高二数学下学期第二次检测考试试题文无答案新人教A版

合集下载

河南省新野三高2013-2014学年高二数学下学期第二次阶段性考试试题 理(无答案)新人教A版

河南省新野三高2013-2014学年高二数学下学期第二次阶段性考试试题 理(无答案)新人教A版

2013—2014学年下学期高中二年级第二次阶段性考试数 学 试 题(理)2014.5.28说明:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。

2、将第Ⅰ卷选择题填涂在答题卡上,第Ⅱ卷非选择题写在答题卷相应的答题处。

考试结束,只交答题卡和答题卷。

第Ⅰ卷一选择题(每小题5分,共60分)1.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,2 2.(x 2-32x )5展开式中的常数项为( )A.80B.-80C.40D.-403.若~(100.8)X B ,,则(8)P X =等于 ( ) A .882100.80.2C ⨯⨯B .828100.80.2C ⨯⨯ C.820.80.2⨯D.280.80.2⨯4.已知随机变量ξ服从正态分布2(3,)N σ,则(3)P ξ<等于 ( )A .15B .14C .13D .125.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是 ( ) A .0.665 B .0.56 C .0.24 D .0.2856.12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( ) A .2283C AB .2686C AC .2286C AD .2285C A7、一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。

在此期间汽车继续行驶的距离(单位;m )是( )A. 125ln5+B. 11825ln 3+ C. 425ln5+ D. 450ln 2+8.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6错误!未找到引用源。

人教A版必修2高二数学期中考试题(文科)及答案

人教A版必修2高二数学期中考试题(文科)及答案

高二级数学中考试题(文科)本试题卷共4页,三大题20小题,全卷满分150分,考试用时120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、座位号填在答题卡上;2. 选择题每小题选出答案后,填写在答题卡上对应题目;3. 填空题和解答题填写在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束后,只将答题卡上交。

参考公式:圆锥的表面积公式)(l r r S +=π,r 是底面半径,l 是母线锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥 C .球 D .圆台2、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A.300B.450C.600D.9003、直线5x-2y-10=0在x 轴上的截距为a, 在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5;C.a=-2,b=5D.a=-2,b=-54、直线2x-y=7与直线3x+2y-7=0的交点是( )A.(3,-1)B.(-1,3)C.(-3,-1)D.(3,1)5、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A.4x+3y-13=0B.4x-3y-19=0C.3x-4y-16=0D.3x+4y-8=06、点M(4,m )关于点N (n,-3)的对称点为P (6,-9),则( )A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5 D.m =3,n =57、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.8、已知水平放置的ABC ∆的直观图如图所示,其中23,1=''=''=''O A O C O B ,那么原ABC ∆的面积是 ( ) A. 23; B. 43;C.3; D. 22.9、某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做底,且有一个三角形面上写上了“年”字。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.做变速直线运动的物体的速度满足,该物体在内经过的路程为9,则的值为( ) A.1B.2C.3D.4【答案】C【解析】将区间均分成个小区间,记第个区间为,此区间长为,用小矩形面积近似代替相应的小曲边梯形的面积,则近似地等于速度曲线与直线t=0,t=a,t轴围成的曲边梯形的面积.依题意得,∴解得a=3.【考点】定积分的概念.2.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数3.已知圆的方程:,(Ⅰ)求的取值范围;(Ⅱ)当圆与圆:相外切时,求直线:被圆,所截得的弦的长.【答案】(Ⅰ);(Ⅱ).【解析】试题分析;(Ⅰ)根据圆的一般方程表示圆的条件即可求的取值范围;(Ⅱ)根据圆与圆相切的等价条件求出的值,结合直线的弦长公式进行求解即可.试题解析:(Ⅰ)圆的方程可化为令,所以(Ⅱ)圆,圆心,半径圆圆心,半径因为圆与圆相外切所以解得圆心到直线的距离为所以4.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.5.用0,1,2, 3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字且比1325大的四位数?【答案】(1)156(2)216(3)270【解析】(1)由题意符合要求的四位偶数可分为三类:0在个位,2在个位,4在个位,对每一类分别计数再求它们的和即可得到无重复数字的四位偶数的个数;(2)符合要求的数可分为两类:个位数上的数字是0的五位数与个位数字是5的五位数,分类计数再求它们的和;(3)由题意,符合要求的比1325大的四位数可分为三类,第一类,首位比1大的数,第二类首位是1,第二位比三大的数,第三类是前两位是13,第三位比2大的数,分类计数再求和试题解析:(1)符合要求的四位偶数可分为三类:第一类:0在个位时有个;第二类:2在个位时,首位从1,3,4,5中选定1个(有种),十位和百位从余下的数字中选(有种),于是有个;第三类:4在个位时,与第二类同理,也有个.由分类加法计数原理知,共有四位偶数:个.(2)符合要求的五位数中5的倍数的数可分为两类:个位数上的数字是0的五位数有个;个位数上的数字是5的五位数有个.故满足条件的五位数的个数共有个.(3)符合要求的比1325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共个;第二类:形如14□□,15□□,共有个;第三类:形如134□,135□,共有个;由分类加法计数原理知,无重复数字且比1325大的四位数共有:个.【考点】排列、组合及简单计数问题6.由直线及曲线所围成的封闭的图形的面积为()A.B.3C.D.【答案】B【解析】由题意,直线及曲线所围成的封闭的图形如图,直线与曲线的交点为,所以阴影部分的面积为:,故选B.【考点】利用定积分求曲边形的面积.7.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.【答案】(1) (2) 最大值是,最小值是.【解析】(1)利用函数为奇函数,建立恒等式⋯①,切线与已知直线垂直得⋯②导函数的最小值得⋯③.解得的值;(2)通过导函数求单调区间及最大值,最小值.试题解析:(1)因为为奇函数,所以即,所以, 2分因为的最小值为,所以, 4分又直线的斜率为,因此,,∴. 6分(2)单调递增区间是和. 9分在上的最大值是,最小值是. 12分【考点】奇函数的性质,求函数的导数,及通过导数研究函数的单调区间及最值.8.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上 ( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【答案】C【解析】由题设可知:在(-1,2)上恒成立,由于从而,所以有在(-1,2)上恒成立,故知,又因为,所以;从而,得;且当时,当时,所以在上在处取得极大值,没有极小值.【考点】新定义,函数的极值.9.定积分的值为 .【答案】【解析】由定积分的几何意义知表示半圆与所围图形的面积,,所以.【考点】定积分的几何意义.10.对大于或等于2的正整数的幂运算有如下分解方式:;根据上述分解规律,若的分解中最小的正整数是21,则___________.【答案】11【解析】由已知,,故,所以11【考点】推理与证明11.某单位为了了解用电量(千瓦时)与气温(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1由表中数据得到线性回归方程中,预测当气温为-4℃时,用电量的度数约为.【答案】【解析】因,将,代入,可得,所以当代人可得.【考点】线性回归方程及运用.【易错点晴】线性回归方程是高中数学的统计中的内容之一,也是高中数学中的重要知识点,属于统计学中工具的范畴.由于这个知识点在日常生活与实际运用中的价值性,因此这部分内容常常涉及到的内容都是较为广泛.如本题的解答中要求先建立符合题设条件的线性回归方程,再运用这个线性回归方程求出当时用电量的度数,使得实际问题得以获解.12.已知幂函数图像的一部分如下图,且过点,则图中阴影部分的面积等于()A.B.C.D.【答案】B【解析】由题意得,因为幂函数图像过点,所以,解得,所以幂函数,则阴影部分的面积为,故选B.【考点】幂函数的解析式;定积分的应用.13.如图,正弦曲线和余弦曲线在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A.B.C.D.【答案】C【解析】由图象,得矩形的面积为,阴影部分的面积为,则由几何概型的概率公式,得该点落在阴影区域内的概率是;故选C.【考点】1.几何概型;2.定积分的应用.14.下列函数中,最小正周期是且在区间上是增函数的是()A.B.C.D.【答案】D【解析】B.的最小正周期是,C.的最小正周期为,A,D的最小正周期都是,当时,,是先减后增,是增函数,故选D.【考点】三角函数的性质15.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约()A.164石B.178石C.189石D.196石【答案】C【解析】由已知,抽得样本中含谷27粒,占样本的比例为,则由此估计总体中谷的含量约为石. 故选C.【考点】抽样中的用样本去估计总体.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.【答案】【解析】设球的半径为,则球的表面积为,两圆锥的底面积为,所以圆锥的底面半径满足,解得;由几何体的特征值球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者构成一个直角三角形,由此求出球心到圆锥底面的距离,所以圆锥体积较小者的高为,同理得圆锥体积较大者的高,所以则两个圆锥中体积较小者的高与体积较大者的比值为.【考点】球的体积和表面积.【方法点晴】本题主要考查了旋转体的表面积以及球内接圆锥的表面积的应用问题,也考查了计算能力与空间能力,是基础题目,本题的解答中,根据题意,设出球的半径,求出球的面积及圆锥的底面积,由此求出球心到圆锥底面的距离,所以圆锥体积较小者的高为,同理得圆锥体积较大者的高,由此求出圆锥的底面半径和两圆锥的高的比值.17.已知是递增的等差数列,,是方程的根。

浙江省舟山市嵊泗中学2013-2014学年高二数学下学期第二次月考试题2 理(无答案)新人教A版

浙江省舟山市嵊泗中学2013-2014学年高二数学下学期第二次月考试题2 理(无答案)新人教A版

高二下学期第二次月考数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分.)1.若数列{}n a 的前n 项和为2n S n =,则 ( )A .12-=n a nB .12+=n a nC .12--=n a nD .12+-=n a n21=2=,且,夹角0120,则=+2 ( )A. 2B. 4C. 12D. 323.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则 ( )A .1,1a b == B.1,1a b =-=C .1,1a b ==- D.1,1a b =-=-4.已知0,0,2x y x >>与y 的等差中项为1,2且1a x y +的最小值是9,则正数a 的值是 ( )A .1B .2C .8D .2或85.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( )A .64B .100C .110D .1206.在OAB ∆中,=,=,M 为OB 的中点,N 为AB 的中点,ON 与AM 交于点P ,则= ( ) A.b a 3132- B.b a 3132+- C.b a 3231- D.b a 3231+- 7.若{}n a 为等比数列,公比为q ,且1≠q ,0>n a ,则41a a +与32a a +的大小关系是 ( )A.3241a a a a +<+B.3241a a a a +=+C.3241a a a a +>+D.无法判断8.已知等差数列{}n a 的前n 项和为n S ,若1OB a OA =200a OC +且C B A ,,三点共线(该直线不过点O ),则200S = ( )A.100B.101C.200D.2019.设c b a ,,是单位向量,且0=∙b a ,则)()(c b c a -∙-的最小值为 ( )A.2-B.22-C.1-D.21-10.在数列{}n a 中,设00=S ,n n a a a a S +++=321,其中,,,,11k S k S k k a k k k ≥<⎩⎨⎧-=-- n k ≤≤1,*∈N n k ,,当14≤n 时,使0=n S 的n 的最大值为 ( )A.11B.12C.13D.14二、填空题(本大题共7小题,每小题4分,共28分.)11.已知{}n a 为等差数列,1322a a +=,67a =,则5a =12.已知向量(1sin )a θ=,,(1cos )b θ=,,则a b -的最大值为 _________13.等差数列}{n a 中,21=a ,公差不为零,且1131,,a a a 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________.14.已知函数x ax x f -=3)(在),(+∞-∞上是减函数,则a 的取值范围__________15.在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =16.若平面向量βα,1=1≤,且以向量βα,为邻边的平行四边形的面积为21,则α与β的夹角θ的取值范围是 ____17.若不存在整数x 满足不等式0)4)(4(2<---x k kx ,则实数k 的取值范围是___三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分14分)等差数列{}n a 中,前n 项和用n S 表示,已知355=S ,12010=S求:(1)n S ;(2)n a19.(本小题满分14分)已知||1a =,||4b =,且向量与不共线,(1)若与b 的夹角为60o ,求)()2(b a b a +⋅-;(2)若向量ka b +与ka b -互相垂直,求k 的值。

高中数学 课时跟踪检测(十三)独立重复试验与二项分布 新人教A版高二选修2-3数学试题

高中数学 课时跟踪检测(十三)独立重复试验与二项分布 新人教A版高二选修2-3数学试题

课时跟踪检测十三一、题组对点训练对点练一 n 次独立重复试验1.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582解析:选B 当ξ=12时,表示前11次中取到9次红球,第12次取到红球,所以P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.2.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下并放回,如果两球的之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )A.16625B.4625C.624625D.96625解析:选D 依题意得获奖的概率为1+5C 26=25(注:当摸出的两个球中有标号为4的球时,两球的之积是4的倍数,有5种情况;当摸出的两个球中没有标号为4的球时,要使两球的之积是4的倍数,只有1种情况,即摸出的两个球的标号为2,6),因此所求概率为C 34×⎝ ⎛⎭⎪⎫253×⎝ ⎛⎭⎪⎫1-25=96625.故选D. 3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该学生被选中的概率是( )A .C 45×⎝ ⎛⎭⎪⎫354×25B .C 55×⎝ ⎛⎭⎪⎫355C .C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355D .1-C 35×⎝ ⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252解析:选C 该学生被选中包括“该学生做对4道题”和“该学生做对5道题”两种情形.故所求概率为C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355.4.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625. 答案:625对点练二 二项分布5.下列随机变量X 不服从二项分布的是( )A .投掷一枚均匀的骰子5次,X 表示点数为6出现的次数B .某射手射中目标的概率为p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要的射击次数C .实力相等的甲、乙两选手进行了5局乒乓球比赛,X 表示甲获胜的次数D .某星期内,每次下载某数据被病毒感染的概率为0.3,X 表示下载n 次数据电脑被病毒感染的次数解析:选B 选项A ,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为16,每一次试验都是独立的,故随机变量X 服从二项分布;选项B ,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X 不服从二项分布;选项C ,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X 服从二项分布;选项D ,由二项分布的定义,可知被感染次数X ~B (n,0.3).6.将一枚硬币连掷7次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选D 由题意,知C k 7⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫127-k =C k +17⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫127-k -1,∴C k 7=C k +17,∴k +(k +1)=7,∴k =3.7.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件为相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.解:由题意ξ~B ⎝ ⎛⎭⎪⎫3,25,则 P (ξ=0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫253=8125. 所以随机变量ξ的分布列为对点练三 二项分布的应用8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值X 围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A 由题意,知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,所以0.4≤p <1,故选A.9.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.3281B.1127C.6581D.1681解析:选B 因为随机变量ξ~B (2,p ) ,所以P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13.则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14⎝ ⎛⎭⎪⎫1-133·⎝ ⎛⎭⎪⎫131=1127.故选B. 10.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一名儿童和一位成年人先后分别转动一次游戏转盘,得分情况记为(a ,b )(假设儿童和成年人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X ,求X 的分布列. 解:(1)某个家庭在游戏中获奖记为事件A ,则符合获奖条件的得分包括(5,3),(5,5),(3,5),共3种情况,∴P (A )=13×13+13×13+13×13=13.∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝ ⎛⎭⎪⎫5,13. ∴P (X =0)=C 05×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫235=32243,P (X =1)=C 15×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫234=80243, P (X =2)=C 25×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243, P (X =3)=C 35×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫232=40243, P (X =4)=C 45×⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243, P (X =5)=C 55×⎝ ⎛⎭⎪⎫135×⎝ ⎛⎭⎪⎫230=1243. ∴X 的分布列为X 0 1 2 3 4 5 P32243802438024340243102431243二、综合过关训练1.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n解析:选D 所有同学都不能通过测试的概率为(1-p )n ,则至少有1位同学能通过测试的概率为1-(1-p )n.2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为( )A.6581B.2527 C.827D.79解析:选C 已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827. 3.已知某班有6个值日小组,每个值日小组中有6名同学,并且每个小组中男生的人数相等,现从每个小组中各抽一名同学参加托球跑比赛,若抽出的6人中至少有1名男生的概率为728729,则该班的男生人数为( )A .24B .18C .12D .6解析:选A 设每个小组抽一名同学为男生的概率为p ,则由已知得1-(1-p )6=728729,即(1-p )6=1729,解得p =23,所以每个小组有6×23=4名男生,该班共有4×6=24名男生.4.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( )A.35×14B.⎝ ⎛⎭⎪⎫593×49C .C 14×⎝ ⎛⎭⎪⎫593×49D .C 14×⎝ ⎛⎭⎪⎫493×59解析:选B 取球次数X 是一个随机变量,X =4表明前3次取出的球都是黄球,第4次取出白球.这4次取球,取得黄球的概率相等,且每次取球是相互独立的,所以这是独立重复试验.设A 表示“取出的1个球是白球”,则P (A )=C 14C 19=49,P (A -)=1-49=59,故P (X =4)=P (A -A -A -A )=[P (A -)]3·P (A )=⎝ ⎛⎭⎪⎫593×49.5.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位长度,向右移动两个单位长度,所以蚂蚁在x =1处的概率为C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫131=49.答案:496.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝ ⎛⎭⎪⎫20,23,那么当X ,Y 变化时,下面关于P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为________.解析:根据二项分布的特点可知,(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个.答案:217.某居民小区有两个相互独立的安全防X 系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110p =4950,解得p =15.(2)由题意,ξ的可能取值为0,1,2,3.P (ξ=0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫1-1101⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫1-1102⎝ ⎛⎭⎪⎫1101=2431 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫1-1103⎝ ⎛⎭⎪⎫1100=7291 000,所以随机变量ξ的概率分布列为8.甲、乙两人各射击一次,击中目标的概率分别是3和4.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?解:设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A ,B 相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标},则P (C )=1-⎝ ⎛⎭⎪⎫234=6581.(2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·C 34·⎝ ⎛⎭⎪⎫343·14=18.(3)甲恰好射击5次,被中止射击,说明甲第4,5次未击中目标,第3次击中目标,第1,2两次至多一次未击中目标,故所求概率P =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132×23×⎝ ⎛⎭⎪⎫132=16243.。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数2.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.3.如图,输入时,则输出的________.【答案】【解析】由算法流程图提供的算法程序可知:当时,输出,应选答案C。

4.二项式的展开式中常数项是()A.-28B.-7C.7D.28【答案】C【解析】常数项,故选B.【考点】二项式的展开式.5.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.6.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)当时,||+||,利用零点分段法解不等式或者利用图象解不等式;(2)若不等式的对一切恒成立,则,因为时,,故恒成立,,.试题解析:(1)解:||+||,即或或或或所以原不等式的解集为[](2)||+||对一切恒成立,,恒成立,即恒成立,当时,,【考点】1、绝对值不等式解法;2、函数的最值.7.已知函数,设为的导函数,根据以上结果,推断_____________.【答案】【解析】.8.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.9.若,则的值是()A.6B.4C.3D.2【答案】D【解析】略10.某长方体的三视图如右图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.B.C.6D.10【答案】B【解析】由三视图设长方体中同一顶点出发的三条棱长为、、,则有,解方程组得到,所以该长方体的面积为,故选B.【考点】1、空间几何体的三视图;2、空间几何体的表面积.11.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项B.项C.项D.项【答案】D【解析】由题意得,当时,不等式的左侧为,当时,不等式的左侧为,所以变成时,左边增加了,共有项,故选D.【考点】数学归纳法.12.已知圆与圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为.(1)求的方程;(2)证明直线恒过定点,并求定点的坐标.【答案】(1);(2)证明见解析,.【解析】(1)确定,可得曲线是长轴长,焦距的椭圆,即可求解椭圆的方程;(2)分类讨论,设出直线的方程,代入椭圆的方程,利用韦达定理,结合直线的斜率之积为,即可证直线恒过定点,并求出定点的坐标.试题解析:(1)设⊙,⊙的公共点为,由已知得,,故,因此曲线是长轴长,焦距的椭圆,所以曲线;(2)由曲线的方程得,上顶点,记,若直线的斜率不存在,则直线的方程为,故,且,因此,与已知不符,因此直线AB的斜率存在,设直线,代入椭圆:①因为直线与曲线有公共点,所以方程①有两个非零不等实根,故,又,,由,得即所以化简得:,故或,结合知,即直线恒过定点.【考点】椭圆的标准方程;直线与椭圆的位置关系的应用.【方法点晴】本题主要考查了椭圆的标准方程、直线与椭圆的位置关系的应用、判定直线过定点问题等知识点的综合考查,解答中设出直线的方程,代入椭圆的方程,利用判别式和根与系数的关系及韦达定理,结合直线的斜率之积为是解答本题的关键,注重考查了分析问题和解答问题的能力及转化与化归思想的应用,试题有一定的难度,属于中档试题.13.在△ABC中,角A,B,C的对边分别为a,b,c,cos=.(1)求cos B的值;(2)若,b=2,求a和c的值.【答案】(1)(2)【解析】解:(1)∵cos=,∴sin=, 2分∴cos B=1-2sin2=. 5分(2)由可得a·c·cos B=2,又cos B=,故ac=6, 6分由b2=a2+c2-2ac cos B可得a2+c2=12, 8分∴(a-c)2=0,故a=c,∴a=c=10分【考点】解三角形点评:解决的关键是根据诱导公式以及二倍角公式和向量的数量积结合余弦定理来求解,属于中档题。

江西省安福中学2020届高三数学第二次段考试题 文 (无答案)新人教A版

安福中学2020届高三第二次段考数学(文)试题一.选择题(本大题共有10个小题,每小题5分,共50分.)1.已知U ={}y | y =log 2x ,x >1,P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =1x ,x >2,则∁U P = ( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫0,12 C.()0,+∞ D.()-∞,0∪⎣⎢⎡⎭⎪⎫12,+∞ 2.把复数z 的共轭复数记作z -,i 为虚数单位,若z =1+i ,则(1+z )·z -=( )A .3-iB .3+iC .1+3iD .33.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b ) 5.给出如下四个命题:① 若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若122,->>b a b a 则”的否命题为“若a b ≤,则221a b ≤-”;③ “R x ∈∀,x 2+1≥1”的否定是 “∃x ∈R,x 2+1≤1”;④ 在ABC ∆中,“A B >”是“sin sin A B >”的充要条件. 其中不正确...的命题的个数是( ) A .4 B .3 C . 2 D .16.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A .1 B.12 C .-12D .-17.设f(x)为奇函数, 且在(-∞, 0)内是减函数, f (-2)= 0, 则x f(x)< 0的解集为( )A .(-1, 0)∪(2, +∞)B .(-∞, -2)∪(0, 2 )C .(-∞, -2)∪(2, +∞)D .(-2, 0)∪(0, 2 )8.设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A B C D . 9、下列图像中有一个是函数1)1(31)(223+-++=x a ax x x f )0,(≠∈a R a 的导数)(x f ' 的图像,则(1)f -等于( )。

新课标人教A版高二数学练习题(选修2-2、4-1、4-5)

高二数学练习题一、选择题(每小题5分,共60分)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2.曲线23-+=x x y 上一点0P 处的切线平行于直线41y x =+,则点0P 一个的坐标是 ( ) A .(0,-2) B. (1, 1) C. (-1, -4) D. (1, 4) 3.设y x ,为正数, 则)41)((yx y x ++的最小值为 ( )A. 6B.9C.12D.154.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的 倾斜角为 ( ) A .90° B .0° C .锐角 D .钝角5.如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的 离心率为 A .12B.3C.2D .非上述结论[]326y 2x 3x 12x 50,3=--+.函数在上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -168、已知{}n b 为等比数列,52b =,则99212=⋅⋅⋅b b b 。

若{}n a为等差数列,第5题图52a =,则{}n a 的类似结论为( )A 99212=⋅⋅⋅a a aB 99212=+++a a a C 92921⨯=⋅⋅⋅a a a D 92921⨯=+++a a a 9.已知曲线3lnx 4xy 2-=的一条切线的斜率为21,则切点的横坐标为( )A. 3B. 2C. 1D. 1210.设R a ∈,若函数x e y ax3+=,R x ∈有大于零的极值点,则( )A .3->a B. 3-<a C. 31->a D. 31-<a()2111.f x ln(2)b 2x b x =-++∞若在(-1,+)上是减函数,则的取值范围是( )A.[-1,+∞]B.(-1,+∞)C.(]1,-∞- D.(-∞,-1)12.如右图,求阴影部分的面积是( ) A. 32 B. 329- C.332 D. 335二、填空题(每小题4分,共16分)121)3(z z i -12、若复数z =4+29i,z =6+9i,则复数的实部为 。

河北省张家界市一中高三数学下学期第二次月考试题 理 新人教A版

数学(理)命题人:熊廷新 审核人:李安平本试卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数21i i-对应的点的坐标为( A ) A .(11)-, B .(l 1), C .(1l)-, D .(1l)--,2.已知全集U R =,集合{}31<<=x x A ,{}2>=x x B ,则()U AC B =( A )A .{}21≤<x xB .{}32<<x xC .{}21<<x xD .{}2≤x x 3.“2a <-”是“函数()3f x ax =+在区间[1,2]-上存在零点”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.将函数()2sin(2)3f x x π=-的图象向左平移6π个单位后,所得图象的一个对称中心是( B )A .,04π⎛⎫ ⎪⎝⎭B .,02π⎛⎫ ⎪⎝⎭C .,03π⎛⎫ ⎪⎝⎭D .,012π⎛⎫ ⎪⎝⎭5.在平面内,已知||1OA =,||3OB =,0=⋅, 30=∠AOC ,设n m +=,(,R m n ∈),则n m 等于( D ) A .13± B .33± C .3±.3± 6.已知命题p :关于x 的函数2()21f x x ax =+-在[3)+∞,上是增函数;命题q :关于x 的方程240x ax -+=有实数根.若p q ∨为真命题,p q ∧为假命题,则实数a 的取值范围是( C )A .(124)(4)-+∞,, B .(124][4)-+∞,, C .(12)(44)-∞--,, D .[12)-+∞,7.已知()f x 是定义在[]1,1-上的奇函数,满足(1)1f =,且当a ,[]1,1b ∈-,0a b +≠,有()()0f a f b a b+>+.若()2()210f x m am m ≤-+≠,对所有的[]1,1x ∈-,[]1,1a ∈-恒成立,实数m 的取值范围是( C )A .()2,2-B .()()2,00,2-C .(][),22,-∞-+∞D .()()2,11,2--8.对实数a 和b ,定义运算“⊗”:,1,1a ab a b b a b -≤⎧⊗=⎨->⎩,设函数22()(2)()f x x x x =-⊗-,x R ∈.若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( B )A .3(,2)(1,)2-∞--B .3(,2)(1,)4-∞---C .11(1,)(,)44-+∞ D .31(1,)[,)44--+∞ 【解析】根据定义,由222()1x x x ---≤得312x -≤≤, 所以当312x -≤≤时,222()(2)()2f x x x x x =-⊗-=-, 当1x <-或32x >时, 222()1x x x --->,222()(2)()f x x x x x x =-⊗-=-所以函数()f x 的图象如图所示,所以函数()f x 的图象与y c =的图象有两个交点,须使2c <-或314c -<<-,故选B 二、填空题:本大题共7小题,每小题5分,共35分.9.设lg ,0()10,0x x x f x x >⎧=⎨≤⎩,则((2))f f -=2- 10.函数6()12log f x x =-的定义域为 (0,6⎤⎦ . 11.10()x e x dx +=⎰ 12e -. 12.函数)(x f y =是R 上的偶函数,且在]0,(-∞上是增函数,若)2()(f a f ≤,则实数a的取值范围是 (][)+∞-∞-,22,U .13.已知函数()f x =⎩⎨⎧>≤--.1,log 1,1)2(x x ,x x a a ,若()f x 在-∞+∞(,)上单调递增, 则实数a 的取值范围为______(2,3]__ .14.如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD 上,若2AB AF ⋅=,则AE BF ⋅的值是 2 .15.已知()(2)3f x m x m x m =-++(),()22x g x =-,若同时满足条件: ○1x R ∀∈,()0f x <或()0g x <;○2(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 ()42--, .【解析】根据()2201xg x x =-<⇒<,由于题目中第一个条件的限制,导致()f x 在1x ≥是必须是()0f x <,当0m =时,()0f x =,不能做到()f x 在1x ≥时,()0f x <,所以舍去,因此()f x 作为二次函数开口只能向下,故0m <,且此时2个根为122,3x m x m ==--,为保证条件成立,只需121212314x m m x m m ⎧=<<⎧⎪⎪⇒⎨⎨=--<⎪⎪⎩>-⎩,和大前提0m <取交集结果为40m -<<,又由于条件2的限制,可分析得出(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内()g x 有取得正数的可能,即4-应该比12,x x 两个根中较小的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍去.当1m =-时,两个根同为24->-,也舍去,当(4,1)m ∈--时,242m m <-⇒<-,综上所述(4,2)m ∈--.三、解答题。

河北省邢台二中2013-2014学年高二数学下学期第二次月考试题 理 新人教A版

高二下学期第二次月考数学(理)试题一、选择题(60分)1.复数2i 1i -3⎪⎭⎫⎝⎛+=( )A .-3+4iB .-3-4iC .3-4iD .3+4i2曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )A.34 B.37 C.35 D.38 3、已知直线kx y =是x y ln =的切线,则k 的值为( )A.e 2 B.e 1- C.e 1 D.e2- 4.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件8. 设,,x y R ∈ 则“2x ≥且2y ≥”是“224x y +≥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 9、设常a R ∈,集合A ={|(1)()0x x x a --≥},B ={|1x x a ≥-},若AB =R ,则a 的取值范围为( )A .(-∞,-2)B .(-∞,2]C .(2,+∞)D .[2,+∞)10.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( ) A .一定大于0 B .一定等于0 C .一定小于0 D .正负都有可能11.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A .[0,π2)B .[0,π2)∪[2π3,π)C .[2π3,π)D .[0,π2)∪(π2,2π3]12.等比数列{a n }中a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215二、填空题(20分)13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为: 14.由曲线2y x =与2x y =所围成的曲边形的面积为________________ 15.观察下列不等式213122+< 353121122<++474131211222<+++……照此规律,第五个...不等式为 . 16. 函数g (x )=ax 3+2(1-a )x 2-3ax 在区间⎝ ⎛⎭⎪⎫-∞,a 3内单调递减,则a 的取值范围是________.三、解答题(共6题,70分)17.(10分)已知集合P ={x |x 2-8x -20≤0}, S ={x |1-m ≤x ≤1+m }(1)是否存在实数m ,使”x ∈P ”是”x ∈S ”的充要条件?若存在,求m 的取值范围;若不存在说明理由;(2)是否存在实数m ,使”x ∈P ”是”x ∈S ”的必要条件?若存在,求m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘谷四中2012—2013学年度第二学期高二级第二次检测考试
数学(文科)
一. 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)
1.设集合{}{}2|21,|10x A x B x x -=<=-≥,则A B 等于( ) A .{}|1x x ≤ B .{}|12x x ≤< C .{}|01x x <≤
D .{}|01x x << 2. 复数212i i +-的共轭复数是 ( ) A. 35i - B. 35i C. i - D. i
3. 下列函数中,既是偶函数又在+∞(0,)
单调递增的函数是 ( ) A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2x y -=
4.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落 入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .
则抽到的人中,做问卷B 的人数为( ).
A .7
B .9
C .10
D .15
5. 容量为20的样本数据,分组后的频数如下表:
则样本数据落在区间[10,40)的频率为( )
A .0.35
B .0.45
C .0.55
D .0.65
6. 已知n S 为等差数列{}n a 的前n 项的和,254a a +=,721S =,则7a 的值为( )
A .6
B .7
C .8
D . 9
7.已知向量(cos ,2),(sin ,1),//a b a b αα=-=则tan()4πα-
等于( ) A . 3- B. 3 C. 13 D. 13-
8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的
三视图,则此几何体的体积为( )
A. 6
B. 9
C. 12
D. 18
9. 设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性
相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最
小二乘法建立的回归方程为=0.85x -85.71,则下列结论中不
正确的是( ).
A .y 与x 具有正的线性相关关系
B .回归直线过样本点的中心(x ,y )
C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg
D .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162
=的准线交于,A B 两点, 43AB =;则C 的实轴长为( )
A. 2
B. 22
C. 4
D. 8
11. 甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )
A .甲的成绩的平均数小于乙的成绩的平均数
B .甲的成绩的中位数等于乙的成绩的中位数
C .甲的成绩的方差小于乙的成绩的方差
D .甲的成绩的极差小于乙的成绩的极差
12.已知函数y= f (x) 的周期为2,当x ∈[]11,-时 f (x) =x 2
,那么函数y = f (x) 的图像与函数y =x lg 的图像的交点共有 ( )
A. 10个
B. 9个
C. 8个
D. 1个
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分.
13. 某校为了解高三男生的身体状况,检测了全部480名
高三男生的体重(单位:kg),所得数据都在区间[50,75]
中,其频率分布直方图如图所示.若图中从左到右的
前3个小组的频率之比为1:2:3,则体重小于60 kg
的高三男生人数为________.
14. 已知向量,a b 夹角为45︒
,且1,210a a b =-=; 则_____b =.
15. 若直线的极坐标方程为cos()324
πρθ-
=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________. 16.曲线y =x (3ln x +1)在点)1,1(处的切线方程为________
三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

17. (本小题满分12分)
已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (Ⅰ)求A ;
(Ⅱ)若2a =,ABC ∆的面积为3;求,b c 。

18.(本小题满分12分)2012年元旦、春节前夕,各个物流公司都出现了爆仓现象,直接原
因就是网上疯狂的购物.某商家针对人们在网上购物的态度在某城市进行了一次调查,共调查了124人,其中女性70人,男性54人.女性中有43人对网上购物持赞成态度,另外27人持反对态度;男性中有21人赞成网上购物,另外33人持反对态度. (Ⅰ) 估计该地区对网上购物持赞成态度的比例;
(Ⅱ) 有多大的把握认为该地区对网上购物持赞成态度与性别有关;
附:
表1
K 2=n (ad -bc )2
(a +c )(b +d )(a +b )(c +d )
19. (本小题满分12分)
如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,
∠ACB=90°,AC=BC=12
AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC;
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.
20.(本小题满分12分)
对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M 、p 及图中a 的值;
(2)若该校高一学生有360人,试估计他们参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多1人参加社区服务次数在区间[20,25)内的概率.
21.(本小题满分12分) 已知函数()ln f x x x =.
(Ⅰ)求()f x 的最小值;
(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.
22. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xoy 中,直线l
的参数方程为3,x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)。

在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程
为ρθ=。

(Ⅰ)求圆C 的直角坐标方程;
(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P
的坐标为,求|PA|+|PB|。

相关文档
最新文档