七年级下册数学过关斩“题”第七章
冀教版七年级数学下册第七章复习测试题及答案全套.doc

最新冀教版七年级数学下册第七章复习测试题及答案全套第7章相交线与平行线专训1识别相交线中的几种角名师点金:我们已经学习了对顶角和“三线八角”,能够准确地识别这几种角,对我们以后的学习起着铺垫作 用.识别“三线八角”中的两个角属于何种类别时可联想英文大写字母,即“F'形的为同位角,“彳形 的为内错角,“ZT 形的为同旁内角,每类角都有一个共同点,即:有两条边在截线上,另外两条边在被 截直线上.更」识别对顶角1. 下列选项中,Z1与Z2互为对顶角的是()2. 下列语句正确的是()A. 顶点相对的两个角是对顶角B. 有公共顶点并且相等的两个角是对顶角C. 两条直线相交,有公共顶点的两个角是对顶角D. 两条直线相交,有公共顶点且没有公共边的两个角是对顶角3. 如图,Z1的对顶角是()4. 如图所示,直线AB, CD 相交于点O, 0E, 0F 是过点O 的射线,其中构成对顶角的是()A. ZA0F 和ZDOEB. ZEOF 和ZBOEC. ZBOC 和ZAODD. ZCOF 和ZBODA. ZBOFB. ZBOCC. ZBOD1芙叟2识别同位角、内错角、同旁内角5. 下列图形中,Z1和Z2是同旁内角的是(7. 如图所示,如果Z2=100%那么Z1的同位角等于 __________ °, Z1的内错角等于 ___________°, Z1 的同旁内角等于 _______ %8. 如图,试判断Z1与Z2, Z1与Z7, Z1与ZBAD, Z3与Z4, Z2与Z6, Z5与Z8各对角的 位置关系.6. 如图,AB 与BC 被AD 所截得的内错角是 ;DE 与AC 被直线AD 所截得的内错角是:图屮Z4的内错角是和AE(第8题)9.如图,请结合图形找出图中所有的同位角、内错角和同旁内角.(第9题)答案1. D2.D 3・B 4.C 5胡6. Z1 和Z3; Z2 和Z4: Z5; Z27. 80; 80; 1008. 解:Z1与Z2是同旁内角,Z1与Z7是同位角,Z1与ZBAD 是同旁内角,Z3与Z4是同旁内 角,Z2与Z6是内错角,Z5与Z8是对顶角.9. 解:当直线AB, BE 被AC 所截时,所得到的内错角有:ZBAC 与ZACE, ZBCA 与ZFAC ;同 旁内角有:ZBAC 与ZBCA, ZFAC 与ZACE.专训2活用判定两直线平行的六种方法名师点金:1. 直线平行的判定方法很多,我们要根据图形的特征和已知条件灵活选择方法.2. 直线平行的判定常结合角平分线、对顶角、垂直等知识.3. 直线平行的判定可解决有关角度的计算或说明角相等等问题.方法!利用平行线的定义1. 下面的说法中,正确的是()4. 同一平而内不相交的两条线段平行B. 同一平面内不相交的两条射线平行C. 同一平面内不相交的两条直线平行D. 以上三种说法都不正确迓勲:利用“同位角相等,两直线平行”2. 如图,已知ZABC = ZACB, Z1 = Z2, Z3 = ZF,试判断EC 与DF 是否平行,并说明理由.ZFAD 与ZB ;同旁内角有:ZDAB 与ZB. 当直线AD, BE 被AC 所截时,内错角有: ZACB 与ZCAD ;同旁内角有:ZDAC 与ZACE. 当直线AD, BE 被BF 所截时,同位角有: 当直线AC, BE 被AB 所截时,同位角有: ZB 与ZFAC ;同旁内角有:ZB 与ZBAC. 当直线AB, AC 被BE 所截时,同位角有: ZB 与ZACE ;同旁内角有:ZB 与ZACB.[龙诛3利用“内错角相等,两直线平行” 3. 如图,已知ZABC=ZBCD, Z1 = Z2,试说明 BE 〃CF.龙決出利用“同旁内角互补,两直线平行”4. 如图,ZBEC = 95% ZABE=120% ZDCE=35°,则AB 与CD 平行吗?请说明理由.【导学号:77004010]〔龙決利用“平行于同一条直线的两条直线平行”5. 如图,已知ZB=ZCDF, ZE+ZECD=180°.试说明 AB 〃EF ・(第5题)。
达标测试鲁教版(五四制)七年级数学下册第七章二元一次方程组专题测评试卷(精选含答案)

七年级数学下册第七章二元一次方程组专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列方程组:①12xyx y=⎧⎨+=⎩;②311x yyx-=⎧⎪⎨+=⎪⎩;③20135x zx y+=⎧⎪⎨-=⎪⎩;④5723xx y=⎧⎪⎨-=⎪⎩;⑤11xx yπ+=⎧⎨-=⎩,其中二元一次方程组有()A.1个B.2个C.3个D.4个2、二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用哪种方法消元()A.代入消元法B.加减消元法C.代入、加减消元法都可以D.以上都不对3、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:则12:00时看到的两位数是()A.16 B.25 C.34 D.524、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x元,包子每个y元,依题意可列方程组为()A.5317211533.30.9x yx y+=+⎧⎨+=⨯⎩B.5317211533.30.9x yx y+=+⎧⎨+=÷⎩C.5317211533.30.9x yx y+=-⎧⎨+=⨯⎩D.5317211533.30.9x yx y+=-⎧⎨+=÷⎩5、若方程组537753x yx y-=⎧⎨-=⎩的解为6.58.5xy=⎧⎨=⎩,则方程组5(13)3(1)77(13)5(1)3x yx y--+=⎧⎨--+=⎩的解为()A.19.59.5xy=⎧⎨=⎩B.19.57.5xy=⎧⎨=⎩C.6.59.5xy=-⎧⎨=⎩D.6.57.5xy=-⎧⎨=⎩6、已知关于x,y的二元一次方程组434ax yx by-=⎧⎨+=⎩的解是22xy=⎧⎨=-⎩,则a+b的值是()A.1 B.2 C.﹣1 D.07、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有x人,该物品价值y元,则根据题意可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨+=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩8、下列方程中,是关于x的一元二次方程的是()A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=09、已知x,y满足235348x yx y-=⎧⎨-=⎩,则x-y的值为()A.3 B.-3 C.5 D.0 10、下列各式中是二元一次方程的是()A .2327x y -=B .25x y +=C .123y x += D .234x y -=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若31x y =⎧⎨=-⎩是二元一次方程2x ay -=的解,则a =______. 2、现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则可列方程组为___.3、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.4、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.5、新春佳节享团圆,吉祥如意在虎年!新年将至,某超市第一周销售吉祥、如意、团圆三种年货礼包的数量之比为3:1:4,吉祥、如意、团圆三种年货礼包的单价之比为1:5:2.第二周由于人工成本的增加,超市管理人员把如意礼包的单价在第一周的基础上上调20%,吉祥、团圆礼包的单价保持不变,预计第二周三种年货礼包的销售总额比第一周有所增加,其中团圆礼包增加的销售额占第二周总销售额112,如意礼包和团圆礼包的销售额之比是3:4,三种礼包的数量之和比第一周增加1932,则团圆礼包第一周与第二周的数量之比为_____________.三、解答题(5小题,每小题10分,共计50分)1、解方程或方程组:(1)4(x ﹣5)2=16; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩.2、解方程组:212530x y x y z x y z -=-⎧⎪++=⎨⎪--=⎩. 3、解方程组:531x y x y -=⎧⎨-=-⎩①②4、(1)解方程3(x +1)=8x +6;(2)解方程组573212x y x y +=⎧⎨-=⎩. 5、解下列三元一次方程组:2325213z y x x y z x y z =+⎧⎪-+=⎨⎪++=⎩①②③-参考答案-一、单选题1、B【解析】略2、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.【详解】解:325223x y x y -=⎧⎨+=⎩①②,①+②,得58x =,消去了未知数y ,即二元一次方程组325223x y x y -=⎧⎨+=⎩更适合用加减法消元, 故选:B .【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.3、A【解析】【分析】设小明12:00看到的两位数,十位数为x ,个位数为y ,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.【详解】设小明12:00看到的两位数,十位数为x ,个位数为y ,由题意列方程组得:()7(100)(10)(10)10x y x y y x y x x y +=⎧⎪⎨+-+=+-+⎪⎩, 解得:16x y ⎧⎨⎩==, ∴12:00时看到的两位数是16.故选:A .【点睛】本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.4、B【解析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键.5、B【解析】【分析】由整体思想可得13 6.518.5x y -=⎧⎨+=⎩,求出x 、y 即可. 【详解】解:∵方程组537753x y x y -=⎧⎨-=⎩的解为 6.58.5x y =⎧⎨=⎩, ∴方程组5(13)3(1)77(13)5(1)3x y x y --+=⎧⎨--+=⎩的解13 6.518.5x y -=⎧⎨+=⎩, ∴19.57.5x y =⎧⎨=⎩;【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.6、B【解析】【分析】将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩即可求出a 与b 的值; 【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得: 11a b =⎧⎨=⎩ , ∴a +b =2;故选:B .【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.7、A【解析】【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x人,物品价值y元,由题意得:8374x y x y-=⎧⎨+=⎩故选:A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8、A【解析】【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B、含有两个未知数,不是一元二次方程,不符合题意;C、210x+=,含有一个未知数,不是一元二次方程,不符合题意;D、当0a=时,不是一元二次方程,不符合题意;故选:A【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.9、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵235348x y x y -=⎧⎨-=⎩ ∴3x -4y -(2x -3y )=8-5x -y =3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.10、B【解析】【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意;123y x +=中1x不是整式,故C 不符合题意; 234x y -=中y 的次数为2,故D 不符合题意;故选B .【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.二、填空题1、-1【解析】【分析】把31x y =⎧⎨=-⎩代入2x ay 即可求出a 的值.【详解】把31x y =⎧⎨=-⎩代入方程得:32a +=, 解得:1a =-,故答案为:1-【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.2、5152x y y x =+⎧⎪⎨=+⎪⎩【解析】【分析】根据题意可得等量关系:绳索长=竿长+5尺,竿长=绳索长的一半+5尺,根据等量关系可得方程组.【详解】解:设绳索长x 尺,竿长y 尺,由题意得:5152x y y x =+⎧⎪⎨=+⎪⎩,故答案为:5152x yy x=+⎧⎪⎨=+⎪⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.3、13:30【解析】【分析】设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.【详解】解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:(10×0.02+10m+10n)×(1+30%)=2.6,解得m+n=0.18,则甲种干果的成本价为10×0.02+10m+10n=2(元),乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),设甲种干果x袋,乙种干果y袋,根据题意得:2x×30%+1.3y×20%=(2x+1.3y)×24%,解得,1330xy=,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.故答案为:13:30.【点睛】本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.4、 一元一次 消元【解析】略5、4:5【解析】【分析】设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a ,a ,4a ,三种年货礼包的单价为b ,5b ,2b ,则第一周销售额可得;设第二周如意年货礼包的销售数量为y ,由于第二周礼包的单价在第一周的基础上上调20%,所以第二周礼包的单价为6y ,销售额为6by ,则团圆礼包第二周销售额为8by ,利用已知条件列出方程求解即可【详解】解:设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a ,a ,4a ,三种年货礼包的单价为b ,5b ,2b ,则第二周三种年货的售价为:b ,5b ×1.2=6b ,2b ;设第二周三种年货的销量分别为x ,y ,z ,∵如意礼包和团圆礼包的销售额之比是3:4,∴6:23:4by bz =∴4z y =第二周团圆包增加的销售额为:24248()b y b a b y a ⨯-⨯=- ∵团圆礼包增加的销售额占第二周总销售额112, ∴1(14)8()12b x y b y a +⨯=- ∴8296x y a =- ∵三种礼包的数量之和比第一周增加1932,∴19(34)(1)32x y z a a a ++=++⨯+∴51829644y a y y a -++=∴:5:4y a =∴团圆礼包第一周与第二周的数量之比为4:4:4:5a y a y ==故答案为:4:5【点睛】本题考查三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.三、解答题1、 (1)x =3或7; (2)312x y =⎧⎪⎨=⎪⎩【解析】【分析】(1)根据平方根的定义解答即可;(2)整理后,利用加减消元法进行求解即可.(1)解:4(x -5)2=16,∴(x -5)2=4,∴x -5=±2,∴x =3或7;(2)解:11233210x y x y +⎧-=⎪⎨⎪+=⎩①②,由①得:3x -2y =8③,②+③得:x =3,把x =3代入②得:y =12, ∴原方程组的解为312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了平方根的定义,二元一次方程组的解法,解二元一次方程组的基本思想是消元,把二元方程转化为一元方程是解题的关键.2、3,2,3x y z ===-【解析】【详解】解:212530x y x y z x y z -=-⎧⎪++=⎨⎪--=⎩①②③, ②+③得:325x y -=④,由④和①组成一个二次一次方程组21325x y x y -=-⎧⎨-=⎩, 解得:32x y =⎧⎨=⎩, 把32x y =⎧⎨=⎩代入③360z --=, 解得:3z =-,所以原方程组的解是:3,2,3x y z ===-.【点睛】此题考查了解三元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.3、38x y =-⎧⎨=-⎩ 【解析】【分析】②-①消元求解x 的值,代回①式解y 的值即可.【详解】解:②-①得26x =-解得:3x =-将3x =-代入①式得35y --=解得:8y =-∴方程组的解为38x y =-⎧⎨=-⎩. 【点睛】本题考查了一元二次方程组.解题的关键在于正确的减法消元求解.4、(1)x =35;(2)23x y =⎧⎨=-⎩ 【解析】【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.【详解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=35;(2)573212x yx y+=⎧⎨-=⎩①②,①×2+②,得13x=26,解得:x=2,把x=2代入①,得10+y=7,解得:y=-3,所以方程组的解是23xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.5、235 xyz=⎧⎪=⎨⎪=⎩【解析】【详解】将①代入②、③,消去z,得45 25313x yx y-=⎧⎨+=⎩解得23 xy=⎧⎨=⎩把x=2,y=3代入①,得z=5。
人教版七年级下册数学第七章《平面直角坐标系》单元试题(含答案)

七年级下册数学第七章平面直角坐标系章节复习检测卷一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1 或32.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)3.如果a﹣b<0,且ab<0,那么点(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,﹣3) B.(﹣5,3) C.(3,﹣5) D.(﹣3,5)6.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3)7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )A .(﹣3,3)B .(3,2)C .(1,3)D .(0,3)8.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB 得到线段A’B’(点A 与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)9.将点A (-2,-3)向左平移3个单位长度得到点B ,则点B 的坐标是( )A .(1,-3)B .(-2,0)C .(-5,-3)D .(-2,-6)10.点()'2,1A -可以由点()2,1A -通过两次平移得到,正确的移法是( )A .先向左平移4个单位长度,再向上平移2个单位长度B .先向右平移4个单位长度,再向上平移2个单位长度C .先向左平移4个单位长度,再向下平移2个单位长度D .先向右平移4个单位长度,再向下平移2个单位长度二、填空题(每小题3分,共24分)11.已知点M(a+3,4-a)在y轴上,则点M的坐标为.12.如图3,观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红方“马”走完“马3进4”后到达点B,则表示点B位置的数对是.图313.如图4,把笑脸放在平面直角坐标系中,已知眼睛A的坐标是(-2,3),嘴唇C的坐标是(-1,1),则将此笑脸向右平移3个单位长度后,眼睛B的坐标是.图414.若点B的坐标为(2,1),AB∥y轴,且AB=4,则点A的坐标为.15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.第14题图第18题图三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF 是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发112s时,试求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).参考答案与解析1.C 2.C 3.B 4.D 5.D6.D 7.C 8.B 9.C10.D11. (0,7)12. (4,7)13. (3,3)14. (2,-3)或(2,5)15.(1,1) 16.-1 17.±418.(2017,2)19.解:(1)三角形A′B′C′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B的坐标为(1,2),点B′的坐标为(3,5).(7分)20.解:(1)∵A(2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,(1分)CD到x轴的距离2+1=3,(2分)∴点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a=2a+7或1-a+2a+7=0,解得a=-2或-8,(4分)故6-5a=16或46,(6分)∴6-5a的平方根为±4或±46.(8分) 22.解:(1)过B作BF⊥x轴于F,过A作AG⊥x轴于G,如图所示.(2分)∴S四边形ABCO =S三角形BCF+S梯形ABFG+S三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2).(3分)三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a-3=a+3,2b-3-3=4-b,(7分)解得a=6,b=103,(9分)∴a-b=83.(10分)24.解:(1)三角形ABC如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD =12×2×3=3,S 三角形ACE =12×2×4=4,S 三角形AOB =12×2×1=1.(6分)∴S 三角形ABC =S 长方形DOEC -S 三角形ACE -S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP =4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC =OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S 三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分) (3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ=S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC 上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PDM -S 三角形DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2). 综上所述,S =⎩⎨⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。
人教版七年级下册数学《第七章二元一次方程》单元过关测试含答案

人教版七年级下册数学《第七章二元一次方程》单元过关测试一、选择题1. 下列方程中,是二元一次方程的为 ( )A. −4y =0B. 2x +1y =6C. x −y +4=0D. 2x −y =z2. 下列各组数中,是二元一次方程 3x −y =5 的解的是 ( )A. {x =1,y =2B. {x =−1,y =2C. {x =−2,y =1D. {x =2,y =13. 下列各组数中,是二元一次方程 5x −y =2 的一个解的是 ( )A. {x =3,y =1B. {x =0,y =2C. {x =2,y =0D. {x =1,y =34. 如果 (m −1)x +2y ∣m∣+8=0 是关于 x ,y 的二元一次方程,那么 m 的值为 ( )A. ±1B. −1C. 1D. 05. 下列各方程是二元一次方程的是 ( )A. a +ab =10B. 2xy =3C. 2x −y =4D. 1x+y =36. 下列四个方程中,是二元一次方程的是 ( )A. 2xy =3B. 3x −2y =1C. 2x −1y =5D. 5x 2−2x −1=07. 下列各式中属于二元一次方程的有 ( )①x +1y =4;②3x =y ;③32x +y 3+6;④3x −4y =5;⑤x 2−2y +8=3;⑥6x −5y .A. 1 个B. 2 个C. 3 个D. 4 个8. 下列方程是二元一次方程的是 ( )A. x +2=1B. x 2+2y =2C. 1x +y =4D. x +13y =0.9. 下列不是二元一次方程组的是 ( )A. {x +y =1,x −y =2.B. {4x −3y =6,2x +3y =2.C. {1x −y =1,x +y =2.D. {3x +5y =25,x +3y =25.10. 下列方程组中是二元一次方程组的是 ( )A. {x −y =2xy =1B. {3x −y =12y −5x =5C. {3x −y =22x +3y =1D. {3x −y =13x +z =7二、填空题11. 已知二元一次方程 2x −3y =1,用含 x 的代数式表示 y ,则 y = .当 x =−1 时,y = .12. 若 x 3m−2−2y 2n+1=5 是二元一次方程,则 m = ,n = .13. 下列各式是二元一次方程的是 .①x +y −xy =21;②−5x +3y =6−3x;③1x +5y +41=0;④23y +77x .14. x 的 2 倍与 y 的 13 的和是 6,可列方程为 .15. 已知 {x =1,y =2是方程 ax −3y =1 的一个解,那么 a = .16. 同时满足二元一次方程组中各个方程的解,叫做这个 .17. 二元一次方程:含有 未知数,并且所含未知数的项的次数都是 的方程叫做二元一次方程.18. 已知 x 5m−4+13=2 是关于 x 的一元一次方程,那么 m = .19. 学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了 30 个节目,其中歌唱类节目比舞蹈类节目的 3 倍少 2 个,则全校师生表演的歌唱类节目有 个.20. 一般地,二元一次方程组的两个方程的 ,叫做二元一次方程组的解.二元一次方程组的解指的是同时满足两个方程的一对未知数的值,方程组的解必定是其中每一个方程的解,但方程组中方程的解不一定是方程组的解.三、解答题21. 小刚在做作业时,遇到方程 2x =5x ,他将方程两边同时除以 x ,竟然得到 2=5,他错在什么地方?22. 一个长方形的周长为 16 cm ,长比宽多 2 cm .设长、宽分别为 x cm ,y cm ,试列出二元一次方程组表示这个长方形的长、宽之间的数量关系.23. 一个数的 2 倍与另一个数的 3 倍的差等于 5,若设这两个数分别为 x ,y ,请依据条件列出方程.24. 当 y =−3 时,二元一次方程 3x +5y =−3 和 3y −2ax =a +2(关于 x ,y 的方程)有相同的解,求 a 的值.25. 三位同学对下面这个问题提出了自己的看法:若关于 x ,y 的方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 的解是 {x =3,y =4, 求方程组 {3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2 的解.甲说:“这个题目好像条件不够,不能求解.” 乙说:“它们的系数有一定的规律,可以试试”.丙说:“能不能先把第二个方程组中两个方程的两边都除以 5,将方程组化为{a 1(3x 5)+b 1(2y 5)=c 1,a 2(3x 5)+b 2(2y 5)=c 2, 然后通过换元替代的方法来解决?”你认为这个方程组有解吗?如果认为有,求出它的解.26. 判断下列方程组是否是二元一次方程组.(1){x −2y =1,3x +5y =12.(2){y =1,x −3y =5.(3){x =1,y =2.(4){x −7y =3,3y +5z =1.(5){x −2y =5,3x +8y =12.答案第一部分1. C2. D3. D4. B5. C6. B7. B8. D9. C10. B第二部分,−111. 2x−1312. 1,013. ②y=614. 2x+1315. 716. 二元一次方程组的解17. 两个,118. 119. 22【解析】设歌唱类节目有x个,舞蹈类节目有y个.则{x +y =30,x =3y −2.解得{x =22,y =8.20. 公共解第三部分21. 两边同时除以一个 x ,而 x 的值可能为 0.22. {2(x +y )=16x −y =223. 2x −3y =5.24. y =−3 时,3x +5y =−3,3x +5×(−3)=−3,所以 x =4.因为方程 3x +5y =−3 和 3y −2ax =a +2 有相同的解, 所以 3×(−3)−2a ×4=a +2,解得 a =−119. 25. {x =5,y =10.26. (1) {x −2y =1,3x +5y =12是二元一次方程组. (2) {y =1,x −3y =5是二元一次方程组. (3) {x =1,y =2是二元一次方程组. (4) {x −7y =3,3y +5z =1不是二元一次方程组.x−2y=5,3x+8y=12不是二元一次方程组.(5){。
人教版七年级数学下册第七章达标测试卷含答案

人教版七年级数学下册第七章达标测试卷一、选择题(每小题3分,共30分)1.电影院中5排6号记为(5,6),则6排5号记为()A.(6,5) B.(6,-5)C.(-6,-5) D.(-6,5)2.点A(-3,5)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图是象棋盘的一部分,若在该象棋盘上建立直角坐标系,使“炮”的坐标为(-1,1),“象”的坐标为(3,-2),则“将”的坐标为()A.(1,-1) B.(1,-2)C.(-1,2) D.(-1,-2)4.已知在平面直角坐标系中,点Q的坐标为(m,n),且mn=0,则点Q在() A.坐标原点B.x轴上C.y轴上D.坐标轴上5.在下列各点中,与点A(-2,-4)的连线平行于y轴的是() A.(2,-4) B.(-2,4)C.(-4,2) D.(4,-2)6.已知平面直角坐标系内不同的两点A(a+2,4)和B(3,2a+2)到y轴的距离相等,则a的值为()A.-3 B.-5C.1或-3 D.1或-57.如图,广州动物园(记作A)在小明家(记作B)南偏西25°的方向上,且与小明家的距离是4 km,若∠ABC=90°,且AB=BC,则超市(记作C)在小明家(记作B)的()A.南偏东65°的方向上,相距4 kmB.南偏东55°的方向上,相距4 kmC.北偏东55°的方向上,相距4 kmD.北偏东65°的方向上,相距4 km8.已知N(a,b)是平面直角坐标系中第四象限内的一点,则化简b2+|b-a|的结果是()A.-a+2b B.aC.a-2b D.-a9.平面直角坐标系中,点A(-3,2),B(1,4),经过点A的直线l∥x轴,点C 是直线l上的一个动点,则当线段BC的长度最小时,点C的坐标为() A.(-1,4) B.(1,0)C.(1,2) D.(4,2)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到点P3(3,-2),…,按这样的运动规律,第2 023次运动到点P2 023,则点P2 023的坐标是()A.(2 023,1) B.(2 023,0)C.(2 023,-2) D.(2 023,2)二、填空题(每题3分,共15分)11.点(-3,5)到x轴的距离是________,到y轴的距离是________.12.若点P(a+1,2a-6)在x轴上,则点P的坐标为__________.13.已知点P(x,x+1),当x变化时,点P不可能在第______象限.14.对有序数对(m ,n )定义“f 运算”:f (m ,n )=(12m +a ,12n -b ),其中a ,b 为常数.当a =0,b =0时,f (-2,4)=________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB平移到A 1B 1,点A 1,B 1的坐标分别为(2,a ),(b ,3),则a 2-2b 的值为________. 三、解答题(一)(每小题8分,共24分)16.已知在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (-3,-1),B (-2,-4),C (1,-3).(1)请在如图所示的平面直角坐标系中画出△ABC ;(2)若将△ABC 向上平移3个单位长度,再向右平移2个单位长度得到△A 1B 1C 1,请在如图所示的平面直角坐标系中画出△A 1B 1C 1.17.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 的面积分别为64和16.请写出点A ,E ,F 的坐标.18.已知点M 在第一象限,其横坐标是a 2-5的算术平方根,纵坐标是1,且点M 到y 轴的距离是到x 轴的距离的2倍. (1)求点M 的坐标; (2)求a 的值.四、解答题(二)(每小题9分,共27分)19.张超设计的广告牌草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)20.如图是汕头某学校的部分平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示食堂和图书馆;(3)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置.21.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求C点的坐标.五、解答题(三)(每小题12分,共24分)22.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,在图中画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4 cm,OA=5 cm,DE=2 cm,动点P从点A出发,以每秒1 cm的速度,沿ABC路线向点C运动;动点Q从点O出发,以每秒2 cm的速度,沿OED 路线向点D运动.若P,Q两点同时出发,其中一点到达终点时,运动均停止.(1)直接写出B,C,D三点的坐标;(2)设P,Q两点运动的时间为t s,当0<t<4时,用含t的式子表示运动过程中△OPQ的面积;(3)当P,Q两点运动3 s时,求△PQC的面积.答案一、1.A 2.B 3.B 4.D 5.B 6.B7.A8.C9.C10.A二、11.5;312.(4,0)13.四14.(-1,2)15.-1三、16.解:(1)如图.(2)如图.17.解:∵正方形ABCD和正方形EFGC的面积分别为64和16,∴正方形ABCD 和正方形EFGC的边长分别为8和4.∴OG=8+4=12.∴A(0,8),E(8,4),F(12,4).18.解:(1)∵点M的纵坐标为1,且点M到y轴的距离是到x轴的距离的2倍,∴点M到y轴的距离为2,∴点M的横坐标为2或-2,又∵点M在第一象限,∴点M的坐标为(2,1).(2)根据题意,得a2-5=4,解得a=3或a=-3.四、19.解:建立平面直角坐标系,标出点(0,0),(0,5),(3,5),(3,3),(7,3),(7,0),再把各点依次连接,所得图案即为草图.(答案不唯一) 20.解:(1)建立的平面直角坐标系如图所示.(2)食堂(-5,5),图书馆(2,5).(3)如图所示.21.解:(1)根据题意,得m +1=-4.解得m =-5.∴m +3=-2,∴点A 的坐标是(2,-4),点B 的坐标是(-2,-4).∵2-(-2)=4,∴A ,B 两点间的距离为4.(2)∵l ∥x 轴,PC ⊥l ,∴PC ⊥x 轴.∴点C 的横坐标为-1. 又∵点C 在l 上,∴点C 的纵坐标为-4.∴C (-1,-4). 五、22.解:(1)S 四边形ABCO =12×2×1+12×(2+4)×4+12×4×1=1+12+2=15.(2)如图.四边形的形状和大小不变,只是将四边形ABCO 向左平移了3个单位长度,向下平移了2个单位长度.(3)S 四边形A ′B ′C ′O ′=15.23.解:(1)B (4,5),C (4,2),D (8,2).(2)根据题意,得S △OPQ =12OQ ·OA =12×2t ×5=5t (cm 2)(0<t <4).(3)当P ,Q 两点运动3 s 时,点P 坐标为(3,5),点Q 坐标为(6,0).过点P 作PM ⊥x 轴,垂足为点M ,延长BC 交x 轴于点N ,延长DC 交PM 于点K ,则有M (3,0),N (4,0),K (3,2).∴QM =3,CK =1,PK =3,KM =2,∴S △PQC =12×3×5-12×1×3-12×(1+3)×2=2.。
(完整版)人教版七年级下数学第七章三角形知识点+考点+典型例题(含答案).doc

第七章三角形【知要点】一.三角形1.关于三角形的概念及其按角的分定:由不在同一直上的三条段首尾次相接所成的形叫做三角形。
2.三角形的分:①三角形按内角的大小分三:角三角形、直角三角形、角三角形。
②三角形按分两:等腰三角形和不等三角形。
2.关于三角形三条的关系(判断三条段能否构成三角形的方法、比段的短)根据公理“ 两点之,段最短”可得:三角形任意两之和大于第三。
三角形任意两之差小于第三。
3.与三角形有关的段:三角形的角平分、中和高..三角形的角平分:三角形的一个角的平分与相交形成的段;三角形的中:接三角形的一个点与中点的段,三角形任意一条中将三角形分成面相等的两个部分;三角形的高:三角形的一个点做的垂,条垂段叫做三角形的高。
注意:①三角形的角平分、中和高都是段,不是直,也不是射;②任意一个三角形都有三条角平分,三条中和三条高;③任意一个三角形的三条角平分、三条中都在三角形的内部。
但三角形的高却有不同的位置:角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角;角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中交于一点,三条角平分交于一点,三条高所在的直交于一点。
(三角形的三条高(或三条高所在的直)交与一点,角三角形高的交点在三角形的内部,直角三角形高的交点是直角点,角三角形高(所在的直)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和: 180°引申:①直角三角形的两个角互余;②一个三角形中至多有一个直角或一个角;③一个三角中至少有两个内角是角。
(2)三角形的外角和: 360°(3)三角形外角的性:①三角形的一个外角等于与它不相的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相的内角。
——常用来比角的大小5. 多形的内角与外角( 1)多形的内角和:( n-2 ) 180°( 2)多形的外交和:360°引申:( 1)从 n 形的一个点出能作(n-3 )条角;( 2)多形有n(n3)条角。
部编人教版数学七年级下册第七章《平面直角坐标系单元过关检测试题 》(含答案)
第七章平面直角坐标系单元过关检测题一、选择题1.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)2.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸左眼B的坐标是()A.(0,3)B.(0,1)1C.(-1,2)D.(-1,3)3.在平面直角坐标系中,点P(-2015,2016)在()A.第一象限B.第二象限C.第三象限D.第四象限4.点M(x,y)在第四象限,且|x|=2,y2=4,则点M的坐标是() A.(2,2)B.(-2,-2)C.(2,-2)D.(-2,2)5.在平面直角坐标系中,若点M的坐标是(m,n),且点M在第二象限,则mn的值()A.<0B.>0C.=02D.不能确定6.如果点P(a+b,ab)在第二象限,那么点Q(a,-b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,点P(-5,0)在()A.第二象限B.x轴上C.第四象限D.y轴上8.如图,三角形ABC经过平移得到三角形DEF,其中A点(-2,4)平移到D点(2,2),则B点(a,b)平移后的对应点E的坐标是()A.(a+2,b)3B.(a+4,b-2)C.(a+2,b-2)D.(a+4,b+2)二、填空题9.在平面直角坐标系中,点P(2,-2)和点Q(2,4)之间的距离等于________个单位长度.线段PQ的中点的坐标是________.10.若点A(x,9)在第二象限,则x的取值范围是________.11.若点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,则a =________.(注:在角的内部,角平分线上的点到角两边的距离相等)12.若点A(a,3)在y轴上,则点B(a-3,a+2)在第________象限.13.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左、右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.14.如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________.415.点M(-1,5)向下平移4个单位得N点坐标是________.16.若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.三、解答题17.已知点A(a-3,a2-4),求a及A点的坐标:(1)当点A在x轴上;(2)当点A在y轴上.18.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.19.在平面直角坐标中描出下列各点.A(1,1),B(-3,3),C(1,3),D(-1,3),E(1,-4),F(3,3).由描出点你发现了什么规律?520.如图,已知火车站的坐标为(2,1),文化馆为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、医院的坐标.21.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m ,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.6第七章平面直角坐标系单元练习题答案解析1.【答案】A【解析】因为点A(4,-1)向左平移6个单位,再向上平移3个单位得到A′(-2,2),所以点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(-5,4).2.【答案】A【解析】画出直角坐标系如下图所示:则笑脸左眼B的坐标是(0,3).3.【答案】B【解析】点P(-2015,2016)在第二象限.4.【答案】C【解析】因为|x|=2,y2=4,所以x=±2,y=±2,因为点M(x,y)在第四象限,所以x=2,y=-2,所以点M的坐标为7(2,-2).5.【答案】A【解析】由点M的坐标是(m,n),且点M在第二象限,得m<0,n >0.由有理数的乘法,得mn<0.6.【答案】B【解析】因为点P(a+b,ab)在第二象限,所以a+b<0,ab>0,所以a<0,b<0,所以-b>0,所以点Q(a,-b)在第二象限.7.【答案】B【解析】在平面直角坐标系中,点P(-5,0)在x轴上.8.【答案】B【解析】因为A点(-2,4)先右平移4个单位,再向下平移2个单位得到D点(2,2),所以B点(a,b)平移后的对应点E的坐标为(a+4,b-2).9.【答案】6、(2,1)【解析】因为点P(2,-2)和点Q(2,4),8所以P,Q之间的距离等于4-(-2)=6个单位长度;线段PQ的中点的横坐标是2,纵坐标是=1,故中点的坐标是(2,1).10.【答案】x<0【解析】因为点A(x,9)在第二象限,所以x的取值范围是x<0.11.【答案】-1【解析】因为点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,所以a=2a+1,解得a=-1.12.【答案】二【解析】因为点A(a,3)在y轴上,所以a=0,所以点B的坐标为(-3,2),所以点B(-3,2)在第二象限.13.【答案】(5,4)【解析】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以变化规律为横坐标加7,纵坐标加2,因为左图案中右翅尖的坐标是(-2,2),所以右图案中右翅尖的坐标是9(5,4).14.【答案】(2,1.5)【解析】因为四边形ONEF是矩形,所以OM=ME,即点M是对角线OE的中点,因为O(0,0),E(4,3),所以M (,),即(2,1.5).15.【答案】(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).16.【答案】(2,2)或(-6,6)【解析】因为点P到两坐标轴的距离相等,所以2x-2=-x+4或2x-2=-(-x+4),即x=2或x=-2,代入点P,坐标为(2,2)或(-6,6).17.【答案】解:(1)因为点A在x轴上,所以a2-4=0,即a=±2,所以点A的坐标为(-1,0)或(-5,0);(2)因为点A在y轴上,所以a-3=0,解得a=3,所以点A的坐标为(0,5).【解析】(1)在x轴上说明a2-4=0.(2)在y轴上说明a-3=0.1018.【答案】解:(1)因为点A的坐标为(2,0),所以点A在x轴上.当点B在点A的左侧时,点B的坐标为(-2,0),当点B在点A的右侧时,点B的坐标为(6,0).(2)因为点A的坐标为(0,0),所以点A在x轴上也在y轴上.当点A在x轴上时,点B的坐标为(-4,0)或(4,0);当点A在y轴上时,点B的坐标为(0,4)或(0,-4).【解析】(1)由点A的坐标可知点A在x轴上,点B可以在点A的左、右两侧,根据AB=4可求得点B的坐标;(2)由点A的坐标可知点A在x轴和y轴上,符合条件的点B共有4个,根据AB=4可求得点B的坐标.19.【答案】解:如图所示,发现的规律:①关于y轴对称的点的横坐标互为相反数,纵坐标相同,②纵坐标相同的点在平行于x轴的直线上.【解析】建立平面直角坐标系,然后分别描出各点,再根据图形解答.20.【答案】解:(1)如图所示:11(2)体育馆(-2,4)、市场(6,4)、超市(4,-2)、医院(0,-1).【解析】(1)以火车站向左两个单位,向下一个单位为坐标原点建立平面直角坐标系;(2)根据平面直角坐标系写出各场所的坐标即可.21.【答案】解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0.(2)因为S三角形ABO =×2×3=3,S三角形APO =×2×(-m)=-m,所以S四边形ABOP=S三角形ABO+S三角形APO=3+(-m)=3-m;(3)因为S三角形ABC =×4×3=6,因为S四边形ABOP=S三角形ABC,所以3-m=6,则m=-3,所以存在点P(-3,)使S四边形ABOP=S三角形ABC.【解析】(1)用非负数的性质求解;(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;(3)三角形ABC可求,是已知量,根据题意,方程即可.121314。
最新七年级下册数学第七章练习题答案优秀名师资料
七年级下册数学第七章练习题答案精品文档七年级下册数学第七章练习题答案一、填空题1.已知点A、B、C、D、E,则在y轴上的点有个。
2.如果点A?a,b?在x轴上,且在原点右侧,那么ab3.如果点M?a,a?1?在x轴下侧,y轴的右侧,那么a的取值范围是A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,4..如图所示,??如果用?A到?B的一条路径,用同样的方式写出另一条由?A到?B的路径:???表示由?? ?? ?三?A纬二纬路三路经路经路豫二章路一经路A路一纬 ?B 明路明4题图题图5.如图所示,在一个规格为4?8的球台上,有两只小球P和Q,设小球P的位置用表示,小球Q的位置用表示,若击打小球P经过球台的边AB上的点O反弹后,恰好击中小球Q,则点O的位置可以表示为.6.已知两点A??3,m?,B?n,?4?,若AB?y轴,则n= m1 / 17精品文档的取值范围是.7.?ABC上有一点P,将?ABC先沿x轴负方向平移2个单位长度,再沿y轴正方向平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是.8.如图所示,象棋盘上,若“将”位于点,“车”位于点,则“马”位于马8题图9.李明的座位在第5排第4列,简记为,张扬的座位在第3排第2列,简记为,若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为10.将?ABC绕坐标原点旋转180后,各顶点坐标变化特征是:.二、选择题11.下列语句:点与点是同一点;点在第二象限;点在第一象限;点在x轴上,其中正确的是A. B.C.D. 没有12.如果点M?x,y?的坐标满足x?0,那么点M的可能位置是 yA.x 轴上的点的全体B. 除去原点后x轴上的点的全体C.y 轴上的点的全体D. 除去原点后y轴上的点的2 / 17精品文档全体13.已知点P的坐标为?2-a,3a?6?,且点P到两坐标轴的距离相等,则点P的坐标是A. B. C. D.或14.如果点?2x,x?3?在x轴上方,y轴右侧,且该点到x轴和y轴的距离相等,则x的值为A.1B.-1C.D.-315.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形A.横向右平移2个单位B.横向向左平移2个单位C.纵向向上平移2个单位D.纵向向下平移2个单位16.下面是小明家与小刚家的位置描述:小明家:出校门向东走150m,再向北走200m;小刚家:出校门向南走100m,再向西走300m,最后向北走50m如果以学校所在位置为原点,分别以正东、正北方向为x轴,y轴正方向建立平面直角坐标系,并取比例尺1?10 000. 则下列说法正确的是?点是小明家的位置;? 点是小刚家的位置;?从小明家向西走200m,到4从小刚家向东走100m到达点. 达点;?A.??B.??C.??D.??43 / 17精品文档17.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km处,乙车位于雕像北方7km处,若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km处乙车在A.雕像北方1km处B.雕像北方3km处C.雕像南方1km处D.雕像南方3km处18.已知如图所示,方格纸中的每个小方格边长为1的正方形,AB两点在小方格的顶点上,位置分别用、来表示,请在小方格顶点上确定一点C,连接AB、AC、BC,使?ABC的面积为2个平方单位,则点C的位置可能为A. B. C. D.19.如图所示,若三角形ABC中经平移后任意一点P?x0,y0?的对应点为P则点A的对应1?x0?5,y0?3?,点A1的坐标是A.B.C.D.20.如图所示,是郑州市某天的温度随时间变化的图象,通过观察可知下列说法错误的是A.这天15点温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是15度D.这天21时温度是30度18题图 19题图0题图三、解答题4 / 17精品文档21.如图所示,是一个规格为8?8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.22.以点A为圆心的圆可表示为?A。
苏科版七年级数学下册第7-8章达标检测卷 附答案
苏科版七年级数学下册第7章达标检测卷一、选择题(每题3分,共24分)1.下列长度的3根小木棒不能搭成三角形的是( )A.2 cm,3 cm,4 cm B.1 cm,2 cm,3 cmC.3 cm,4 cm,5 cm D.4 cm,5 cm,6 cm2.如图,直线a∥b,∠1=130°,则∠2等于( )A.70°B.60°C.50°D.40°3.如图,在下列给出的条件中,不能判定AB∥EF的是( )A.∠B=∠3B.∠1=∠4C.∠1=∠BD.∠B+∠2=180°4.如图,将周长为7的△ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为( )A.16 B.9 C.11 D.125.如图,AD,BE,CF是锐角三角形ABC的三条高,它们交于点H,则图中直角三角形的个数是( )A.6 B.8 C.10 D.126.如图,已知直线AB∥CD,直线EF与AB相交于点O,且∠BOE=140°.直线l 平分∠BOE交CD于点G,那么∠CGO=( )A.110°B.105°C.100°D.70°7.如图,直角三角形ABC的顶点A在直线m上,分别测量下列角的度数:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是( )A.①B.②C.③D.④8.如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75°B.80°C.85°D.90°二、填空题(每题3分,共30分)9.若线段AD是△ABC的中线,且BD=3,则BC的长为________.10.如图,请填写一个条件,使结论成立:因为________,所以a∥b.11.若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是________.(写出一个即可)12.在△ABC中,∠ACB是钝角,AD是BC边上的高,若AD=2,BD=3,CD=1,则△ABC的面积等于________.13.如图,直线m与∠AOB的一边射线OB相交,∠1=30°,向上平移直线m得到直线n,直线n与∠AOB的另一边射线OA相交,则∠2+∠3=________.14.如图,有一块长为a m,宽为3 m的长方形地,其中阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1 m能得到它的右边线,若草地的面积为12 m2,则a=________.15.两个直角三角尺如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC∥EF,则∠BMD的大小为________.16.一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为________.17.将一个长方形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________°.18.一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠CAE=15°时,BC∥DE.则∠CAE(0°<∠CAE<180°)其他所有可能符合条件的度数为______________.三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分)19.在△ABC中,AB=8,BC=2,并且AC的长为偶数,求△ABC的周长.20.如图,点E在AB的延长线上,指出下面各题中的两个角是哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.21.已知一个多边形的边数为n.(1)若n=5,求这个多边形的内角和.(2)若这个多边形的内角和的14比一个四边形的内角和多90°,求n的值.22.如图,在方格纸中,△ABC的顶点都在方格纸的格点上.将△ABC平移后得到△A′B′C′,图中已画出B点的对应点B′.(1)请补全△A′B′C′;(2)画出△A′B′C′的高C′H以及中线A′D;(3)连接BB′,CC′,BB′和CC′的数量关系为__________.23.如图,已知AD,AE分别是△ABC的中线和高,△ABD的周长比△ACD的周长多3 cm,且AB=9 cm.(1)求AC的长;(2)求△ABD与△ACD的面积的关系.24.如图,已知∠1+∠2=180°,且∠3=∠B.(1)试说明:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠2=110°,∠3=50°,求∠ACB的度数.25.如图,在四边形ABCD中,AD∥BC,∠BDC=∠C,DE⊥DC交AB于点E.(1)试说明:DE平分∠ADB.(2)若∠ABD的平分线与CD的延长线交于点F,与DE交于点G,设∠F=α°.①若α=50,求∠A的度数;②若∠F<12∠ABC,试确定α的取值范围.26.已知MN∥EF,C为两直线之间的一点,连接AC,BC.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?请说明理由.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并说明理由.答案一、1.B 2.C 3.C 4.C 5.D 6.A 7.B8.A 二、9.6 10.∠1=∠4(答案不唯一)11.5(答案不唯一) 12.2 13.210°14.5 15.75°16.32 m 17.12818.60°或105°或135°点拨:如图①,当BC∥AE时,∠CAE=∠C=60°;如图②,当DE∥AB时,则∠E+∠EAB=180°,所以∠EAB=135°,所以∠CAE=135°-30°=105°,此时AD∥BC;如图③,当AC∥DE时,则∠E+∠CAE=180°,所以∠CAE=135°.三、19.解:根据三角形的三边关系得8-2<AC<8+2,即6<AC<10.因为AC的长为偶数,所以AC=8,所以△ABC的周长为8+2+8=18.20.解:(1)∠A和∠D是由直线AE,CD被直线AD所截形成的,它们是同旁内角.(2)∠A和∠CBA是由直线AD,BC被直线AE所截形成的,它们是同旁内角.(3)∠C和∠CBE是由直线CD,AE被直线BC所截形成的,它们是内错角.21.解:(1)当n=5时,(5-2)×180°=540°,所以这个多边形的内角和为540°.(2)由题意,得14×(n-2)×180°-360°=90°,解得n=12.所以n的值为12.22.解:(1)如图,△A′B′C′即为所求.(2)如图,C′H,A′D即为所求,(3)BB′=CC′23.解:(1)因为AD是△ABC的中线,所以BD=CD.因为△ABD的周长比△ACD的周长多3 cm,所以AB+BD+AD-(AD+AC+DC)=3 cm,即AB-AC=3 cm.因为AB=9 cm,所以AC=6 cm.(2)因为S△ABD=12BD·AE,S△ACD=12CD·AE,BD=CD,所以S△ABD=S△ACD.24.解:(1)因为∠1+∠2=180°,∠1+∠FDE=180°,所以∠FDE=∠2.因为∠3+∠FEC+∠FDE=180°,∠2+∠B+∠ECB=180°,∠B=∠3,所以∠FEC=∠ECB,所以EF∥BC,所以∠AFE=∠ACB.(2)因为∠3=∠B,∠3=50°,所以∠B=50°.因为∠2+∠B+∠ECB=180°,∠2=110°,所以∠ECB=20°.因为CE平分∠ACB,所以∠ACB=2∠ECB=40°.25.解:(1)因为AD∥BC,所以∠ADC+∠C=180°.因为DE⊥DC,所以∠EDC=90°,所以∠BDE+∠BDC=90°,∠ADE+∠C=90°.因为∠BDC=∠C,所以∠BDE=∠ADE,即DE平分∠ADB.(2)①因为DE平分∠ADB,BF平分∠ABD,所以∠EDB=12∠ADB,∠DBF=12∠ABD,所以∠EDB+∠DBF=12(∠ADB+∠ABD).因为∠A+∠ADB+∠ABD=180°,所以∠EDB+∠DBF=90°-12∠A.由题意知∠EDF=90°,∠F=α°=50°,所以∠FGD=40°.因为∠BGD+∠FGD=180°,∠BGD+∠EDB+∠DBF=180°,所以∠FGD=∠EDB+∠DBF,所以90°-12∠A=40°,所以∠A=100°.②因为AD∥BC,所以∠ADB=∠DBC,所以∠EDB+∠DBF=12(∠ADB+∠ABD)=12∠ABC.由(2)①知∠FGD=∠EDB+∠DBF,所以∠FGD=12∠ABC.因为∠F<12∠ABC,所以∠F<∠FGD.易知∠F+∠FGD=90°,所以0°<∠F<45°,即0<α<45.26.解:(1)如图①,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG.因为∠CAM与∠CBE的平分线相交于点D,所以∠1=12∠MAC=12∠ACG,∠2=12∠EBC=12∠BCG,所以∠ADB=∠ADH+∠BDH=∠1+∠2=12∠ACG+12∠BCG=12(∠ACG+∠BCG)=12∠ACB.因为∠ACB=100°,所以∠ADB=50°.(2)∠ADB=180°-12∠ACB.理由如下:如图②,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∠MAC+∠ACG=180°,∠EBC+∠BCG=180°.因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC,∠2=12∠EBC,所以∠ADB=∠ADH+∠BDH=∠1+∠2=12(∠MAC+∠EBC)=12(180°-∠ACG+180°-∠BCG)=12(360°-∠ACB),所以∠ADB=180°-12∠ACB.(3)∠ADB=90°-12∠ACB.理由如下:如图③,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠DBE=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∠MAC+∠ACG=180°,∠NAD+∠ADH=180°.因为∠MAC的平分线与∠FBC的平分线所在的直线相交于点D,所以∠CAD=12∠MAC,∠BDH=∠DBE=12∠CBF,所以∠ADB=180°-∠CAD-∠CAN-∠BDH=180°-12∠MAC-∠ACG-12∠CBF=180°-12∠MAC-∠ACG-12∠BCG=180°-12(180°-∠ACG)-∠ACG-12∠BCG=180°-90°+12∠ACG-∠ACG-12∠BCG=90°-12∠ACG-12∠BCG=90°-12(∠ACG+∠BCG)=90°-12∠ACB.苏科版七年级数学下册期中达标检测卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A.(a2)3=a5B.a4·a2=a8C.a6÷a3=a3D.(-ab2)5=-a5b7 2.将下面的图形进行平移,能得到的图形是( )3.下列长度的三条线段,能组成三角形的是( )A.3,4,8 B.5,6,10C.5,5,11 D.5,6,114.如图,可以判定AC∥BD的是( )A.∠2=∠3B.∠2=∠5C.∠1=∠4D.∠4=∠55.把多项式(x-y)2-2(x-y)-8分解因式,正确的结果是( )A.(x-y+4)(x-y+2) B.(x-y-4)(x-y-2)C.(x-y-4)(x-y+2) D.(x-y+4)(x-y-2)6.将一副直角三角尺(∠A=30°,∠E=45°)按如图所示的位置摆放,使AB∥EF,则∠DOC的度数是( )A.70°B.75°C.80°D.85°7.若259+517能被n整除,则n的值可能是( )A.20 B.30 C.35 D.408.已知(x2+px+8)(x2-3x+q)乘积中不含x2与x3项,则p,q的值分别是( ) A.0,0 B.3,1 C.-3,-9 D.-3,1 二、填空题(每题3分,共30分)9.如图,直线a,b被直线c所截,a∥b,∠1=60°,那么∠2=________°.10.计算:12x·(-2x2)3=________.11.分解因式:-12a2+2a-2=____________.12.肥皂泡的泡壁厚度大约为0.000 7 mm,用科学记数法表示0.000 7=________.13.已知2x+y+1=0,则52x·5y=________.14.若x2+(m-2)x+9是一个完全平方式,则m的值是________.15.如图,将△ABE向右平移3 cm得到△DCF,如果△ABE的周长是16 cm,那么四边形ABFD的周长是________cm.16.若a+b=10,ab=11,则代数式a2-ab+b2的值是________.17.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P=______.18.如图,将一副三角尺按如图放置,则下列结论:①∠1=∠3;②若∠2=30°,则BC∥AE;③若∠1=∠2=∠3,则BC∥AE;④若∠2=30°,则∠3=∠E.其中正确的是________(填序号).三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分)19.计算:(1)(12)-1+(π+3)0-|-3|+(-1)2 023; (2)x·x5+(-2x3)2-3x8÷x2.20.把下列各式分解因式:(1)a4-16; (2)18a2-50.21.先化简,再求值:(a -2b )(a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.22.如图,将方格纸中的△ABC (顶点A ,B ,C 均在格点上)向右平移6个单位长度,得到△A 1B 1C 1. (1)画出平移后的图形;(2)连接AA 1,BB 1,则线段AA 1,BB 1的位置关系是________; (3)如果每个小方格的边长是1,那么△ABC 的面积是________.23.如图是一个长为10 cm ,宽为6 cm 的长方形,在它的4个角上分别剪去边长为x cm 的小正方形,再沿虚线折成一个有底无盖的长方体盒子,求盒子的体积.24.如图,点F是线段BA延长线上一点,点E,G是线段CD上的两点,在△ADE 中,∠D=∠DAE,AD平分∠EAF,AG∥BC,若∠B=140°,求∠AGD的度数.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如12=42-22,20=62-42,28=82-62,…,因此12,20,28这三个数都是“奇巧数”.(1)52,72都是“奇巧数”吗?(2)设两个连续偶数为2n,2n+2(其中n为正整数),由这两个连续偶数构造的“奇巧数”是8的倍数吗?为什么?(3)试说明:任意两个连续“奇巧数”之差是同一个数.26.【数学经验】三角形的中线能将三角形分成面积相等的两部分.【经验发展】面积比和线段比的联系:如果两个三角形的高相同,那么它们的面积比等于对应底边的比.如图①,△ABC的边AB上有一点M,试说明:S△ACMS△BCM =AM BM.【结论应用】如图②,S△CDE=1,CDAC=14,CECB=13,求S△ABC.【拓展延伸】如图③,△ABC的边AB上有一点M,D为CM上任意一点,请利用上述结论,试说明:S△ACDS△BCD =AM BM.【迁移应用】如图④,在△ABC中,M是AB上一点,且AM=13AB,N是BC的中点,若S△ABC=1,则S四边形BMDN=________.答案一、1.C 2.C 3.B 4.C 5.C 6.B 7.B 8.B二、9.60 10.-4x711.-12(a-2)212.12.7×10-413.1 514.8或-4 15.22 16.6717.60°18.①③④三、19.解:(1)原式=2+1-3-1=-1.(2)原式=x6+4x6-3x6=2x6.20.解:(1)原式=(a2+4)(a2-4)=(a2+4)(a+2)(a-2).(2)原式=2(9a2-25)=2(3a+5)(3a-5).21.解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,当a=-2,b=12时,原式=4×(-2)×12=-4.22.解:(1)如图,△A1B1C1即为所求.(2)平行(3)423.解:盒子的体积为x(10-2x)(6-2x)=x(4x2-32x+60)=4x3-32x2+60x(cm3).24.解:因为AD平分∠EAF,所以∠DAF=∠DAE.又因为∠D=∠DAE,所以∠D=∠DAF.所以BF∥CD.所以∠B+∠C=180°.所以∠C=180°-∠B=180°-140°=40°.又因为AG∥BC,所以∠AGD=∠C=40°.25.解:(1)因为52=142-122,68=182-162,76=202-182,所以52是“奇巧数”,72不是“奇巧数”.(2)不是.因为(2n+2)2-(2n)2=(2n+2+2n)(2n+2-2n)=4(2n+1),所以这两个连续偶数构造的“奇巧数”不是8的倍数.(3)设三个连续偶数分别为2k,2k+2,2k+4(k为正整数),因为[(2k+2)2-(2k)2]-[(2k+4)2-(2k+2)2]=(2k+2+2k)(2k+2-2k)-(2k+4+2k+2)(2k+4-2k-2)=4(2k+1)-4(2k+3)=8k+4-8k-12=-8,所以任意两个连续“奇巧数”之差是同一个数.26.解:【经验发展】如图①,过C作CH⊥AB于H.因为S△ACM=12AM×CH,S△BCM=12BM×CH,所以S△ACMS△BCM =12AM×CH12BM×CH=AMBM,即S△ACMS△BCM=AMBM.【结论应用】如图②,连接AE.因为CDAC=14,所以S△CDE=14S△ACE.因为CECB=13,所以S△ACE=13S△ABC,所以S△CDE=14×13S△ABC=112S△ABC.又因为S△CDE=1,所以S△ABC=12.【拓展延伸】因为M是AB上任意一点,所以S△ACMS△BCM =AM BM.因为D是CM上任意一点,所以S△ACDS△ACM =CDCM,S△BCDS△BCM=CDCM,所以S△ACD=CDCM×S△ACM,S△BCD=CDCM×S△BCM,所以S△ACDS△BCD =CDCM×S△ACMCDCM×S△BCM=S△ACMS△BCM,即S△ACD S△BCD =AM BM.【迁移应用】512点拨:如图③,连接BD.因为AM=13 AB,所以AM=12 BM,所以S△ACDS△BCD =AMBM=12,S△ADMS△BDM =AMBM=12,即S△ACD=12S△BCD,S△ADM=12S△BDM.因为N是BC的中点,所以CN=BN,所以S△ACDS△ABD =CNBN=1,S△CDNS△BDN=CNBN=1,即S△ACD=S△ABD,S△CDN=S△BDN.设S△ADM=a,则S△BDM=2a,所以S△ACD=S△ABD=3a,所以S△CDN=S△BDN =12S△BCD=S△ACD=3a,所以S 四边形BMDN =5a ,S △ABC =12a , 所以S 四边形BMDN =512S △ABC =512×1=512. 苏科版七年级数学下册第8章达标检测卷一、选择题(每题3分,共24分) 1.计算(-a )2·a 4的结果是( )A .a 6B .-a 6C .a 8D .-a 82.-3-2的倒数是( )A .-9B .9C .19D .-193.下列运算正确的是( )A .2a -a =2B .a 3·a 2=a 6C .a 3÷a =a 2D .(2a 2)3=6a 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.数据0.000 000 12用科学记数法可表示为( )A .1.2×10-7B .0.12×10-6C .12×10-8D .1.2×10-66.定义一种新的运算:若a ≠0,则有a ▲b =a -2+ab +|-b |,那么(-12)▲2的值是( ) A .-3B .5C .-34D .327.已知10a=20,100b=50,则12a +b +32的值是( )A .2B .52C .3D .928.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1B .-1C .-1或2D .2二、填空题(每题3分,共30分) 9.计算:(1)(2a 2)2=________;(2)(x 2)3÷(x ·x 2)2=________; (3)[(a -b )2]3·[(b -a )3]3=________. 10.计算:⎝ ⎛⎭⎪⎫12-3+2 0230=________.11.计算:(-5)2 021×⎝ ⎛⎭⎪⎫15 2 022=________.12.若(m -2)0无意义,则代数式(-m 2)3的值为________.13.纳秒(ns)是非常小的时间单位,1 ns =10-9s.北斗全球导航系统的授时精度优于20 ns.用科学记数法表示20 ns 是__________s. 14.若0<x <1,则x -1,x ,x 2的大小关系是____________. 15.若x +3y -4=0,则3x ·27y 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________. 17.梯形的上、下底的长分别是4×103 cm 和8×103 cm ,高是1.6×104 cm ,此梯形的面积是__________.18.对于数a ,b ,定义运算a ▲b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a <b ,a ≠0),如2▲3=2-3=18,4▲2=42=16.照此定义的运算方法计算[2▲(-4)]×[(-4)▲(-2)]的结果为________.三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分) 19.计算:(1)a 3·a 2·a +(a 2)3;(2)(2m 3)3+m 10÷m -(m 3)3.20.计算:(1)0.62 023×(-53)2 022; (2)(-23)2 022×(-32)2 023.21.已知2a=4b(a,b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.(1)已知m+2n=4,求2m×4n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.24.某农科所要在一块长1.2×105 cm,宽为2.4×104 cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104 cm的正方形实验地,这块实验地最多可以培育多少种新品种粮食?25.已知a m=2,a n=3.(1)求a m+2n的值;(2)求a2m-3n的值.26.阅读以下材料:苏格兰数学家纳皮尔是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N.比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M·N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,所以M·N=a m·a n=a m+n,由对数的定义得m+n=log a(M·N).又因为m+n=log a M+log a N,所以log a(M·N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=________,②log327=________,③log71=________;(2)试说明:log a MN=log a M-log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56-log530.答案一、1.A 2.A 3.C 4.D 5.A 6.B7.C 8.C 二、9.(1)4a 4 (2)1 (3)(b -a )15 10.9 11.-15 12.-6413.2×10-8 14.x 2<x <x -1 15.81 16.125x 3 17.9.6×107 cm 2 18.1三、19.解:(1)原式=a 6+a 6=2a 6.(2)原式=8m 9+m 9-m 9=8m 9. 20.解:(1)原式=0.62 022×⎝ ⎛⎭⎪⎫-53 2 022×0.6=⎣⎢⎡⎦⎥⎤0.6×⎝ ⎛⎭⎪⎫-53 2 022×0.6=(-1)2 022×0.6=1×0.6=0.6. (2)原式=⎣⎢⎡⎦⎥⎤-23×⎝ ⎛⎭⎪⎫-32 2 022×⎝ ⎛⎭⎪⎫-32=1×⎝ ⎛⎭⎪⎫-32=-32.21.解:因为2a =4b =22b ,所以a =2b .又因为a +2b =8,所以4b =8,解得b =2,所以a =4, 所以2a +4b =24+42=32. 22.解:(1)221=(23)7=87,314=(32)7=97,因为8<9,所以87<97, 即221<314.(2)86=(23)6=218, 411=(22)11=222,因为18<22,所以218<222, 即86<411.23.解:(1)因为m +2n =4,所以原式=2m ×22n =2m +2n =24=16.(2)因为x2n=4,所以原式=(x2n)3-2(x2n)2=43-2×42=32.24.解:[(1.2×105)÷(1.2×104)]×[(2.4×104)÷(1.2×104)]=20(种),所以这块实验地最多可以培育20种新品种粮食.25.解:(1)因为a m=2,a n=3,所以a m+2n=a m·a2n=a m·(a n)2=2×32=2×9=18.(2)因为a m=2,a n=3,所以a2m-3n=a2m÷a3n=(a m)2÷(a n)3=22÷33=4 27.26.解:(1)①5 ②3 ③0(2)设log a M=m,log a N=n,则M=a m,N=a n,所以MN=a ma n=a m-n.由对数的定义得m-n=log a M N .又因为m-n=log a M-log a N,所以log a MN=log a M-log a N.(3)原式=log5(125×6÷30)=log525=2.。
2018-2019学年鲁教版(五四制)七年级下数学第七章检测试题含答案
第七章检测试题(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列方程组中,属于二元一次方程组的是( D )(A)(B)(C)(D)解析:选项A中有三个未知数,选项B,C中含有未知数的项的最高次数是2,因此只有D符合二元一次方程组的概念.故选D.2.利用消元法解方程组下列做法正确的是( D )(A)要消去y,可以将①×5+②×2(B)要消去x,可以将①×3+②×(-5)(C)要消去y,可以将①×5+②×3(D)要消去x,可以将①×(-5)+②×2解析:要消去y,可以将①×3+②×5或①×(-3)-②×5,要消去x,可以将①×5-②×2或①×(-5)+②×2,只有选项D正确.故选D.3.(2017博山一模)已知关于x,y的方程x2m-n-2+4y m+n+1=6是二元一次方程,则m,n的值为( B )(A)m=-1,n=1 (B)m=1,n=-1(C)m=,n=- (D)m=-,n=解析:根据题意,得解得故选B.4.已知一个两位数的十位数字与个位数字的和是7.如果这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是( C )(A)34 (B)25 (C)16 (D)61解析:设这个两位数的十位数字为x,个位数字为y,根据题意得解得所以这个两位数是16,故选C.5.如图,以两条直线l1,l2的交点坐标为解的方程组是( C )(A) (B)(C) (D)解析:把l1与l2的交点坐标(2,3)代入选项中的每个方程组,只有C项合适.故选C.6.若方程组的解是则方程组的解是( A )(A) (B)(C)(D)解析:由题意可知,当x+2=a,y-1=b时,两方程组对应系数一样,其解相同,即此时有x+2=8.3,y-1=1.2,解得x=6.3,y=2.2.故选A.7.如图,周长为34 cm的长方形ABCD被分成7个相同的长方形,则长方形ABCD的面积为( D )(A)49 cm2 (B)74 cm2(C)68 cm2 (D)70 cm2解析:设小长方形的长为x cm,宽为y cm,则解得所以长方形ABCD的面积为(5×2)×(5+2)=70 (cm2).故选D. 8.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( C )(A)1 (B)2 (C)3 (D)4解析:设截成2 m长的彩绳x根,1 m长的彩绳y根,根据题意,得2x+y=5.显然,x,y均为非负整数,符合题意的解为因此,共有三种不同的截法.二、填空题(每小题4分,共24分)9.若关于x,y的方程mx+ny=8的两组解是和则m+n=0 .解析:将和代入方程mx+ny=8,得解得所以m+n=0.10.方程组的解是.解析:直接把x+2y=2代入第一个方程即可先求得x的值.11.图中的□、△符号分别代表一个数字,且满足以下两个等式:□+□+△=5,□-△-△-△=6,则□代表的数字是 3 ,△代表的数字是-1 .解析:设□=x,△=y,由题意,得解得所以□代表的数字是3,△代表的数字是-1.12.方程组的解是.解析:任意两个方程相加即可求得一个未知数的值.13.二元一次方程组==x+2的解是.解析:由题意得由①+②得3x=5(x+2),解得x=-5,将x=-5代入①解得y=-1,所以14.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.解析:设安排x人缝制衣袖,y人缝制衣身,z人缝制衣领,则列方程组解得故应该安排120名工人缝制衣袖.三、解答题(共44分)15.(8分)解下列方程组:(1)(2)解:(1)方程①可化简为3x-2y=8.③②+③,得6x=18,所以x=3.把x=3代入②,解得y=.所以原方程组的解为(2)由题意,得3x+5(x+y)=3y+4(x+y),即y=2x.把y=2x代入第一个方程,得3x+15x=36,解得x=2.所以y=4.所以原方程组的解为16.(6分)已知关于x,y的方程组与的解相同,求a,b的值.解:根据题意,得方程组①+②,得2x=4,解得x=2.把x=2代入①得y=-1.把代入得解得17.(7分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?解:(1)若某月用水量为18立方米,则应交水费45元.(2)设函数表达式为y=kx+b(x>18),因为直线y=kx+b过点(18,45),(28,75),所以解得所以y=3x-9(x>18).由81元>45元,得用水量超过18立方米,所以当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米.18.(7分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为乙看错了方程组中的b,而得解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.解:(1)将x=-3,y=-1代入ax+5y=15,解得a=-,即甲把a看成了-.将x=5,y=4代入4x-by=-2,解得b=,即乙把b看成了.(2)将x=-3,y=-1代入4x-by=-2,解得b=10.将x=5,y=4代入ax+5y=15,解得a=-1.所以原方程组为解得19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.解:(1)因为(1,b)在直线y=x+1上,所以当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由如下:因为点P(1,2)在直线y=mx+n上,所以m+n=2,所以2=n×1+m,这说明直线y=nx+m也经过点P.20.(8分)(2018济南)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每名学生只能参加其中一项活动,共支付票款2 000元.票价信息如下:请问参观历史博物馆和民俗展览馆的人数各是多少人?若学生都去参观历史博物馆,则能节省票款多少元.解:设参观历史博物馆的有x人,参观民俗展览馆的有y人,根据题意得解得所有人都参观历史博物馆,所需票款为10×150=1 500(元),则可省下票款为2 000-1 500=500元.答:参观历史博物馆的人数为100人,参观民俗展览馆的人数为50人;若所有人都参观历史博物馆,则可节省票款500元.附加题(共20分)21.(10分)为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y与凳高x满足形如y=kx+b的关系式,请你求出这个关系式;(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套,说明理由.解:(1)把x=37时y=70,x=40时y=74.8,分别代入y=kx+b,得解得所以桌高y与凳高x满足的关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4≠77,所以它们不配套. 22.(10分)已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6 000元,B型每台4 000元,C型每台2 500元,某中学计划将100 500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.解:(1)设购买A型电脑x台,B型电脑y台,根据题意,得解得显然不合题意,舍去.(2)设购买A型电脑a台,C型电脑b台,根据题意,得解得(3)设购买B型电脑m台,C型电脑n台,根据题意,得解得综上可知,共有两种方案可供选择:购买A型电脑3台,C型电脑33台,或购买B型电脑7台,C型电脑29台.。