 27
= 3 64
27
4 =
3
即:若 3a则 x3 a
3
a
”表示,
a 读作:“三次根号 ”,其中a 叫做被开方数
3叫根指数 ,不能省略,若省略表示平方。
例如: 3 2 7 表示27的立方根
3 2 7 表示-27的立方根
不能省略
请
观 赏
根指数
3a
动 画
人教版七年级下册数学6.2 立 方 根课件

3a3
.
解:(1) 3 64 3 64 -4 ;
(2) 3 0.064 3 0.43 0.4 ;
(3) 3 27 3 3 3 3 ; 125 5 5
(4) 3 a 3 a.
提示:求一个负数的立方根,可以先求出这个负 数绝对值的立方根,然后再取它的相反数.
由于一个数的立方根可能是无限不循环小数,所以 我们可以利用计算器求一个数的立方根或它的近似值. 例4 用计算器求下列各数的立方根:343,-1.331.
如∵ (3)2 9 , ∴ ﹢3 是9的算术平方根,
即 9 3
式子读作“9的算术平方根等于3” 或“根号9等于3” 规定:0的算术平方根是0
填空:
求平方
1 1
1
2 2
4
3
9
3
平方 互逆 运算
开平方
求平方根
1
1 1
4
2 2
9
3
3
求一个数a的平方根的运算,叫做开平方.
你能类比平方根的定义给出立方根的定义吗?
立方根的估算 50的立方根记作
3 50 .
问题:3 50 有多大呢?
因为 33 27 , 43 64
所以
3
‗‗‗‗3‗.6‗8
3
50
‗3‗.6‗9‗4‗‗‗‗
因为 3.63 46.656 , 3.73 50.653
所以 ‗‗‗3‗.‗6‗3‗.‗68‗ 3 50 3‗.6‗39‗.7‗‗‗‗‗
你能看出正数,0,负数的立方根各有什么特点?
8的立方根是 2
0.125的立方根是
1 2
-8的立方根是 -2 0的立方根是 0
归纳:
一个数的立方根只有一个; 正数的立方根是正数; 零的立方根是零; 负数的立方根是负数。
人教版初一数学 6.2 立方根PPT课件
2.七彩作业.
第六章
实数
6.2 立方根
学习目标
1.了解立方根的概念,初步学会用根号表示一个数的立方
根,建立符号意识.
2.理解开立方与立方互为逆运算,会用立方运算求某些数
的立方根,提升运算能力.
3.经历用计算器探索数学规律的过程,发展推理能力.
学习重难点
学习重点:立方根的概念及求法.
学习难点:立方根与平方根的区别与联系.
有一个,是正数
0
负数
0
无
0
有一个,是负数
探究新知
学生活动四【一起探究】
完成下面的填空:
3
(1)因为 −8=
3
(2)因为 −27=
(3)因为
3
-2
3
,- 8=
-3
3
-2
,- 27=
3
,所以 −8
-3
3
=
,所以 −27
3
- 8.
=
3
- 27.
1
1 3
3
1
1
1 = 3 1
−
= 5 ,= 5 ,所以 −
.
125
125
125
125
探究新知
思考: 3 −a与- 3 a有何关系?
解: 3 −a=- 3 a.
探究新知
学生活动五【一起探究】
利用计算器探究被开方数的小数点与立方根的小数点之间的变
化规律.
(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?
你能说说其中的道理吗?
…
…
3
0.000 216
3
(4) −8=-2;(5)
人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】
直
156 157 153 165 159 157 155 164 156
方
图 的 步 骤
1、计算最大值与最小值的差(极差)
在以上数据中, 最大值-最小值= 17_2_-__14_9__=__2_3___.
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
三、研读课文
158 158 160 168 159 159 151 158 159
知
168 158 154 158 154 169 158 158 158
识
159 167 170 153 160 160 159 159 160
点
149 163 163 162 172 161 153 156 162
例3 求下列各式的值(口答): (1)3 0.001 ; (2)3 1000 ;(3)3 216000 .
例4 求下列各式中的x:
(1) x3=0.125;
(2) 1
4
(10-x)3+54=0.
利用计算器算一算:
0.1
3 0.001
3 1 1
-0.06
3 0.000216
二、学习目标
1 了解频数及频数分布,掌握划分法 2 会用表格整理数据表示频数分布.
三、研读课文
认真阅读课本第145至149页的内容,
知 完成下面练习并体验知识点的形成过程. 识 点 一 问题 为了参加学校年级之间的广播体操比
赛,七年级准备从63名同学中挑出身高相 差不多的40名同学参加比赛.为此收集到这 63名同学的身高(单位:cm)如下:
一
人教版七年级数学下册课件:6.2 立方根课件
2
3
37
3
27 64
= 4;(4)
3
3
7 -1 8
=
3
- 8=-2.
1
1
8 ≈-0.684; 25
3
(4)± 2 402≈±13.392. (3)x=5.
3 5.解:(1)x=0.2;(2)x=2;
6.解:一个正方体的体积扩大为原来的 8 倍,则它的棱长变为原 来的 2 倍;扩大为原来的 27 倍,则它的棱长变为原来的 3 倍;扩大为 3 原来的 n 倍,则它的棱长变为原来的 n倍. 点拨:正方体的体积等于其棱长的立方. 7.解:设这种容器的底面直径为 x 分米,则高为 2x 分米,根据题意, 得 50=π
3
-
57 6
=-
3
57 ≈-2.118. 6
知识点一
知识点二
知识点三
拓展点一
拓展点二
拓展点三
拓展点四
拓展点一 立方根的实际应用 例1 (2017· 吉林松原长岭期中)已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截 去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少? 分析:设截得的每个小正方体的棱长为x cm,8个大小相同的小正 方体的体积是8x3,余下的体积是1 000-8x3,则1 000-8x3=488. 解:设截得的每个小正方体的棱长为x cm, 依题意,得1 000-8x3=488, ∴8x3=512, ∴x=4. 答:截得的每个小正方体的棱长是4 cm.
6.2
立方根
知识点一
知识点二
知识点三
知识点一 立方根 1.定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立 方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例 如,53=125,那么5是125的立方根. 2.表示方法: 一个数a的立方根,用符号“ 3 a ”表示,读作“三次根号a”,其中a是 被开方数,3是根指数. 3.性质: (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0的立方根是0.
人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】
《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一个数的平方等于64,则这个数 的立方根是
2.要使 3 (3 k)3 3 ,k k的取值为
(
)
A.K≤3
B. K≥3
C. 0≤K ≤ 3 D.一切实数
3.若3 7 m <0 ,则m 的取值为 4.若 (2x 1)2 0.008 ,则x =
谈谈你的收获!
作业
的体积a 1
8
27 64
27
12255
棱长 x 1 2 3 4 根
填表:
正方体
的体积a 1
8
64
27 27 25
边长 x 1
23
x 3= a
4 3 25
3
例1 求下列各数的立方根
(1) 64
(2)-27
27 (3) 8
(4)-0.064
(5) 0
?
思考
正数有立方根吗?如果有,有几个? 负数呢? 零呢?
初中数学
回答:
16的平方根是____4__
-16的平方根是_没__有_平__方__根
0的平方根是____0____
一个正数有两个平方根,它们互为相 反数;零的平方根是零,负数没有平 方根.
实际问题:
要做一个体积为8cm3的正方体 模型(如图),它的棱长要取多少? 你是怎么知道的?
填表:
正方体
3
1
125
1 5
3
1
1
125 5
求下列各式的值
(1)3 125
(2)3 1000
(3)3 1
(4)
3
64
125
(5)3 0.001 0.01
立方根是它本身的数有哪些? 有1, -1, 0
平方根是它本身的数呢? 只有0
算术平方根是它本身的数呢? 有1、0
将体积分别为600cm3和129cm3的 长方体铁块,熔成一个正方体铁块, 那么这个正方体的棱长是多少?
比一比: 看谁算的又快又准!
1.判断下列说法是否正确,并说明理由
(1) 8 的立方根是 2 x
27
3
(2) 25 的平方根是5
x
(3) -64 没有立方根
x
(4) -4 的平方根是 2
x
(5) 0 的平方根和立方根都是0 √
2.口答
3 8 -2 3 8 -2
3 27 -3 3 27 -3