快排最坏时间复杂度

合集下载

排序算法比较

排序算法比较

排序算法比较
排序算法的效率主要取决于算法的时间复杂度。

以下是常见的几种排序算法的时间复杂度和优缺点的对比:
1. 冒泡排序
冒泡排序的时间复杂度为O(n^2)。

优点是它的实现简单易懂,缺点是排序速度很慢,对大规模数据排序不太适用。

2. 插入排序
插入排序的时间复杂度也为 O(n^2)。

它的优点是适用于小数
据量的排序,缺点是对于大规模数据排序仍然效率不高。

3. 选择排序
选择排序的时间复杂度也为 O(n^2)。

它的优点是对于小数据
量的排序速度较快,但是因为其算法结构固定,所以其效率在大规模数据排序中表现不佳。

4. 快速排序
快速排序的时间复杂度为 O(nlogn)。

它是一种非常常用的排序算法,适用于大规模数据排序。

快速排序的优点在于分治的思想,可以充分发挥多线程并行计算的优势,缺点是在极端情况下(如输入的数据已经有序或者逆序)排序速度会较慢。

5. 堆排序
堆排序的时间复杂度为 O(nlogn)。

它的优点在于实现简单、稳定,可以用于实时系统中的排序。

缺点是在排序过程中需要使用一个堆结构来维护排序序列,需要额外的内存开销。

同时,由于堆的性质,堆排序不能发挥多线程并行计算的优势。

6. 归并排序
归并排序的时间复杂度为 O(nlogn)。

它的优点在于稳定、可靠,效率在大规模数据排序中表现良好。

归并排序在实现过程中需要使用递归调用,需要额外的内存开销。

同时,归并排序不适用于链式存储结构。

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法算法 今天给⼤家带来⼀篇关于算法排序的分类,算法的时间复杂度,空间复杂度,还有怎么去优化算法的⽂章,喜欢的话,可以关注,有什么问题,可以评论区提问,可以与我私信,有什么好的意见,欢迎提出.前⾔: 算法的复杂度分为时间复杂度与空间复杂度,时间复杂度指执⾏算法需要需要的计算⼯作量,空间复杂度值执⾏算法需要的内存量,可能在运⾏⼀些⼩数据的时候,⼤家体会不到算法的时间与空间带来的体验. 优化算法就是将算法的时间优化到最快,将空间优化到最⼩,假如你写的mod能够将百度游览器的搜索时间提升0.5秒,那都是特别厉害的成绩.本章内容: 1,算法有哪些 2,时间复杂度,空间复杂度 3,优化算法 4,算法实例⼀,算法有哪些 常见的算法有冒泡排序,快排,归并,希尔,插⼊,⼆分法,选择排序,⼴度优先搜索,贪婪算法,这些都是新⼿⼊门必须要了解的,你可以不会,但是你必须要知道他是怎么做到的,原理是什么,今天就给⼤家讲⼀讲我们常⽤的冒泡排序,选择排序,这两个排序算法,1,冒泡排序(Bubble Sort), 为什么叫他冒泡排序呢? 因为他就像是从海底往海⾯升起的⽓泡⼀样,从⼩到⼤,将要排序的数从⼩到⼤排序,冒泡的原理: 他会⼀次⽐较两个数字,如果他们的顺序错误,就将其调换位置,如果排序正确的话,就⽐较下⼀个,然后重复的进⾏,直到⽐较完毕,这个算法的名字也是这样由来的,越⼤的数字,就会慢慢的'浮'到最顶端. 好了该上代码了,下⾯就是冒泡排序的代码,冒泡相对于其他的排序算法来说,⽐较的简单,⽐较好理解,运算起来也是⽐较迅速的,⽐较稳定,在⼯作中也会经常⽤到,推荐使⽤# 冒泡排序def bubble_sort(alist):n = len(alist)# 循环遍历,找到当前列表中最⼤的数值for i in range(n-1):# 遍历⽆序序列for j in range(n-1-i):# 判断当前节点是否⼤于后续节点,如果⼤于后续节点则对调if alist[j] > alist[j+1]:alist[j], alist[j+1] = alist[j+1], alist[j]if__name__ == '__main__':alist = [12,34,21,56,78,90,87,65,43,21]bubble_sort(alist)print(alist)# 最坏时间复杂度: O(n^2)# 最优时间复杂度: O(n)# # 算法稳定性:稳定2,选择排序(selection sort) 选择排序(selection sort)是⼀种简单直观的排序⽅法, 他的原理是在要排序的数列中找到最⼤或者最⼩的元素,放在列表的起始位置,然后从其他⾥找到第⼆⼤,然后第三⼤,依次排序,依次类,直到排完, 选择排序的优点是数据移动, 在排序中,每个元素交换时,⾄少有⼀个元素移动,因此N个元素进⾏排序,就会移动 1--N 次,在所有依靠移动元素来排序的算法中,选择排序是⽐较优秀的⼀种选择排序时间复杂度与稳定性:最优时间复杂度: O(n2)最坏时间复杂度:O(n2)算法稳定性 :不稳定(考虑每次升序选择最⼤的时候)# if alist[j] < alist[min_index]:# min_index = j## # 判断min_index索引是否相同,不相同,做数值交换# if i != min_index:# alist[i],alist[min_index] = alist[min_index],alist[i]### if __name__ == '__main__':# alist = [12,34,56,78,90,87,65,43,21]# # alist = [1,2,3,4,5,6,7,8,9]# select_sort(alist)# print(alist)# O(n^2)# 不稳定def select_sort(alist):"""选择排序"""n = len(alist)for i in range(n - 1):min_index = i # 最⼩值位置索引、下标for j in range(i+1, n):if alist[j] < alist[min_index]:min_index = j# 判断min_index ,如果和初始值不相同,作数值交换if min_index != i:alist[i], alist[min_index] = alist[min_index],alist[i]if__name__ == '__main__':alist = [8,10,15,30,25,90,66,2,999]select_sort(alist)print(alist)这是⼀些算法的时间复杂度与稳定性时间复杂度,空间复杂度 接下来就要来说说时间复杂度与空间复杂度: 时间复杂度就是假如你泡茶,从开始泡,到你喝完茶,⼀共⽤了多长时间,你中间要执⾏很多步骤,取茶叶,烧⽔,上厕所,接电话,这些都是要花时间的,在算法中,时间复杂度分为 O(1)最快 , O(nn)最慢,O(1) < O(logn) <O(n)<O(n2)<O(n3)<O(2n) <O(nn) ⼀般游览器的速度都在O(n),做我们这⼀⾏,要注意客户体验,如果你程序的运⾏特别慢,估计别⼈来⼀次,以后再也不会来了下⾯给⼤家找了张如何计算时间复杂度的图⽚: 空间复杂度(space complexity) ,执⾏时所需要占的储存空间,记做 s(n)=O(f(n)),其中n是为算法的⼤⼩, 空间复杂度绝对是效率的杀⼿,曾经看过⼀遍⽤插⼊算法的代码,来解释空间复杂度的,觉得特别厉害,我就⽐较low了,只能给⼤家简单的总结⼀下我遇到的空间复杂度了, ⼀般来说,算法的空间复杂度值得是辅助空间,⽐如:⼀组数字,时间复杂度O(n),⼆维数组a[n][m] :那么他的空间复杂度就是O(n*m) ,因为变量的内存是⾃动分配的,第⼀个的定义是循环⾥⾯的,所以是n*O(1) ,如果第⼆个循环在外边,那么就是1*O(1) ,这⾥也只是⼀个了解性的东西,如果你的⼯作中很少⽤到,那么没有必要深究,因为⽤的真的很少优化算法这边带来了代码,你们在复制下来了python上运⾏⼀下,看⼀下⽤的时间与不同, ⾃然就懂了,这是未优化的算法''已知有a,b,c三个数,都是0-1000之内的数,且: a+b+c=1000 ⽽且 a**2+b**2=c**2 ,求a,b,c⼀共有多少种组合'''# 在这⾥加⼀个时间模块,待会好计算出结果import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001):for c in range(100):# 判断他主公式第⼀次,并未优化if a+b+c==1000 and a**2 + b**2 == c**2 :# 打印print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 156.875001秒这是第⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):# 这⾥改成1001-a之后,他就不⽤再循环b了for b in range(1001-a):for c in range(100):# 判断他主公式第⼆次,优化了b,if a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 50.557070秒最后⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001-a):c=1000 - a - b# 判断他主公式第三次,优化了b和cif a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 2.551449秒从156秒优化到l2秒, 基本运算总数 * 基本运算耗时 = 运算时间这之间的耗时和你的机器有着很⼤的关系今天是12⽉30⽇,明天就要跨年了,祝⼤家2019年事业有成,⼯资直线上升,早⽇脱单,。

NOIP2009年普及组初赛题目及答案解析

NOIP2009年普及组初赛题目及答案解析

NOIP2009年普及组初赛题目及答案解析一、单项选择题(共20题,每题1.5分,共计30分。

每题有且仅有一个正确答案。

)1、关于图灵机下面的说法哪个是正确的:(D)A.图灵机是世界上最早的电子计算机。

B.由于大量使用磁带操作,图灵机运行速度很慢。

C.图灵机是英国人图灵发明的,在二战中为破译德军的密码发挥了重要作用。

D.图灵机只是一个理论上的计算模型。

【解析】所谓的图灵机就是指一个抽象的机器,它有一条无限长的纸带,纸带分成了一个一个的小方格,每个方格有不同的颜色。

有一个机器头在纸带上移来移去。

机器头有一组内部状态,还有一些固定的程序。

在每个时刻,机器头都要从当前纸带上读入一个方格信息,然后结合自己的内部状态查找程序表,根据程序输出信息到纸带方格上,并转换自己的内部状态,然后进行移动。

2、关于计算机内存下面的说法哪个是正确的:(B)A.随机存储器(RAM)的意思是当程序运行时,每次具体分配给程序的内存位置是随机而不确定的。

B.1MB内存通常是指1024*1024字节大小的内存。

C.计算机内存严格说来包括主存(memory)、高速缓存(cache)和寄存器(register)三个部分。

D.一般内存中的数据即使在断电的情况下也能保留2个小时以上。

【解析】A项:RAM不是位置随机,而是随时访问。

所谓“随机存储”,指的是“当存储器中的消息被读取或写入时,所需要的时间与这段信息所在的位置无关。

”B项:1MB=1024KB,1KB=1024BC项:计算机内存包括严格来说包括只读存储器(RAM)、随机存储器(ROM)和高速缓存(CACHE)。

如果不严格来说只包含只读存储器和随机存储器。

D项:内存中的数据断电立即丢失。

3、关于BIOS下面说法哪个是正确的:(A)A.BIOS是计算机基本输入输出系统软件的简称。

B.BIOS里包含了键盘、鼠标、声卡、显卡、打印机等常用输入输出设备的驱动程序。

C.BIOS一般由操作系统厂商来开发完成。

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法

排序—时间复杂度为O(n2)的三种排序算法1 如何评价、分析⼀个排序算法?很多语⾔、数据库都已经封装了关于排序算法的实现代码。

所以我们学习排序算法⽬的更多的不是为了去实现这些代码,⽽是灵活的应⽤这些算法和解决更为复杂的问题,所以更重要的是学会如何评价、分析⼀个排序算法并在合适的场景下正确使⽤。

分析⼀个排序算法,主要从以下3个⽅⾯⼊⼿:1.1 排序算法的执⾏效率1)最好情况、最坏情况和平均情况时间复杂度待排序数据的有序度对排序算法的执⾏效率有很⼤影响,所以分析时要区分这三种时间复杂度。

除了时间复杂度分析,还要知道最好、最坏情况复杂度对应的要排序的原始数据是什么样的。

2)时间复杂度的系数、常数和低阶时间复杂度反映的是算法执⾏时间随数据规模变⼤的⼀个增长趋势,平时分析时往往忽略系数、常数和低阶。

但如果我们排序的数据规模很⼩,在对同⼀阶时间复杂度的排序算法⽐较时,就要把它们考虑进来。

3)⽐较次数和交换(移动)次数内排序算法中,主要进⾏⽐较和交换(移动)两项操作,所以⾼效的内排序算法应该具有尽可能少的⽐较次数和交换次数。

1.2 排序算法的内存消耗也就是分析算法的空间复杂度。

这⾥还有⼀个概念—原地排序,指的是空间复杂度为O(1)的排序算法。

1.3 稳定性如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变,那么这种排序算法叫做稳定的排序算法;如果前后顺序发⽣变化,那么对应的排序算法就是不稳定的排序算法。

在实际的排序应⽤中,往往不是对单⼀关键值进⾏排序,⽽是要求排序结果对所有的关键值都有序。

所以,稳定的排序算法往往适⽤场景更⼴。

2 三种时间复杂度为O(n2)的排序算法2.1 冒泡排序2.1.1 原理两两⽐较相邻元素是否有序,如果逆序则交换两个元素,直到没有逆序的数据元素为⽌。

每次冒泡都会⾄少让⼀个元素移动到它应该在的位置。

2.1.2 实现void BubbleSort(int *pData, int n) //冒泡排序{int temp = 0;bool orderlyFlag = false; //序列是否有序标志for (int i = 0; i < n && !orderlyFlag; ++i) //执⾏n次冒泡{orderlyFlag = true;for (int j = 0; j < n - 1 - i; ++j) //注意循环终⽌条件{if (pData[j] > pData[j + 1]) //逆序{orderlyFlag = false;temp = pData[j];pData[j] = pData[j + 1];pData[j + 1] = temp;}}}}测试结果2.1.3 算法分析1)时间复杂度最好情况时间复杂度:当待排序列已有序时,只需⼀次冒泡即可。

常用排序算法的时间复杂度和空间复杂度

常用排序算法的时间复杂度和空间复杂度

常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。

时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。

在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。

时间复杂度:O(N^(1+a)),其中0<a<1。

//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿里)

各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。

⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。

这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。

基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。

以此类推,直到找到⽬标为⽌。

假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。

⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。

⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。

【转】三种快速排序算法以及快速排序的优化

【转】三种快速排序算法以及快速排序的优化

【转】三种快速排序算法以及快速排序的优化⼀. 快速排序的基本思想快速排序使⽤分治的思想,通过⼀趟排序将待排序列分割成两部分,其中⼀部分记录的关键字均⽐另⼀部分记录的关键字⼩。

之后分别对这两部分记录继续进⾏排序,以达到整个序列有序的⽬的。

⼆. 快速排序的三个步骤1) 选择基准:在待排序列中,按照某种⽅式挑出⼀个元素,作为 “基准”(pivot);2) 分割操作:以该基准在序列中的实际位置,把序列分成两个⼦序列。

此时,在基准左边的元素都⽐该基准⼩,在基准右边的元素都⽐基准⼤;3) 递归地对两个序列进⾏快速排序,直到序列为空或者只有⼀个元素;三. 选择基准元的⽅式对于分治算法,当每次划分时,算法若都能分成两个等长的⼦序列时,那么分治算法效率会达到最⼤。

也就是说,基准的选择是很重要的。

选择基准的⽅式决定了两个分割后两个⼦序列的长度,进⽽对整个算法的效率产⽣决定性影响。

最理想的⽅法是,选择的基准恰好能把待排序序列分成两个等长的⼦序列。

⽅法⼀:固定基准元(基本的快速排序)思想:取序列的第⼀个或最后⼀个元素作为基准元。

/// <summary>/// 1.0 固定基准元(基本的快速排序)/// </summary>public static void QsortCommon(int[] arr, int low, int high){if (low >= high) return; //递归出⼝int partition = Partition(arr, low, high); //将 >= x 的元素交换到右边区域,将 <= x 的元素交换到左边区域QsortCommon(arr, low, partition - 1);QsortCommon(arr, partition + 1, high);}/// <summary>/// 固定基准元,默认数组第⼀个数为基准元,左右分组,返回基准元的下标/// </summary>public static int Partition(int[] arr, int low, int high){int first = low;int last = high;int key = arr[low]; //取第⼀个元素作为基准元while (first < last){while (first < last && arr[last] >= key)last--;arr[first] = arr[last];while (first < last && arr[first] <= key)first++;arr[last] = arr[first];}arr[first] = key; //基准元居中return first;}注意:基本的快速排序选取第⼀个或最后⼀个元素作为基准。

快排复杂度及其证明

快排复杂度及其证明

快排复杂度及其证明快速排序(Quicksort)是一种经典的排序算法,其平均时间复杂度为O(nlogn)。

该算法的核心思想是通过递归地将数组分割成较小的子数组,然后分别对子数组进行排序。

快速排序的步骤如下:首先选择一个基准元素,然后将数组中比基准元素小的元素放在基准元素的左边,将比基准元素大的元素放在基准元素的右边。

接着递归地对左右两个子数组进行排序,直到整个数组有序。

快速排序的时间复杂度分析如下:在最好情况下,每次划分都能平分数组,时间复杂度为O(nlogn);在最坏情况下,每次划分只能将数组分成一个元素和其余元素两部分,时间复杂度为O(n^2)。

然而,通过随机选择基准元素或者使用三数取中法可以避免最坏情况的发生,从而保证快速排序的平均时间复杂度为O(nlogn)。

快速排序的时间复杂度证明可以通过数学归纳法进行推导。

假设对n个元素的数组进行快速排序的时间复杂度为T(n),则有:T(n) = 2T(n/2) + O(n)。

其中2T(n/2)表示对左右两个子数组进行排序的时间复杂度,O(n)表示划分数组的时间复杂度。

根据主定理(Master Theorem)可知,对于递推式T(n) = aT(n/b) + f(n),其中a>=1,b>1,f(n)是多项式,有以下三种情况:1. 若f(n) = O(n^d),其中d<logba,则T(n) = O(n^logba);2. 若f(n) = Θ(n^d * log^k n),其中d=logba,则T(n) = O(n^d * log^(k+1) n);3. 若f(n) = Ω(n^d),其中d>logba,则T(n) = O(f(n))。

根据快速排序的递推式T(n) = 2T(n/2) + O(n),可以得到a=2,b=2,f(n)=O(n)。

因此,根据主定理可知,快速排序的时间复杂度为O(nlogn)。

快速排序是一种时间复杂度为O(nlogn)的高效排序算法,通过合理选择基准元素和递归地划分子数组,可以在平均情况下实现较快的排序速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速排序的平均时间复杂度和最坏时间复杂度分别是O(nlgn)、O(n^2)。

当排序已经成为基本有序状态时,快速排序退化为O(n^2),一般情况下,排序为指数复杂度。

快速排序最差情况递归调用栈高度O(n),平均情况递归调用栈高度O(logn),而不管哪种情况栈的每一层处理时间都是O(n),所以,平均情况(最佳情况也是平均情况)的时间复杂度O(nlogn),最差情况的时间复杂度为O(n^2)。

扩展资料
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序,它采用了一种分治的策略,通常称其为分治法。

快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。

(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。

此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。

(3)然后,左边和右边的数据可以独立排序。

对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。

右侧的数组数据也可以做类似处理。

(4)重复上述过程,可以看出,这是一个递归定义。

通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。

当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

相关文档
最新文档