蓄能器的计算

合集下载

储能电容计算公式单位换算

储能电容计算公式单位换算

储能电容计算公式单位换算在储能技术中,储能电容是一种常见的储能设备,它可以存储电能并在需要时释放电能。

在实际应用中,我们经常需要计算储能电容的参数,比如容量、电压和能量等。

为了方便计算和比较,我们需要对这些参数进行单位换算。

本文将介绍储能电容的计算公式以及常见的单位换算方法。

储能电容的计算公式。

储能电容的容量通常用法拉第(Farad,F)来表示,电压用伏特(Volt,V)来表示,能量用焦耳(Joule,J)来表示。

储能电容的容量和电压是两个最基本的参数,它们之间的关系可以用以下公式来表示:能量(J)= 0.5 ×容量(F)×电压²(V²)。

这个公式告诉我们,储能电容的能量与其容量和电压的平方成正比。

这也意味着,如果我们知道储能电容的容量和电压,就可以通过这个公式来计算其能量。

另外,如果我们知道储能电容的能量和电压,也可以通过这个公式来计算其容量。

这个公式在实际应用中非常有用,可以帮助我们更好地设计和选择储能电容。

单位换算方法。

在实际应用中,我们经常需要对储能电容的参数进行单位换算,比如从法拉德(F)到微法拉德(μF),从伏特(V)到千伏特(kV),从焦耳(J)到千焦耳(kJ)等。

下面将介绍一些常见的单位换算方法:1. 从法拉德(F)到微法拉德(μF),1F = 1,000,000μF。

例如,如果一个储能电容的容量为100μF,那么它的容量为0.0001F。

2. 从伏特(V)到千伏特(kV),1V = 0.001kV。

例如,如果一个储能电容的电压为1000V,那么它的电压为1kV。

3. 从焦耳(J)到千焦耳(kJ),1J = 0.001kJ。

例如,如果一个储能电容的能量为1000J,那么它的能量为1kJ。

这些单位换算方法可以帮助我们更好地理解和比较储能电容的参数。

在实际应用中,我们经常需要将不同单位的参数进行换算,以便进行计算和比较。

掌握这些单位换算方法可以帮助我们更好地应用储能电容技术。

储能容量计算公式

储能容量计算公式

储能容量计算公式
储能容量计算公式是指用于计算储能系统所需的能量存储容量的公式。

其计算方法通常涉及到储能设备的类型、功率和使用时间等因素。

常见的储能设备包括电池、超级电容器、储热设备等。

对于不同类型的储能设备,其容量计算公式也不同。

其中,以电池为例,其储能容量计算公式为:
储能容量=(负载功率×使用时间)÷(电池电压×电池效率)其中,负载功率指储能系统所需供应的负载功率,使用时间指负载需要持续使用储能系统的时间,电池电压指储能系统中电池的额定电压,电池效率指储能系统中电池的充放电效率。

通过以上公式,可以计算出储能系统所需的电池容量,从而满足负载的能量需求。

- 1 -。

【最新精选】蓄能器计算

【最新精选】蓄能器计算

蓄能器在系统中的应用、选型、计算蓄能器在系统中的应用、选型、计算高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用?高压蓄能器主要是平衡管路油压波动。

具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。

蓄能器的重要性在高压EH油系统中举足轻重。

流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。

蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。

上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。

蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。

储蓄液压能:(1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。

(2)在瞬间提供大量压力油。

(3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。

(4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。

(5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。

(6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。

缓和冲击及消除脉动:(1)吸收液压泵的压力脉动。

(2)缓和冲击:如缓和阀在迅速关闭和变换方向时所引起的水锤现象。

蓄能器的计算

蓄能器的计算

3.蓄能器得计算3、1、状态参数得定义P0=预充压力P1=最低工作压力P2=最高工作压力V0=有效气体容量V1=在P1时得气体容量V2=在P2时得气体容量t0=预充气体温度t min=最低工作温度tmax=最高工作温度①皮囊内预先充有氮气,油阀就是关闭得,以防止皮囊脱离。

②达到最低工作压力时皮囊与单向阀之间应保留少量油液(约为蓄能器公称容量得10%),以便皮囊不在每次膨胀过程中撞击阀,因为这样会引起皮囊损坏。

③蓄能器处于最高工作压力。

最低工作压力与最高工作压力时得容量变化量相当于有效得油液量。

△V=V1-V23.2.预充压力得选择贺德克公司得皮囊式蓄能器允许容量利用率为实际气体容量得75%。

因此预充氮气压力与最高工作压力间得比例限于1:4,另外预充压力不得超过最低系统压力得90%.遵照这种规定可保证较长得皮囊使用寿命。

其它压缩比可采用特别得措施达到。

为了充分地利用蓄能器得容量,建议使用下列数值:蓄能:P0,tmax=0、9×P1吸收冲击:P0,tmax=0、6÷0、9×P m(P m=在自由通流时得平均工作压力)吸收脉动:P0,tmax=0、6×Pm(P m=平均工作压力)或P0=0、8×P1(在多种工作压力时),tmax3.2.1 预充压力得极限值P0≤0、9×P1允许得压缩比为P2:P0≤4:1此外,贺德克公司低压蓄能器还需注意:SB35型:P0max=20 barSB35H型:P0max=10 bar3。

2.2 对温度影响得考虑:为了即使在相当高得工作温度下仍保持所推荐得预充压力,冷态蓄能器得充气与检验P0须作如下选择:chargeP0,to= P0,tmax×t0=预充气体温度(℃)t max=最高工作温度(℃)为了在计算蓄能器时考虑温度影响,在tmin最低工作温度时得P0须做如下选择:P0,tmin= P0,tmax×3.3蓄能器计算公式一个蓄能器内得压缩与膨胀过程应遵循气体状态多变得规律。

蓄能器的选型、使用维修说明

蓄能器的选型、使用维修说明

蓄能器的选型、使⽤维修说明⼀、液压蓄能器选型步骤1 明确蓄能器的主要功能以上3个主要功能的选择,⽆论选择的是哪⼀项,蓄能器在实现该项功能的同时,也可能对另2项功能有⼀定程度的作⽤。

2 依据主要功能对⼝计算蓄能器的容积和⼯作压⼒2.1 作辅助动⼒源V—所需蓄能器的容积(m3)p 0—充⽓压⼒Pa,按0.9p1>p>0.25 p2充⽓Vx—蓄能器的⼯作容积(m3)p1—系统最低压⼒(Pa)p2—系统最⾼压⼒(Pa)n—指数;等温时取n=1;绝热时取n=1.4 2.2吸收泵的脉动A—缸的有效⾯积(m2)L—柱塞⾏程(m)k—与泵的类型有关的系数:泵的类型系数k单缸单作⽤ 0.60单缸双作⽤ 0.25双缸单作⽤ 0.25双缸双作⽤ 0.15三缸单作⽤ 0.13三缸双作⽤ 0.06p—充⽓压⼒,按系统⼯作压⼒的60%充⽓2.3吸收冲击m—管路中液体的总质量(kg)υ—管中流速(m/s)—充⽓压⼒(Pa),按系统⼯作压⼒的90%充⽓p注:1.充⽓压⼒按应⽤场合选⽤。

2.蓄能器⼯作循环在3min以上时,按等温条件计算,其余均按绝热条件计算。

⼆、蓄能器故障的分析与排除1 蓄能器常见故障的排除以NXQ型⽪囊式蓄能器为例说明蓄能器的故障现象及排除⽅法,其他类型的蓄能器可参考进⾏。

1.1 ⽪囊式蓄能器压⼒下降严重,经常需要补⽓⽪囊式蓄能器,⽪囊的充⽓阀为单向阀的形式,靠密封锥⾯密封(见图1-8)。

当蓄能器在⼯作过程中受到振动时,有可能使阀芯松动,使密封锥⾯1不密合,导致漏⽓。

阀芯锥⾯上拉有沟糟,或者锥⾯上粘有污物,均可能导致漏⽓。

此时可在充⽓阀的密封盖4内垫⼊厚3mm左右的硬橡胶垫圈5,以及采取修磨密封锥⾯使之密合等措施,另外,如果出现阀芯上端螺母3松脱,或者弹簧2折断或漏装的情况,有可能使⽪囊内氮⽓顷刻泄完。

1.2 ⽪囊使⽤寿命短其影响因素有⽪囊质量,使⽤的⼯作介质与⽪囊材质的相容性;或者有污物混⼊;选⽤的蓄能器公称容量不合适(油⼝流速不能超过7m/s);油温太⾼或过低;作储能⽤时,往复频率是否超过1次/10s,超过则寿命开始下降,若超过1次/3s,则寿命急剧下降;安装是否良好,配管设计是否合理等。

蓄能器

蓄能器

蓄能器的结构、原理和计算蓄能器概述•蓄能器是一种能把液压储存在耐压容器里,待需要时又将其释放出来的能量储存装置;•蓄能器是液压系统中的重要辅助元件,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用;•蓄能器可以作为液压系统中的辅助动力源、紧急动力源,可以起到补充泄露、保持恒压、吸收液压冲击、吸收脉动和降低噪声等效果。

蓄能器工作原理•由于液压油是不可压缩液体,因此不能通过压缩液压油以蓄积压力能,必须依靠其他介质来转换、蓄积压力能。

•以囊式充气蓄能器为例,该蓄能器由油液部分和带有气密封件的气体部分(一般为氮气)组成,位于皮囊周围的油液与油液回路接通。

当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。

•1、重力式蓄能器重力式蓄能器通过提升加载在密封活塞上的质量块把液压系统中的压力能转化为重力势能存储起来。

其结构简单、压力稳定。

缺点是安装局限性大,只能垂直安装;不易密封;质量块惯性大,不灵敏。

这类蓄能器一般仅供暂存能量用。

•2、弹簧式蓄能器弹簧式蓄能器依靠压缩弹簧把液压系统中的压力能转化为弹簧的弹性势能存储起来,需要时再加以释放。

其结构简单、成本较低。

缺点是由于弹簧伸缩量有限,故而容量较小,弹簧对于系统压力变化不怎么敏感。

所以只适合小容量、低压系统,或是用作缓冲装置。

•3、充气式蓄能器充气式蓄能器的工作原理以PV=nRT=C为基础,通过压缩气体完成能量转化,使用时首先向蓄能器充入预定压力的气体。

当系统压力超过蓄能器内部压力时,油液压缩气体,将油液中的压力转化为气体内能;当系统压力低于蓄能器内部压力时,蓄能器中的油在高压气体的作用下流向外部系统,释放能量。

针对不同工况选择适当的充气压力是使用这种蓄能器的关键。

此类蓄能器可做成各种规格,适用于各种大小型液压系统,皮囊惯性小,反应灵敏,适合用作消除脉动;不易漏气,隔离式的没有油气混杂的可能;安装维护容易,附属设备少,是目前使用最为广泛的蓄能器。

油箱及冷却器蓄能器等的设计计算

油箱及冷却器蓄能器等的设计计算

油箱的设计要点油箱油箱在液压系统中除了储油外,还起着散热、分离油液中的气泡、沉淀杂质等作用。

油箱中安装有很多辅件,如冷却器、加热器、空气过滤器及液位计等。

油箱可分为开式油箱和闭式油箱二种。

开式油箱,箱中液面与大气相通,在油箱盖上装有空气过滤器。

开式油箱结构简单,安装维护方便,液压系统普遍采用这种形式。

闭式油箱一般用于压力油箱,内充一定压力的惰性气体,充气压力可达0.05MPa。

如果按油箱的形状来分,还可分为矩形油箱和圆罐形油箱。

矩形油箱制造容易,箱上易于安放液压器件,所以被广泛采用;圆罐形油箱强度高,重量轻,易于清扫,但制造较难,占地空间较大,在大型冶金设备中经常采用。

2.1 油箱的设计要点图10为油箱简图。

设计油箱时应考虑如下几点。

1)油箱必须有足够大的容积。

一方面尽可能地满足散热的要求,另一方面在液压系统停止工作时应能容纳系统中的所有工作介质;而工作时又能保持适当的液位。

2)吸油管及回油管应插入最低液面以下,以防止吸空和回油飞溅产生气泡。

管口与箱底、箱壁距离一般不小于管径的3倍。

吸油管可安装100μm左右的网式或线隙式过滤器,安装位置要便于装卸和清洗过滤器。

回油管口要斜切45°角并面向箱壁,以防止回油冲击油箱底部的沉积物,同时也有利于散热。

3)吸油管和回油管之间的距离要尽可能地远些,之间应设置隔板,以加大液流循环的途径,这样能提高散热、分离空气及沉淀杂质的效果。

隔板高度为液面高度的2/3~3/4。

图10 油箱1—液位计;2—吸油管;3—空气过滤器;4—回油管;5—侧板;6—入孔盖;7—放油塞;8—地脚;9—隔板;10—底板;11—吸油过滤器;12—盖板;4)为了保持油液清洁,油箱应有周边密封的盖板,盖板上装有空气过滤器,注油及通气一般都由一个空气过滤器来完成。

为便于放油和清理,箱底要有一定的斜度,并在最低处设置放油阀。

对于不易开盖的油箱,要设置清洗孔,以便于油箱内部的清理。

5)油箱底部应距地面150mm以上,以便于搬运、放油和散热。

蓄能器的选型和计算

蓄能器的选型和计算

3) 方法和用途 重要的是确定运行中的气体是等温状态还是绝热状态。 例如压缩(或膨胀)进行得慢(大约 3 分钟),从而气 体大约保持恒定的温度,该状态为等温。(例如:压力 稳定、容积补偿、配重、润滑线路)。其它情况(蓄能、 脉动缓冲、冲击缓冲等)由于传送速度高,热交换忽略 不计,因此该状态为绝热当压缩或膨胀时间小于 3 分钟 时,该绝热条件将作为先导而存在。
The limit values of P0 are :0.25×P2≤ Po ≤0.9P1 Special values are used for Piston accumulator:
Po=0.95-0.97 P1 or Po=P1-(2~5 ) Pulsation damper and shock absorber
Poc=Po Tc 273 T 2 273
若 Tc=20℃,则:Po(20℃)=Po 293 T 2 273
注:蓄能器的预充压力直接由工厂在 20℃的温度下完 成。充注的气体是氮气。
The accurate choice of pre-charge pressure is fundamental in obtaining the optimum efficiency and maximum life from the accumulator and its components. The maximum storage (or release) of liquid is obtained theoretically when the gas pre-charge pressure P0 is as close possible to the minimum working pressure. For practical purposes to give a safety margin, and to avoid valve shut-off during operation, the value (Unless otherwise stated) is:Po=0.9P1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.蓄能器的计算
3.1. 状态参数的定义
P0=预充压力
P1=最低工作压力
P2=最高工作压力
V0=有效气体容量
V1=在P1时的气体容量
V2=在P2时的气体容量
t0=预充气体温度
t min=最低工作温度
t max=最高工作温度
①皮囊内预先充有氮气,油阀是关闭的,以防止皮囊脱离。

②达到最低工作压力时皮囊和单向阀之间应保留少量油液(约为
蓄能器公称容量的10%),以便皮囊不在每次膨胀过程中撞击阀,因为这样会引起皮囊损坏。

③蓄能器处于最高工作压力。

最低工作压力和最高工作压力时
的容量变化量相当于有效的油液量。

△V=V1-V2
3.2.预充压力的选择
贺德克公司的皮囊式蓄能器允许容量利用率为实际气体容量的75%。

因此预充氮气压力和最高工作压力间的比例限于1:4,另外预充压力不得超过最低系统压力的90%。

遵照这种规定可
保证较长的皮囊使用寿命。

其它压缩比可采用特别的措施达到。

为了充分地利用蓄能器的容量,建议使用下列数值:
蓄能:
P 0,tmax =0.9×P 1
吸收冲击:
P 0,tmax =0.6÷0.9×P m (P m =在自由通流时的平均工作压力) 吸收脉动:
P 0,tmax =0.6×P m (P m =平均工作压力)
或P 0,tmax =0.8×P 1(在多种工作压力时)
3.2.1 预充压力的极限值
P 0≤0.9×P 1
允许的压缩比为
P 2:P 0≤4:1
此外,贺德克公司低压蓄能器还需注意:
SB35型:P 0max =20 bar
SB35H 型:P 0max =10 bar
3.2.2 对温度影响的考虑:
为了即使在相当高的工作温度下仍保持所推荐的预充压力,冷
态蓄能器的充气和检验P 0charge 须作如下选择:
P 0,to = P 0,tmax ×273
+ t 273
+ t m ax 0
t 0=预充气体温度(℃)
t max =最高工作温度(℃)
为了在计算蓄能器时考虑温度影响,在t min 最低工作温度时的P 0须做如下选择:
P 0,tmin = P 0,tmax ×273
+ t 273+ t m ax m in 3.3 蓄能器计算公式
一个蓄能器内的压缩和膨胀过程应遵循气体状态多变的规律。

理想的气体为:
P 0×V 0n = P 1×V 1n = P 2×V 2n ,
其中要考虑多变指数“n ”对气体特性随时间的影响。

缓慢的膨胀和压缩过程的状态变化接近于等温,多变指数可为n=1,而快速的膨胀和压缩过程发生绝热的状态变化,多变指数n=k=1.4(适合于双原子气体的氮气)。

对于200bar 以上的压力,实际气体特性与理想的气体特性有着明显的差别,因而减小了有效容量△V ,在这种情况下要进行修正,修正时要考虑改变K 值,采用下列公式可对各种不同的用途所需的气体容量V 0进行计算,式中约10bar 以下的压力始终用作绝对压力。

计算公式: 多变:n n P P P P V
V /120/1100⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∆=
等温:( n=1)2
0100P P P P V V -∆=
绝热( n=k=1.4)714.010714.0100P P P P V
V ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∆=
考虑到实际气体特性的修正因数2在等温状态变化时:
⎪⎪⎭
⎫ ⎝⎛=理想实际00V V Ci 等温或⎪⎪⎭⎫ ⎝⎛∆∆=理想实际00V V Ci 等温 在绝热状态变化时:
⎪⎪⎭
⎫ ⎝⎛=理想实际00V V a C 绝热或⎪⎪⎭⎫ ⎝⎛∆∆=理想实际00V V a C 绝热 验证补偿氮气的蓄能器的有效容量:
⎪⎪⎭⎫ ⎝
⎛-=∆200P P 1V 'V 总
'V ∆75.0≈×V 0(蓄能器)
⑴估计蓄能器规格和选择预充压力可按照第3.2和3.2.1节的要求进行。

在考虑其它条件时要进行精确计算,可以向我们提出咨询,我们公司拥有相关的计算程序。

⑵修正因数可根据压缩比P 2/P 1和等温与绝热状态变化的最大工作压力参数直接取自下图。

3.4 氮气瓶的并联
当最低和最高工作压力间的压差较小时,蓄能器内存有的氮气量只有少量可被压缩。

有用于蓄能的那部分容量相当小。

计算所谓并联型蓄能器原则上与单只蓄能器完全一样,其中V 0表示蓄能器和氮气瓶的总容量。

补偿氮气型皮囊式蓄能器只许75%充有油液,以免皮囊产生大的
收缩,预充压力可选择高于最低工作压力的0.9倍,这样卸荷至最低压力P 1时,蓄能器内保留约10%容量的剩余油量△V R 。

计算
重复进行,每经过一步计算必须检查,在等温充气时,从预充压力到工作压力的有效蓄能器容量是否足以吸收油量。

3.5 计算实例
一台注塑机内应在每2.5秒内需有5升油供使用。

最高工作压力为200bar ,最低工作压力不得低于100 bar ,充气时间为8秒,给出的工作温度为25~45℃。

已知:最高工作压力P2=201 bar 最低工作压力P1=101bar 有效容量△V=5L 最高工作温度t max =45℃
最低工作温度t min =25℃
求:1. 在考虑到实际的气体特性的情况下所需的气体容量。

2. 在20℃时的预充压力P 0
3. 蓄能器型号
解:因这是一种快速过程,所以气体的状态变化可视为绝热的变 化。

1. 确定所需的气体容量:
(a ) 在t max 时的预充压力:P 0,tmax =0.9×P 1 =0.9×101≈91 bar
(b ) 在t min 时的预充压力:P 0,tmin = P 0,tmax ×273
+ t 273+ t m ax m in = 91bar ×273
+ 45273+ 25bar 3.85
(c )理想的气体容量:
714.02min t ,0714.01min t ,00P P P P V V ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∆=理想 531.142013.851013.855714.0714.0=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛= (d) 图3.3.2中的修正因素P 2/P 1 →Ca=1.16 (e) 实际气体容量:V 0实际= Ca ×V 0理想= 1.16×14.53L=16.85L
2. 确定在20℃时的预充压力P 0 273t 273t P P max 0t ,0C 20,0max ++⨯=︒ 273
452732091++⨯=bar 绝对)(8.83bar ≈
3. 选取型号
SB330-20A1/112A-330A P 0.20℃= 83bar。

相关文档
最新文档