第4章 塑性应力应变关系(本构方程)
合集下载
塑性应力应变关系

2 加载条件
单轴情况
f 0, 且 f 0, 且 f 0, 且
多轴情况
f d ij 0时,加载 ij f d ij 0时,中性变载 ij f d《0时,卸载 ij ij
对理想塑性材料,则为
f f 0, and d ij 0 ij f f 0, and d ij 0 ij
5 塑性应力应变关系的推导
有
0
p ii
(塑性体积应变为零)
令
f f n / σ σ
(屈服面外法向单位向量)
f f f f f : σ σ σ ij ij
n :n 1
f d nij σ
p ij
(流动法则)
作为塑性变形的度量,引进等效塑性变形及其增量
加载或中性变载
卸载
f<0 and f>0是什么?
3 强化模型
各向同性强化:假设屈服面均匀膨胀,没有崎 变和移动,此时屈服面可表达为
f ( ij , k ) f ( ij ) k ( ) 0
强化模型实际上表示后继屈服面的变化规律, 即如何随硬化参数而变。强化参数可以取累积 塑性变形。
e d ij
1 1 d ij dsij d kk ij dsij 2G 9K 对刚塑性材料,不计弹性部分,为 d ij dsij 此为Levy Mises方程
d的确定 理想塑性
对理想塑性J 2材料,有 2 2 2 sij sij e2 y (1) 3 3 两边求导,有 2 sij dsij 0 (2) 偏应变增量可写为 1 dsij dsij (3) 2G 上式两边同乘以sij并求和有 deij sij deij 1 sij dsij dsij sij dsij sij 2G ( 4)
工程塑性力学(第四章)弹塑性力学边值问题的简单实例

σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2
,
p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给
弹塑性力学第四章弹性本构关系资料

产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
第4章 弹塑性本构方程

典型的本构关系模型
4-3-1 双曲线(邓肯-张)模型
它属于数学模型的范畴。即它以数学 上的双曲线来模拟土等材料的应力应 变关系曲线并以此进行应力和应变分 析的。由于这种模型是由邓肯和张两 人所提出,所以也叫邓肯-张模型,有 时简称D C模型。
a b
4-3-2 Drucker-Prager模型(D-P模型)
在F点之前,试件处于均匀应变 状态,到达F点后,试件开始出现 颈缩现象。如果再继续加载则变形 将主要集中于颈缩区进行,F点对应 的应力是材料强化阶段的最大应力, 称为强度极限,用 b 表示。
判定物体中某一点是否由弹性状态 转变到塑性状态,必然要满足一定 的条件(或判据),这一条件就称 为屈服条件。在分析物体的塑性变 形时,材料的屈服条件是非常重要 的关系式。
第4章 弹塑性本构方程
§4-1 典型金属材料
曲线分析
大量实验证明,应力和应变之间的 关系是相辅相成的,有应力就会有 应变,而有应变就会有应力。
对于每一种具体的固体材料,在一 定的条件下,应力和应变之间有着 确定的关系,这种关系反映了材料 客观固有的特性。下面以典型的金 属材料低碳钢轴向拉伸试验所得的 应力应变曲线为例来说明。
§4-5 世界上最常用岩土本构模型及土 本构模型剖析
◆
世界上最常用的土本构模型
1.概述 土作为天然地质材料在组成及构 造上呈现出高度的各向异性、非 均质性、非连续性和随机性,在 力学性能上表现出强烈的非线性、 非弹性和粘滞性,土的本构模型 就是反映这些力学性态的数学表 达式。
一般认为,一个合理的土的本构 模型应该具备理论上的严格性、 参数上的易确定性和计算机实现 的可能性。自Roscoe等创建剑桥 模型至今,各国学者已发展数百 个土的本构模型。
工程塑性理论应力应变关系

2
E
m
y
m
1 E
y
z
x
1 2
E
m
z
m
1 E
z
x y {}
1
2
E
m
x m , y m ,
x y
x m , y m ,
xy y z
xyzymmmm
,
z z m
z
z
m
Gz 2z1Em
x
1 2G
x
,
y
1 2G
y
,
z
1 2G
z
,
xy
yx
1 2G
xy
即应变增量张量就是应变增量偏张量。
在上述假设基础上,可假设应变增量与 应力偏张量成正比,即
d ij ij d
d x d y d z d xy d yz d zx d x m y m z m xy yz zx
式中:dλ—正的瞬时常数,在加载的不同 瞬时是变化的,在卸载时,dλ=0。
d ij ij d
d x x m d
x
x
y
3
z
d
2 3
d
x
1 2
y
z
d x
2 3
d
x
1 2
y
z
,
d y
2 3
d
y
1 2
z
x ,
d z
2 3
d
z
1 2
x
y
,
d xy
xy
d
d yz yzd
d zx zx d
将上式正应变两两相减,并写出切应变公式:
yz
2G
zx
弹塑性力学第四章 弹性本构关系

E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E
《弹塑性力学》第四章 应力应变关系(本构方程)

第四章 应力应变关系(本构方程)
§4-1 应变能、应变能密度与弹性
材料的本构关系
§4-2 线弹性体的本构关系
§4-3 各向同性材料弹性常数
2019/2/4
1
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。
ji,j+ fi = 0
2019/2/4
ij =( ui,j+ uj,i)/2
2
第四章 应力应变关系(本构方程)
共9个方程,但需确定的未知函数共15个:
ui,ij=ji, ij=ji,
还需要根据材料的物理性质来建立应力与 应变间的关系:
ij = ji = fij ( kl )
2019/2/4 3
本构关系
时刻达到 t +t:位移有增量
应变增量 外力功增量 :
ij ei e j
A
V
u ui ei
f udV F udS
S
8
2019/2/4
§4-1 应变能、应变能密度与弹性材料的
本构关系
A
V
V
f udV F udS
C11 C12 C 22 C 对 称 C13 C 23 C33 0 0 0 C 44 0 0 0 0 C55 0 0 0 0 0 C66
特点:正应变仅引起正应力,剪应变仅产生剪 应力。
2019/2/4 27
§4-2 线弹性体的本构关系
30
§4-2 线弹性体的本构关系
§4-1 应变能、应变能密度与弹性
材料的本构关系
§4-2 线弹性体的本构关系
§4-3 各向同性材料弹性常数
2019/2/4
1
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。
ji,j+ fi = 0
2019/2/4
ij =( ui,j+ uj,i)/2
2
第四章 应力应变关系(本构方程)
共9个方程,但需确定的未知函数共15个:
ui,ij=ji, ij=ji,
还需要根据材料的物理性质来建立应力与 应变间的关系:
ij = ji = fij ( kl )
2019/2/4 3
本构关系
时刻达到 t +t:位移有增量
应变增量 外力功增量 :
ij ei e j
A
V
u ui ei
f udV F udS
S
8
2019/2/4
§4-1 应变能、应变能密度与弹性材料的
本构关系
A
V
V
f udV F udS
C11 C12 C 22 C 对 称 C13 C 23 C33 0 0 0 C 44 0 0 0 0 C55 0 0 0 0 0 C66
特点:正应变仅引起正应力,剪应变仅产生剪 应力。
2019/2/4 27
§4-2 线弹性体的本构关系
30
§4-2 线弹性体的本构关系
弹塑性力学弹性与塑性应力应变关系详解课件

有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具有优势。
05
弹塑性力学的数值模拟方法
有限元法
有限元法(Finite Element Method,简称 FEM)是一种广泛应用于解决复杂工程问题 的数值模拟方法。
它通过将连续的求解域离散化为有限个小的 单元,并对每个单元进行数学建模,从而将 复杂的连续场问题转化为离散的有限元问题。
有限元法具有灵活性和通用性,可以处理各 种复杂的几何形状和边界条件,广泛应用于 结构分析、热传导、流体动力学等领域。
与应变之间不再是线性关系。
重要性
03
了解塑性应力应变关系对于工程设计和结构安全评估具有重要
意义。
屈服准 则
屈服准则定义
描述材料开始进入塑性变形 阶段的条件。
常用屈服准则
例如,Von Mises屈服准则、 Tresca屈服准则等。
屈服准则的意义
为判断材料是否进入塑性变 形阶段提供依据,是弹塑性 力学中的重要概念。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基 础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强化材料卸载:
f ( ij ) 0,
f df d ij 0 ij
4.3 增量理论
在塑性变形时,全量应变和加载历史有关,要建立普遍的全量应变与应力 之间的关系是很困难的,所以主要研究应力和应变增量或应变速率之间的关系 。这种关系叫做增量理论,其中包括:密席斯方程、塑性流动方程和劳斯方程 。前两者适用于理想刚塑性材料,后者适用于弹塑性材料。
x
y 4G2 x y
2
2
2 2 6 xy 4G 2 xy 6
2 2 2 2 2 2 xy yz xz 等式左边为: x y y z z x 6
1 等效应力为:
1 i 2 1
2 2 2 yz xz x y y z z x 6 xy 2 2 2
则等效应变与弹性应变强度关系为: 当 =0.5 时
3 i = 2(1 )
i
弹性应力应变关系特点: 1.应力与应变成线性关系 2.弹性变形是可逆的,应力应变关系单值对 应 3.弹性变形时,应力球张量使物体产生体积 变化;物体形状的改变只是由应力偏张量引 起的。 4.应力主轴与应变2G
同理可得:
y m
1 - E 1 - E
x
z m z
m
1 y y 2G
1 z z 2G
m
x
1 x 2G
1 y y 2G 1 z z 2G
d
2 2 2 x d y d y d z d z d x 6 d xy d yz d xz 2 2 2
2 2 2 2 2 2 d x y y z z x 6 xy yz xz 2 2d 2 2
• 每一加载瞬间,应力主轴与应变增量主轴重合。
• 应变增量与应力偏张量成正比,即:
d dij ij
变形时变化。 d - 瞬时的非负比例系数。 卸载时,d 0
上式
d d ij ij
称为列维米塞斯方程
(1)比例形式:
d x d y d z d xy d yz d xz d x y z xy yz xz
e
将上式括号中的第三、四项展开即可发现它们都为零:
因此,括号内只留下前两项,其中第二项只与球张量 有关,表示体积变化的能量,用表示;而第一项只与偏张
量有关,表示形状变化的能量,即形变能,以表示。
屈服时的弹性形变能为:
1 2 1 A S 常数 6G 6G
e x 2
(密席斯屈服准则的物理意义,即当材料的质点内单位 体积的弹性形变能达到某一临界值时,材料就屈服。)
第四章 材料本构关系
应力状态与应变之间的关系,这种各种的数 学表达式叫做本构方程,也叫物理方程。
平衡微分方程 求解屈服准则 本构方程
4.1 弹性本构关系
材料在简单拉伸情况下,应变与应力关系满足 x
1 x E
y
z 0
x
P
x方向:增长 y方向:缩短 z方向:缩短
应变关系满足:
对等式右边开方再乘以
2G 2
2
1 2
,得
2 2
2 2 2 yz xz x y y z z x 6 xy
2G 2
2 2 2 6 x y y z z x xy yz xz 2 2 2
2 令 d 3
2 2 2 d yz d xz d x d y d y d z d z d x 6 d xy 2 2 2
d
为塑性应变增量强度,也称等效应变增量。
则 9 d 2 2 2d2 2
4.3.1 列维-密席斯增量理论
• 材料是理想刚塑性材料,即弹性应变增量为零, 塑性应变增量就是总 应变增量。 • 材料服从密席斯屈服准则,即: s • 塑性变形时体积不变,即:
d x d y d z d1 d 2 d3 0
dij dij
因此:
2、差比形式:
x y y z xy yz xz z x 1 x y y z z x xy yz xz 2G
上式两边平方后整理后得:
x y
z 4G 2 y z
2
2 2 2 6 x y y z z x xy yz xz 2 2 2
2 2 2 2 2 2 2 4G 6 等式右边为: x y y z z x xy yz xz
4.2塑性变形时应力应变关系的特点
塑性变形时应力应变关系的特点:
1. 塑性变形时体积不变(应变球张量为0,υ=0.5)
2. 应力与应变之间的关系是非线性的 3. 全量应变与应力的主轴不一定重合 4. 塑性变形是不可恢复的,应力与应变之间没有一般 的单值关系,而是与加载历史或应变路线有关
由此可以看出: 离开加载路线来 建立应力与全量 塑性应变之间的 普遍关系是不可 能的。
1 E 2 2 2 x y 2 y z 2 z x 2 6 xy yz xz 2 1 1 1 2 2 2 x y 2 y z 2 z x 2 6 xy yz xz 令 i 2 1
(2)差比形式:
d x d y
x y
d y d z
y z
2
d z d x d z x
2 2 6d xy 6 xy d 2 2 2 2 6d yz 6 yz d 2 2 2 6d xz 6 xz d
yz xz xy
yz
2G
xz
2G
广义虎克定律
xy
2G
x y z
1 x y z 2 x y z E
1 2 x y z x y z E
2 2
y 4G 2 x y
2
2
2 2
z
x 4G 2 z x
2 2 xy 4 G 2 xy 2 2 yz 4 G 2 yz 2 2 xz 4 G 2 xz
+ 2 2 2 2 2 2 6 4G yz 6 4G + yz y z y z 2 2 2 2 2 2 6 4G xz 6 z x 4G z x + xz
z y x
x
E
其中:υ——泊松比
即当材料在某个方向受拉力时,在该方向出现拉伸变形, 而与垂直的两个方向则出现压缩变形。
多向受力时: z x方向正应力产生:
x
x
E
, y
x
E
, z
x
E
x
y方向正应力产生:
+ x
y
图2-5 π平面上的加载准
加载与卸载准则通用式表示 如果以 f ( ij ) 0 表示屈服曲面
弹性状态: f ( ij ) 0
f f ( ij ) 0, df d ij 0 强化材料加载: ij
强化材料变载,理想材料加载:
f f ( ij ) 0, df d ij 0 ij
ij
1 ij 2G
应变偏张量与应力偏张量成正比
结论:物体形状改变只由应力偏张量引起
m
1 2 m E
m
物体弹性变形时,单位体积变化率θ =3ε
与平均应力成正比。
结论:应力球张量使物体产生了弹性体积改变
应变张量可以分解成偏张量和球张量
m ij ij ij
加载:ζ edζ e >0,应力点保持在加载曲面上,此时有新的塑 性变形发生,ζ -ε 关系为塑性关系。 卸载:ζ edζ e<0,应力点向加 载曲面内侧变动,不会产生新 的塑性变形, ζ -ε 关系为弹 性关系。 中性变载:若ζ edζ e=0 ,应力 点在原有屈服曲面上变动,对 于强化材料而言为没有新的塑 性变形,关系为弹性关系。
其中
i
弹性应变强度
等式左边与右边关系为:
=E i
结论:材料弹性变形范围内,应力强度与应变强度成 正比,比例系数为E
等效应变表达式:
2 2 2 2 2 2 2 x y y z z x 6 xy yz xz 3 弹性应变强度表达式:
E
, y
y
E
, z
y
E
y
z方向正应力产生: + x
z
E
, y
z
E
, z
z
E
1 x x ( y z ) ; E 由上,得 1 y y ( x z ) ; E 1 z z ( y x ) ; E
二、弹性变形能
物体在外力作用下产生弹性变形时,单位体积中的弹性能:
1 e e Ae ij ij AT Ax 2
将 ij和 ij 都分解成偏张量和球张量,则