地埋管地源热泵系统热平衡论文

合集下载

地埋管地源热泵系统的热失衡及解决措施

地埋管地源热泵系统的热失衡及解决措施
小。
热堆 积或 冷 堆 积 .然 而对 于热 平衡 , 《 地 源 热 泵 系统 工程 技 术 规范 ) ) G B 5 0 3 6 6 — 2 0 0 9中又有
明确 规 定 : 地 源热 泵 系统 夏 季最 大释 热 量=∑
4 ) 复 合 式 系统 管理 运 行 不 当 运 行操 作 人 员 嫌麻 烦 .空 调 季 随着 负 荷增 长 不及 时甚
至完 全不 开 调 峰设 施 .或 经 常在 空 调 负荷 不
[ 空调 分 区冷负荷 ( I + I / E E R) ] +∑输送 过 程
得热 量+ ∑水 泵释 放热 量 。地源 热泵 系统冬 季
最 大 吸 热 量 =∑ [ 空 调 分 区 热 负 荷 ( 1 + 1 / C O P ) ] + ∑输送 过程 失热 量一 ∑水泵 释放 热 量 。 最大 释热 量 和 最 大 吸热 量 与建 筑 设计 冷 热 负 荷要 相 对应 . 并 且 相差 不 大 , 可 避 免 因 吸热 与 释热 不平 衡 引 起 的岩 土 温度 升 高 或 降低 。但
存储 于 地下 .有效 地减 轻 了城 市 的夏 季 热 岛 效应 . 同时还 可 以提 供全 年 的生活热 水 。
地埋 管 地 源热 泵 系统 并不 是一 种 万 能 的
空调 系 统 , 它 也 有 自己的缺 点 。首 先 , 它 投 资
季 供冷 时 . 向地 下排 放 冷凝 热 . 经 过 整个 夏季
冷凝 热 的排 放 与积 聚 .地 下 土壤 的 温度 会有

高 .因为地 下钻 井 埋管 和 打井 都需 要 高额 的
费用 .有 的工程 地 下钻 井 埋管 的费用 甚 至与
定 的升高 . 但 是冬 季 供热 时 . 热 泵 又要 不断

地源热泵系统地埋管综合性能论述

地源热泵系统地埋管综合性能论述

地源热泵系统地埋管综合性能论述发布时间:2021-11-11T03:01:55.650Z 来源:《城镇建设》2021年6月第17期作者:关义民张静秋胡高峰鲁冠呈[导读] 高性能回填材料可以提高换热效果,提升系统运行效率,关义民张静秋胡高峰鲁冠呈中建八局西南分公司摘要:高性能回填材料可以提高换热效果,提升系统运行效率,减少地埋管长度,降低成本。

在保证地源热泵系统运行效率的同时,也应注重施工难度、使用寿命等问题,不同配比下回填材料的流动度、体积变化率、导热系数、强度等都不同,研究不同水灰比、沙灰比得到高性能回填材料,不仅能缓解土壤生态热失衡,防止地下水系统污染,还能提升系统运行效率,降低系统的成本。

关键词:地源热泵;综合性能;一、绪论地源热泵技术更多地出现在实际工程中,只需消耗一部分电能就能实现地埋管换热器的换热对建筑进行供暖或制冷。

地埋管换热器是地源热泵系统的重要组成部分,换热器与附近岩土层之间的换热结果极大程度地影响地源热泵的运行效率,高性能回填材料还可以显著减短地埋管长度,进而减少钻孔数量或缩短钻孔深度,从而有效地降低系统成本,因此研究回填材料的传热性能对提高地埋管换热器的性能有重要的意义。

目前制约我国地源热泵系统发展的主要原因是设备的初装成本过高。

很多工程中直接用原土加水泥等进行回填,导致地埋管换热效率低,系统工作效果差。

高性能回填材料能够降低初装时钻取的深度和钻取的数量,有效地减少地源热泵的初装成本,从而提升地源热泵系统的正常运行效率。

同时也需要考虑施工难度、使用寿命等,这就要求回填材料需要有合适的流动度、足够高的强度等。

综合流动度、导热系数、强度和体积变化率等参数得到的回填材料才是实际工程中最适用的回填材料。

二、地埋管回填材料概述地源热泵地埋管回填材料需满足有合适的热物性、强度、环保性等要求。

用合适的回填材料还能防止土壤的冻结收缩或受热膨胀等因素对地源热泵系统传热效率造成影响,提高系统运行时的换热效率,也可以防止地表污染水通过地埋管钻孔向地下渗透造成地下水污染,引起各个含水层之间的交叉污染。

土壤源热泵系统的地埋管热平衡分析

土壤源热泵系统的地埋管热平衡分析
l 工程建设 与设计
『osutn Dsao re Cntco& egFr oc r l i P jt
ห้องสมุดไป่ตู้
土壤源热泵 系统 的地埋管热平衡分析
He tBaa c a ln eAnay i o n -o r eHe t ump l ssi Gr u d s u c a n P
杨红辉
可行 的技术 ; 在我国 , 建设部和一 些省市 的建 筑节能政策 中明
确提 出要推广使用地源热泵 。
对于传统空调 ,系统的设计主要是空调方案以及空调设 备的优化选择 , 但对于土壤源热泵 系统 , 其原理 是将 室内的冷
热量排放到大地中 , 通过季节转换从大地吸热或排热。其中地
u管的换 热效果 、 土壤温度的恢复周期 及土壤热平衡问题 。
从土壤取 、 放热量 的平衡 问题 。
2 2 目前 存在 的 问题 .
根据建 筑热工规范我 国可分为 5 个区 : 严寒地区 、 寒冷地 区、 夏热冬 冷地区 、 冬暖 地区和温和地区 。由于巨大的地 夏热
域 差异 , 使得大 部分 地区的建筑物在一年之 中的冷 、 热负荷相 差甚大 , 进而影 响热泵系统 。R t  ̄r P等口 的相关研究 ot ma S ] 做
地源 热泵在欧美国家已得到普遍 应用 ,已被 充分证 明是成熟
本文结合北京市 “ 远洋 L VE 高端别 墅项 目, A I” 根据地温 场实测数据和理论分析 ,从保证建筑物冷热负荷和土壤热平
衡的要求出发 , 具体分析垂直地埋管的热力性质和特征 。 根据 项 目特定 的土壤地质条件 , 总结出地埋管 的间距 、 u管 、 单 双
下环路 系统是最为关键的一个环 节 ,深层土壤一年四季相对

地埋管地源热泵系统的热平衡

地埋管地源热泵系统的热平衡

地埋管地源热泵系统的热平衡地埋管地源热泵(ground-coupled heat pump)系统的研究和项U实施是我国地源热泵(ground source heat pump)系统三种形式中开始最晚的一种,其造价和运行费用相对也较地下水地源热泵(ground water heat pump)和地表水地源热泵(surface water heat pump)系统要稍高。

open loop systemL. ___________2 wells water body但这些并不妨碍地埋管地源热泵的迅速发展,原因在于地埋管地源热泵采用地埋管换热器(ground heat exchanger)内循环水换取上壤中贮存的温差能,没有对自然水源的开采和污染的担心,因此适用性更广,安全稳定性更高,尤其在夏热冬冷地区不失为一种新的空调冷热源。

closed loop system与欧美地埋管地源热泵主要采用水平埋管式地埋管换热器、通过小型热泵机组承担别墅等小型住宅空调的方式不同,我国的地埋管地源热泵系统主要服务对象是规模较大的多层住宅和办公建筑,地埋管换热器一般采用在一定区域内密集布置的竖直单U甚至双U形地埋管换热器群,近年来还出现了利用建筑物地基内的工程桩或灌注桩密集布置地埋管换热器群的新方式。

这些密集型竖直埋管的方式虽然能较好地适应中国地少人多的国情,但是也带来了技术上的隐患,那就是地埋管换热器布置范围内的土壤热失衡问题,它已经引起了各方面对此技术长期运行效果越来越多的担心。

1、土壤热平衡问题的由来地埋管换热器夏季累讣向土壤的放热量与冬季从土壤的取热量一般并不一致,这样长期取放热量不平衡的堆积会超过土壤自身对热量的扩散能力,造成其温度不断偏离初始温度’并导致冷却水温度随之变化和系统运行效率逐年下降,这即通常所说的地埋管地源热泵热失衡问题。

在我国东北以供暖为主的地区,理论上也可能出现地埋管地源热泵连年运行后土壤温度下降,但以供暖为主的系统采用辅助热源的比例较高,实际出现土壤失衡的可能性较小。

土壤源热泵系统的热平衡问题

土壤源热泵系统的热平衡问题

土壤源热泵系统的热平衡问题马宏权 龙惟定(同济大学)摘 要 本文分析了土壤源热泵热平衡问题的由来与影响,提出了解决该问题的技术思路,并结合几个项目的问题分析和实测讨论了对解决该问题有利的系统的设计原则和运行模式。

关键词 地源热泵 热平衡 优化设计1 引言土壤源热泵系统(ground-coupled heat pump )的研究和项目实施是我国地源热泵系统(Ground Source Heat Pump )三种形式中开始最晚的一种,其造价和运行费用相对也较地下水(underground water Heat Pump )和地表水地源热泵系统(surface water Heat Pump )要稍高。

但这些都并不能妨碍土壤源热泵成为迅速发展的一支力量,原因在于土壤源热泵采用土壤换热器内循环水换取土壤中贮存的温差能,没有对自然水源的开采要求和污染的担心,因此适用性更广,安全稳定性更高,尤其在夏热冬冷地区不失为一种新的空调冷热源解决思路。

我国的土壤源热泵系统数量和规模近年来不断增大,全国已经有多个数十万平米的土壤源热泵项目在建。

与欧美土壤源热泵主要是布置水平埋管式土壤换热器,通过小型热泵机组承担别墅等小型住宅空调的方式不同,我国的土壤源热泵系统主要服务对象是规模较大的多层住宅和办公建筑,土壤换热器一般采用在一定区域内密集布置的垂直单U 或双U 型土壤换热器群,或者利用建筑物地基内的工程桩或灌注桩密集布置土壤换热器群。

这样普遍采用的密集型垂直埋管群和不断增大的土壤源热泵规模使得土壤换热器埋管范围内的土壤热平衡问题得到了越来越多的担心。

作者简介马宏权,男,1979年1月生,在读博士研究生 201804 上海市曹安公路4800号同济大学嘉定校区13-306信箱 (021)69584901E-mail: mhqtj@ 2 土壤热平衡问题的由来与影响土壤源热泵依靠土壤换热器(underground heat exchanger )从地下土壤中提取温差能,热泵机组的热源和热汇是扩散半径范围内的土壤,因此全年运行的土壤源热泵系统需要考虑全年时从土壤取放热量的平衡问题,这即通常称谓的土壤源热泵热平衡问题。

地埋管地源热泵系统的热失衡及解决措施

地埋管地源热泵系统的热失衡及解决措施

统 ,它 也有 自己 的 缺 点 。 首 先 ,它 投 资 高 。 因为 地
下钻井 埋管 和打井都需要高额的 费用 ,有 的工程 地
【 Ab s t r a c t 】 Th i s a r t i c l e i n t r o d u c e s t h e b a s i c p i r n c i p l e a n d c h -
( 4 )复合式系统管理运行不 当。运行操作人员
嫌麻 烦 ,空 调 季 随 着 负 荷 增 长 不 及 时 甚 至 完 全 不 开 调 峰 设 施 , 或 经 常 在 空 调 负荷 不 大 时 只 开 调 峰 设 施 而 不 运 行 地 埋 管 地 源 热 泵 系 统 , 都 将 影 响 调 峰 设 施 的冷 热 平 衡 功 能 , 进而导致冬夏季取放热量不平衡 , 使 土 壤 出项 热 堆 积 。
i mb a l a n c e , c o nt u e m e r a s u r eபைடு நூலகம்s
负荷 X( 1 + 1 / E E R ) ]+ ∑输 送 过 程 的热 量 + ∑水 泵 释 放 热 量 。地源 热 泵 系 统 冬季 最 大 吸 热量 = ∑[ 空 调 分
引 言
近年来 ,在节能环保和能源紧缺 的大环境 下, 地埋 管地源 热泵系统在我 国北方尤其是夏 热冬冷 地 区逐渐受到 了设计院 、政府及建 设方 的青睐,几乎 成为夏热冬冷地 区全年供 冷、供 热的最佳选择 。它
( 5 )运行管理不善 ,过渡依赖于 自控系 统。任
何 控 制 系统 都 不 是 万 能 的 ,都 需 要 人 来 调 控 和 监 视
下钻井 埋管 的费 用甚至 与地 上空 调系 统 的费用接

地埋管地源热泵系统的热平衡

地埋管地源热泵系统的热平衡

热扩散和温度恢复能力是比较差的, 原因在于土壤本身 的热阻要高于管内对 流热阻和管壁的热阻 , 因此随着散热半径的增大 , 地埋管换热器 总热阻迅速 增大 , 土壤 完全 依 靠 自身扩 散 取得 热平 衡所 需 的恢 复 时 间增长 。同 时 由于土 壤温度的传递是动态 的,需要认真分析不同地埋管换热器温度波的叠加 , 比 如 夏季 刚 开始 运 行 时 , 地 埋管 地 源 热泵 的 散 热效 果 是 比较 好 的 , 但如 果 持 续 运行, 当不 同地 埋 管换 热 器 的温 度 波开 始 叠 加而 互 相影 响后 , 就 会 出现 冷却 水温度升高和系统效率下降的情况, 此时土壤温度将进入快速上升期 , 此后 地 埋 管地 源热 泵 的持久 运行 特 性将 变差 。 因此应根据需要合理设定地埋管换热器的布置间距 , 如能适当增加地埋 管换热器钻孔的深度 ,也将有利于提高地埋管地源热泵系统 的持久运行特

对建筑物降温, 同时在大地 中蓄存热量以备冬季使用。该系统一般包括三个 环路: 地埋 管 换热 器环 路 、 热 泵 机组 环路 及空 调末 端 装置 环路 。
四、 某地 埋 管地源 热泵 土壤温 度变 化 实测分 析
测 试项 目位 于武 汉 3 8 0 0 0 m 2 的约 2 0 0 户小 高层 住 宅居 民提供 空 调冷 热 源 。项 目设 计 夏 季冷 负荷 为 1 5 6 0 k W, 冬
工程 质量 与管理
地埋 管地源热泵系统 的热平衡
这 个 相位 的延 迟 越远 , 离 地 埋管 换热 器 需要 的 时间越 久 。这 说 明 土壤 自身 的


刖 置
近年 来 , 地 源 热泵 系 统不 断发 展 壮大 , 在 其 发展 的过 程 中存 在 一 些 问题

土壤源热泵系统热平衡问题浅析

土壤源热泵系统热平衡问题浅析

土壤源热泵系统热平衡问题浅析摘要:热泵技术是最有效的建筑节能技术之一,近年来,土壤源热泵以其良好的环境效应和节能效果受到极大关注,但是土壤源热泵在应用时存在着部分地区冷热不平衡的问题,因此,如何克服热平衡弊端,扩大土壤源热泵的适用范围已经成为一项热门课题,本文提出了几种克服土壤热平衡问题的解决方案,为今后的土壤源热泵设计提供参考。

关键词:土壤源热泵;热平衡;复合热源热泵1前言地下一定深度的土壤温度相对稳定,土壤源热泵就是利用土壤相对于空气而言,冬季温度高而夏季温度低的特点,以大地作为热源与建筑物进行热交换,从而达到节能的目的,因此被称为21世纪的“绿色空调技术”。

它不需要任何形式的人工热源,冬季从土壤中提取热量,向建筑物供暖,同时蓄存冷量,以备夏用;夏季向建筑物提供冷量并将建筑物的排热量释放到土壤中,同时蓄存热量,以备冬用。

土壤源热泵系统要保持长期高效运行,就必须保证土壤的热平衡,即冬夏季从土壤中提取和释放热量的平衡,保证以年为周期时的土壤温度场的稳定。

2土壤源热泵系统土壤热平衡问题原因分析2.1冷热负荷不平衡我国幅员辽阔,各地区气候差异较大,很多地区建筑物全年冷、热负荷差异很大,导致土壤源热泵系统冬季从土壤中提取的热量和夏季释放到土壤中的热量难以平衡,因此,土壤源热泵在应用时若不采取措施,而是直接根据需求量取热和放热用以满足冬夏负荷需求,必然会导致土壤温度偏离其原始温度,即土壤热不平衡现象,导致系统性能下降。

在北方地区,冬季热负荷大于夏季冷负荷,热泵从土壤中提取的热量大于夏季向土壤中释放的热量,导致土壤温度降低,机组蒸发温度降低,系统耗功量增加,供热量减少,热泵的循环性能系数COP降低;在南方地区,夏季冷负荷大于冬季热负荷,热泵向土壤中释放的热量大于冬季从土壤中提取的热量,导致土壤温度升高,机组冷凝温度升高,系统耗功量增加,制冷量减少,热泵的能效比EER降低。

因此,土壤源热泵适用于冬夏冷热负荷相差不大的地区,根据实测和理论计算,一般情况下,建议冬夏向土壤的吸排热量相差不大于20%为好[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地埋管地源热泵系统的热平衡
摘要:随着社会的发展与进步,我们越来越多的关注地埋管地源热泵系统的热平衡,地埋管地源热泵系统的热平衡对于现实生活中具有重要的意义。

本文主要介绍地埋管地源热泵系统的热平衡的有关内容。

关键词;地埋管;地源热泵系统;热平衡;问题;
中图分类号:th3文献标识码: a 文章编号:
规划环评是指对政策、规划及其替代方案可能产生的环境影响进行规范的、系统的综合评价,并把评价结果应用于负有公共责任的决策中。

它是为了针对项目环评的缺陷而提出的。

项目环评自20世纪60年代在西方发达国家提出并实施以来,在控制和减少环境污染和生态破坏方面发挥了重要作用,但是其不足也日益明显。

建设项目处于整个决策链(战略—政策—规划—计划—项目)的末端,因此项目环评只能做修补性的努力。

对单个项目的认可或否决,并不能影响最初的决策和布局。

而环境问题在人们着手制定政策、规划时就已经潜在地产生了。

一、土壤热平衡问题的由来
地埋管地源热泵依靠地埋管换热器从地下土壤中提取能量, 虽然热泵机组的热源和热汇都是扩散半径范围内的土壤, 但地埋管
换热器夏季累计向土壤的放热量与冬季从土壤的取热量一般并不
一致, 这样长期取放热量不平衡的堆积会超过土壤自身对热量的
扩散能力, 造成其温度不断偏离初始温度, 并导致冷却水温度随
之变化和系统运行效率逐年下降, 这即通常所说的地埋管地源热泵热失衡问题。

地埋管地源热泵周期运行后土壤温度出现上升和下降是土壤热量收支失衡的两种后果, 都对系统持续稳定运行不利。

如果地埋管地源热泵系统承担全部空调负荷, 大多数情况下其全年的取放热量不平衡, 在我国部分地区可能表现为散热量多于取热量。

这主要是由于供冷季、供暖季持续时间和负荷强度有明显差异, 而且夏季土壤还要承担制冷机组和水泵等设备散热造成的。

地埋管换热器的实际传热过程是一个复杂的非稳态传热过程, 它以土壤导热为主, 但同时还包括了土壤多孔介质中的空气、地下水体的自然对流以及地下水的迁移传热, 因此土壤的热物性、含水量、土壤初始温度、埋管材料、管径和流体物性、流速等都对单个地埋管换热器的传热过程产生影响。

地埋管换热器群中特定位置的土壤温度变化还受临近位置多个地埋管换热器温度波在该处迭加的影响。

空调运行期间, 周期性变化的负荷输入加上过渡季节空调系统的停运, 引起了地埋管换热器周围的土壤温度场总处在升温—降温—升温的循环变化过程中。

土壤的散热包括两方面, 一方面为地下水迁移带走的热量, 另一方面为土壤的热传导所带走的热量, 散热的对象都是大地, 由于大地本身具有足够大的容积, 所以只要设计能保持每年空调系统从地下取放热差值不超过土壤固有的散热能力, 就可以保持全年的热平衡。

二、土壤热平衡问题的危害
2.1 热平衡问题对热泵运行的影响
根据建筑热工我国可分为 5 个区:严寒地区、寒冷地区、夏热冬冷地区、夏热冬暖地区和温和地区。

由于巨大的地域差异,使得大部分地区的建筑物在一年之中的冷、热负荷相差甚大。

而近年来地埋管地源热泵系统的数量和规模不断增加,形式多采用在一定区域密集布置的竖直单u 甚至双u 型地埋管换热群,近年来还出现了利用建筑物地基内的工程桩或灌注桩密集布置地埋管换热器群的新方式,这些密集型竖直埋管的方式虽然能较好地适应中国地少人多的国情,但是也带来地埋管换热器布置范围内的土壤热失衡问题,它已经引起了各方面对此技术长期运行效果越来越多的担心。

地埋管换热器地埋管地源热泵周期运行后土壤温度出现上升和下降是土壤热量收支失衡的两种后果,都对系统持续稳定运行不利。

rottmayer s p等[5]做的相关研究表明,夏季向地下累计释放的总热量与冬季从地下累计吸取的总热量均衡时孔深不随运行时间变化,不均衡时地埋管换热器换热性能下降,随运行时间的延长所需的设计孔深呈对数曲线增大。

综上所述,热平衡问题对热泵长期运行特性有明显影响,由于土壤热阻高于管内对流热阻和管壁的热阻,加上持续运行后地埋管温度波的叠加使土壤温度恢复时间增长,出现冷却水温度升高(降低)和系统效率下降,土壤温度持续改变,此后地埋管地源热泵的持久运行特性将变差。

2.2 热平衡问题对生态环境的影响
地埋管地源热泵热平衡导致的土壤温度变化不仅影响地埋管换
热器性能,对热泵的稳定运行产生影响,使效率降低甚至无法正常运行。

而且地源热泵长期运行造成的热堆积改变土壤温度,对土壤的性质产生影响并危及到土壤的生态环境。

另外,热泵在温度控制方面优于传统的煤炉或电炉,使得热泵在果蔬培育尤其是反季果蔬培育中得到越来越广泛的应用,使得我们必须关注地源热泵的长期运行对土壤环境的影响,这直接关系到农业生态系统的平衡。

三、土壤热失衡的解决方法
地埋管地源热泵的热失衡问题并不是技术上的难题, 完全可以通过系统的合理设计和规范化的运行管理进行规避。

解决的方法在于减小地埋管换热器群的密集度和冷热负荷的不平衡率, 前者可以通过增大地埋管换热器布置的间距、减小地埋管换热器单位深度承担的设计负荷等措施进行, 而后者可以通过设置系统调峰、采用热泵机组热回收技术减少夏季排热等措施实现。

相比较而言, 减小地埋管换热器群的密集度需要增加地埋管换热器布置面积, 因而其实施受实际情况限制, 但对于系统持久安全运行更有用。

采用系统调峰等措施可以将土壤温升控制在一定范围内并获得较好的经济性, 但合理的调峰比例需要根据空调负荷情况作技术经济分析确定。

目前地埋管换热器制冷和制热的出力一般按照持续稳定24 h 后的土壤热特性测试结果作为参考依据进行设计, 虽然这些测试数值考虑了系统连续运行后的效率下降, 但不能反映地埋管换热器组群之间的互相影响, 因此实际使用当中要进行修正。

有调峰的复
合式系统的整体经济性更好, 因此条件具备时应该优先考虑作为解决土壤热失衡的主要措施。

但是应该注意调峰系统同时也提高了剩余地埋管换热器的使用频率, 因此调峰后土壤承担的冬夏负荷不宜相差过大。

利用带热回收功能的地埋管地源热泵机组提供生活热水, 在冬季增加了地埋管地源热泵系统的取热负荷, 在夏季回收了热泵机组向地下的冷凝排热, 在过渡季节部分带有全热回收功能的热泵机组还可以作为热水机使用从地下取热, 这对缓解土壤热失衡非常有益, 同时也可以提供廉价的生活热水, 对有生活热水需要的项目也是非常适合的一个技术手段。

此外, 条件适合时还可以采用以下技术手段缓解土壤热失衡问题:
1) 将地埋管换热器与热泵机组对应设置成多个回路, 轮流使用, 部分负荷时优先使用地埋管换热器布置的周边回路, 以延长地埋管换热器的温度自然恢复时间, 避免中心局部过热。

2) 在地埋管换热器布置场地中心位置布置温度传感器, 对空调季土壤温度进行实时检测, 当土壤温升超过规定数值后, 启动调峰系统运行。

条件合适的地埋管地源热泵机房还可以设置自动控制和管理系统, 以确保地埋管地源热泵系统处于较好的控制和调节状态。

3) 地埋管地源热泵即使不采用复合式系统, 也可以预留冷却塔位置和接口, 以保证如果持续运行出现土壤温升超出控制范围, 启动冷却塔辅助冷却。

4) 对冬夏季节土壤热负荷差异较大的项目可以采用夏季冷却
塔优先开启运行的复合式系统, 或者在空调不运行的夜间将冷却塔和地埋管换热器串联使用以冷却地下土壤, 可以很好地解决热失衡问题, 并不影响系统经济性。

我国的地埋管地源热泵运行时间不长, 尚未暴露出土壤热失衡的严重后果。

但鉴于我国快速发展的地埋管地源热泵市场和高度密集的竖直埋管方式, 土壤热失衡问题必须引起足够重视, 没有土壤热平衡方案的地埋管地源热泵系统持续运行数年后存在出现效率下降和持续运行效果变差的巨大风险。

参考文献
[1]程艳涛,王根绪,张春敏,长江源区高寒草甸植被覆盖与地温变化对土壤饱和导水率的影响[j]. 地理地质,2006.
[2]李世清,任书杰,李生秀.土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[j].植物营养与肥料学报2004.
[3]于明志,方肇洪,李明钧.土壤冻结对地热换热器传热的影响地理地质[j]. 山东建筑工程学院学报,2001.
[4]王庆鹏.地下水渗流对地源热泵影响的研究[d].北京:北京工业大学, 2007 年6 月.
[5]马最良,吕悦.地源热泵系统设计与应用[m].机械工业出版社,2007.
[6] 徐伟,郎四维《地源热泵工程技术指南》[m]. 中国建筑工业出版社, 2001。

相关文档
最新文档