三相电压型PWM整流器与仿真

合集下载

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究一、概述随着电力电子技术的快速发展,三相电压型SVPWM(空间矢量脉宽调制)整流器作为一种高效、可靠的电能转换装置,在新能源发电、电机驱动、电网治理等领域得到了广泛应用。

SVPWM技术以其独特的调制方式,能够实现输出电压波形的高精度控制,提高整流器的电能转换效率,降低谐波污染,成为现代电力电子技术的研究热点。

三相电压型SVPWM整流器的基本工作原理是通过控制整流器的开关管通断,将交流电源转换为直流电源,为负载提供稳定、可靠的直流电能。

在SVPWM调制策略下,整流器能够实现对输入电压、电流的高效控制,使电网侧的功率因数接近1,从而减小对电网的谐波污染,提高电能质量。

为了深入了解三相电压型SVPWM整流器的性能特点,本文将对其仿真研究进行深入探讨。

通过建立整流器的数学模型,利用仿真软件对其进行仿真分析,可以直观地了解整流器在不同工作条件下的运行特性,为实际工程应用提供有力支持。

仿真研究还可以为整流器的优化设计、参数选择等提供理论依据,推动三相电压型SVPWM整流器技术的进一步发展。

三相电压型SVPWM整流器作为一种高效、可靠的电能转换装置,在现代电力电子技术中具有重要的应用价值。

通过仿真研究,可以深入了解其性能特点,为实际应用提供有力支持,推动相关技术的不断发展。

1. 研究背景:介绍三相电压型SVPWM整流器的研究背景及其在电力电子领域的应用价值。

能源转换效率的提升:在当前的能源结构中,电力是最主要的能源形式之一。

电力在传输和分配过程中往往存在损耗和污染。

三相电压型SVPWM整流器作为一种能够实现AC(交流)到DC(直流)高效转换的装置,能够显著提高能源转换效率,降低能源浪费,从而满足日益增长的能源需求。

电网稳定性的改善:随着可再生能源的快速发展,电网的稳定性问题日益突出。

三相电压型SVPWM整流器具有快速响应和精准控制的特点,能够有效地改善电网的电能质量,提高电网的稳定性。

三相电压型PWM整流器与仿真

三相电压型PWM整流器与仿真

电力电子课程设计课程设计报告题目:三相电压型PWM整流器与仿真专业、班级:学生姓名:学号:指导教师:2015年 1 月6 日摘要:叙述了建立三相电压型PWM整流器的数学模型。

在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。

关键词:整流器;PWM;simulink目录一任务书 (1)1.1 题目 (1)1.2 设计内容及要求 (1)1.3 报告要求 (1)二基础资料 (2)2.1 三相桥式电路的基本原理 (2)2.2 整流电路基本原理 (4)2.3 pwm控制的基本原理 (6)2.4 PWM整流器的发展现状 (6)三设计内容 (8)3.1 仿真模型 (8)3.2 各个元件参数 (11)3.3 仿真结果 (13)3.4 结果分析 (15)四总结 (15)五参考文献 (15)一任务书1.1 题目三相电压型PWM整流器仿真1.2 设计内容及要求设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB 软件搭建其仿真模型并验证。

设计要求(pwm整流器仿真模型参数):(1)交流电源电压600V,60HZ(2)短路电容30MVA(3)外接负载500kVar,1MW(4)变压器变比600/240V(5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。

1.3 报告要求(1)叙述三相桥式电路的基本原理(2)叙述整流电路基本原理(3)叙述pwm控制的基本原理(4)记录参数(截图)(5)记录仿真结果,分析滤波结果(6)撰写设计报告(7)提交程序源文件二基础资料2.1 三相桥式电路的基本原理在三相桥式电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。

很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。

基于Matlab的三相电压型PWM整流器的仿真研究

基于Matlab的三相电压型PWM整流器的仿真研究

校正。它具有结构简单,能实现能量双向流动 ,响应速度快等优点。以 P WM 整流取代了不控整流或相控 整流 ,从 而使得 P WM 整流 器具 有 了网侧 电流正 弦控制 、网侧 功率 因数控 制 、电能 双 向流动及 较快 的动 态 控 制响应等 优 良性 能 。 本文在研究基于空间矢量调制的算法基础上 ,设计了三相电压型 P WM 整流器控制系统 , 并通过仿真
投影就 是对称 的三相 正弦量 。 扇 区的选择 。如果 ,> . 0,令 a l =, 否则 口 0 = ;如果 V >0,令 b l =, 否则 6 o = ;如果
re /



r ! e z
t lj e
>0,令 c l =,
否则 cO 则使 = + × +4 c 即为空间电压矢量所在的扇 区, =。 口 2b × , 对应关系如表 1 所示 。 整流器控制信
70 0





: ●

t- =

so o



_



5 0 5









.・ -・ .. ・- .. - .. ・. . ・ . . . - .
01 .5 02 . O2 .5 03 . 03 .5

00 .5
时间/ s










— l
, …
P M W 3 p, uM

三相电压型PWM整流器的仿真讲解

三相电压型PWM整流器的仿真讲解

摘要为了解决电压型PWM整流器直接功率控制系统主电路参数设计问题,根据整流器在dq 两相同步旋转坐标系中的数学模型建立了其功率控制数学模型.基于功率控制数学模型,结合整流器直接功率控制系统的特点,推得交流侧电感是由功率、功率滞环比较器环宽及开关平均频率决定的;直流侧直流电压是由交流电压、电感及负载决定的;突加负载时直流侧电容是由直流电压波动、功率、电感及负载决定的.根据上述影响主电路参数的诸多因素,提出交流侧电感、直流侧电压及直流侧电容的设计方法.计算机仿真和实验证明了本文提出的设计方法是可行的.关键词PWM整流器; 直接功率控制; 直流电压; 交流侧电感; 直流电容目录1 电压型PWM整流器 (2)1.1电压型PWM整流器拓扑结构及数学模型 (3)1.2 电压型PWM整流器DPC系统结构及原理 (3)2 电压型PWM整流器DPC系统主电路参数设计 (5)2.1 交流侧电感的选择 (5)2.2 直流侧直流电压的选择 (6)2.3 直流侧电容的选择 (7)3 电压型PWM整流器DPC系统仿真与实验 (9)3.1 系统主电路参数设计 (9)3.2 系统仿真 (9)3.3 系统实验 (10)4 总结与体会 (12)参考文献 (13)1电压型PWM 整流器1.1电压型PWM 整流器拓扑结构及数学模型电压型PWM 整流器主电路拓扑结构如图1所示.图中a U ,b U ,c U 为三相对称电源相电压,,a b c i i i 为三相线电流;,,a b c S S S 为驱动整流器开关管(绝缘栅双极型晶体管IGBT)开关函数;jS 定义为单极性二值逻辑开关函数,jS =1(j=a,b,c)则上桥臂开关导通,下桥臂开关关断,jS =0下桥臂开关导通,上桥臂开关关断;dc U 为直流电压;R,L 为滤波电抗器的电阻和电感;C 为直流侧电容;RL 为负载;,ra rb rc U U U 为整流器的输入相电压;L i 为负载电流。

三相电压型PWM整流器差值SVPWM算法的仿真研究

三相电压型PWM整流器差值SVPWM算法的仿真研究
函数 运算 。
1 三 相 电压 型 P WM 整流 器 的数 学模 型
三相 电压 型 P WM 整 流器 主电路 拓扑 结构 如 图 1 所示 。 根据 电压 、 电流 基 尔霍 夫 定 律 可 以得 到 三 相 静止 坐标 系 ( 口 , b , ) 中 的数 学方 程 为 :
引 言
采用 P R调节 器 直接对 正 弦 电流信 号进行 控 制 , 不需 要进 行 预测 量计 算 , 在开关 频率 不高 的情 况下 可 以 实 现三 相 电压 型 P WM 整流 器 良好 的稳 态 和动 态性 能 。 此外 , 采用 了差值 S VP WM 算 法 , 该 方法 简化 了传统 S VP WM 算 法 , 在 每个 控 制周 期 内计 算三 相 电压 差值 得到 基本 空 间矢量 的作 用 时间 , 避免 了坐 标 变换 、 三 角
摘要 : 建立 了三相电压型 P WM 整流器的数学模型 , 控 制 系统 采 用
坐 标 系下 的 比例 谐 振 双 闭环 控 制 策 略 , 实 现 了 交 流 电流
信号无静差跟踪指令值 。 采用 差值 S VP WM 算法在每个控制周期 内计算三相 电压差值得到基本空间矢量的作用时间 , 避免 了
2 比例 谐 振 双 闭环 控 制策 略
=相 电 压 犁 PW M 罄 流 器 丰 电 路 拓 扑 结 构 及 比例 谐 振 双 闭 环 控 制 系 统 框 图 如 图 2所 示 。
三 相 电压 型 P W M
电流 内环 组成 。电压外环 通 过 P I 调节 产 出指令 电流 , 将 两 相 同步旋转 坐标 系 中的指
式 中, 。 , , S 分 别 为三相 桥臂 的开 关 函数 。 当开关 函数值 均为 1时 , 对应 桥臂 的上 桥臂 开关管 导通 , 下桥 臂 开关 管关 断 ; 当开关 函数 值 均为 0时 , 对应 桥臂 的下 桥臂 开关 管导通 , 上 桥臂 开关 管关断 。 式( 1 ) 是 建 立在 三相 静 止 坐标 系 中的高 频 数学 模 型 , 通 过变换 矩 阵式 ( 2 ) 可 以将 三 相静 止 坐标 系变 换 到

三相电压型PWM整流器主电路的设计与仿真

三相电压型PWM整流器主电路的设计与仿真
景.
图 1 三 相 电 压 型 P M 整 流 器 拓 扑 结 构 W
基 于开关 函数 的高频数 学模 型 :
d a+ i
一 一

( 一

) ,
三 相 电 压 型 P M 整 流 器 ( otg—o re W v l es u c a
P WM et ir R 具 有结 构简单 、 rcie f VS ) 损耗 低 、 制方 控 便 等优点 , 为 了 P 成 WM 整流 器研究 的重 点. 文首 本 先 介绍 了三 相 VS 的数学模 型 ,设 计 , 后通 过 仿 最
[ 收稿 日期 ]2 1 — 1 —3 01 1 O [ 者 简 介 ]宋 东 波 (9 7 ) 作 1 8 一 ,男 , 徽 宿 州 人 , 中科 技 大 学 硕 士 研 究 生 , 究 方 向 为 电力 电子 在 电力 系统 中 的应 用 安 华 研
第 2 7卷 第 1 期
宋 东波 等 三相 电 压 型 P M 整 流 器 主 电路 的 设 计 与 仿 真 W
由于传 统 的二 极管 不控整 流 和晶 闸管相控 整 流 电路造 成 了网侧功 率 因数低 、 流谐 波 含 量 高 等 问 电 题, 电能质量 和 电网危 害得 到了越来 越 多的重视 . 抑 制 电力 电子 装置 向 电 网注 入谐 波 的方 式有 两 种 : 一
种 是被 动 的 , 即装设 谐 波补偿 装置来 补偿 谐波 , 如有 源 电力 滤波 等 ; 一种 是主动 的 , 另 即设计 输入 电流 为 正 弦 、 波含 量低 、 率 因数 高 的整 流装 置 , 有 源 谐 功 如 功 率 因数校 正等. 功率 因数 是 衡 量 电能 有 效利 用 的 标 准之 一 , 最初使 用感 性负 载带来 的无 功损耗 , 从 到 后 来各 种非 线 性 整 流装 置 投 入 电 网 带 来 的谐 波 污

PWM整流器的仿真与分析毕业论文

PWM整流器的仿真与分析毕业论文

本科毕业设计论文题目 PWM整流器仿真与分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。

作者签名:日期:学位论文原创性声明本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

三相电压源型SPWM整流器标幺值换算及仿真

三相电压源型SPWM整流器标幺值换算及仿真
( 河北大学电子信息工程学 院 , 河北 保定 0 7 1 0 0 2 )
摘 要: 在 三相 电压源型 S P WM整流器优化设计的研 究中, 利用标 幺值换算的方法可 以解决 三相电压源 型 S P WM 整流器在大
功率应用工况时 的复杂计算问题。由于测量点 电量大 , 造成测量不准确。为此 , 以整流变压器 阀侧额定值 为基 准 , 研究 了采 用直接 电流控制策略时单位功率因数 工况下 系统参数 的标 幺值设计问题 , 给出了按照标 幺值换算后各系统设计参 数的修正 公式, 说 明了整流变压器不同联接组别对 整流器设定值 的影响 , 通过仿真对该标幺值换算 的方法进行 了验证 , 为设备在较大 功率应用要求时 的标 幺值设计提供了系统的理论依据和工程设计方法。 关键 词: 三相 电压源型整流器 ; 正弦波脉宽调制 ; 标 幺值 ; 仿真
o d w a s p u t f o r w a r d r e f e r i n g t o t h e v lv a e s i d e o f t h e r e c t i i f e r t r a n s f o me r r a i me d a t t h e u n i t y — p o w e r f a c t o r c o n t r o l e f f e c t
g r o u p o f t h e r e c t i i f e r t r a n s f o me r r w e r e d i s c u s s e d .At l a s t ,t h e P . n .c o n v e r s i o n me t h o d a n d d i s c u s s i o n we r e v e r i f e d b y r e l e v a n t s i mu l a t i o n.w h i c h v e if r i e s t h a t t h e s y s t e mi c P . u .a n a l y t i c a l me a n s c a n i mp r o v e t h e d e s i g n o f t h r e e -p h se a s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子课程设计课程设计报告题目:三相电压型PWM整流器与仿真专业、班级:学生姓名:学号:指导教师:2015年 1 月6 日摘要:叙述了建立三相电压型PWM整流器的数学模型。

在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。

关键词:整流器;PWM;simulink目录一任务书 (1)1.1 题目 (1)1.2 设计内容及要求 (1)1.3 报告要求 (1)二基础资料 (2)2.1 三相桥式电路的基本原理 (2)2.2 整流电路基本原理 (4)2.3 pwm控制的基本原理 (6)2.4 PWM整流器的发展现状 (6)三设计内容 (8)3.1 仿真模型 (8)3.2 各个元件参数 (11)3.3 仿真结果 (13)3.4 结果分析 (15)四总结 (15)五参考文献 (15)一任务书1.1 题目三相电压型PWM整流器仿真1.2 设计内容及要求设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB 软件搭建其仿真模型并验证。

设计要求(pwm整流器仿真模型参数):(1)交流电源电压600V,60HZ(2)短路电容30MVA(3)外接负载500kVar,1MW(4)变压器变比600/240V(5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。

1.3 报告要求(1)叙述三相桥式电路的基本原理(2)叙述整流电路基本原理(3)叙述pwm控制的基本原理(4)记录参数(截图)(5)记录仿真结果,分析滤波结果(6)撰写设计报告(7)提交程序源文件二基础资料2.1 三相桥式电路的基本原理在三相桥式电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。

很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。

为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。

晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。

为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。

图1是电路接线图为了分析方便起见,把一个周期等分6段(见图2)。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。

这时电流由a相经KP1流向负载,再经KP6流入b相。

变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。

加在负载上的整流电压为ud=ua-ub=uab经过60°后进入第(2)段时期。

这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。

这时电流由a相流出经KPl、负载、KP2流回电源c相。

变压器a、c两相工作。

这时a相电流为正,c相电流为负。

在负载上的电压为ud=ua-uc=uac再经过60°,进入第(3)段时期。

这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。

此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc余相依此类推。

2.2 整流电路基本原理整流电路分为半波整流、全波整流和桥式整流,下面依次介绍。

(1)半波整流半波整流电路是一种最简单的整流电路。

它由电源变压器B、整流二极管D和负载电阻Rfz,组成。

变压器把市电电压(220V)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压。

在0~K时间内,e2为正半周即变压器上端为正下端为负。

此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正;上端为负。

这是D承受反向电压,不导通,Rfz上无电压。

在2π~3π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程……这样反复下去,交流电的负半周就被“削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向的电压,达到了整流的目的,但是,负载电压Usc以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。

这周除去图下半周的整流方法,叫半波整流。

不难看出,半波整流是以牺牲一半交流为代价而换取整流效果的,电流利用率很低,因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

(2)全波整流如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。

全波整流电路,可以看作是由两个半波整流电路组成的。

变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。

全波整流电路的工作原理,可用图5-4 所示的波形图说明。

在0~π间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不导通。

在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1 不导通。

带平衡电抗器的双反星型可控整流电路带平衡电抗器的双反星形可控整流电路是将整流变压器的两组二次绕组都接成星形,但两组接到晶闸管的同名端相反;两组二次绕组的中性点通过平衡电控器LB连接在一起。

(3) 桥式整流桥式整流电路是使用最多的一种整流电路。

这种电路,只要增加两只二极管口连接成“桥”式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

桥式整流电路的工作原理如下:e2为正半周是,对D1、D3加正向电压D1,D3导通;对D2、D4加反向电压,D2、D4截止。

电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整流电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。

电路中构成e2、D2Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。

如此重复下去,结果在Rfz ,上便得到全波整流电压。

其波形图和全波整流波形图是一样的。

从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。

三相桥式全控电路TR为三相整流变压器,其接线组别采用Y/Y-12。

VT1~VT6为晶闸管元件,FU1~FU6为快速熔断器。

TS为三相同步变压器,其接线组别采用△/Y-11。

P端为集成化六脉冲触发电路+24V电源输出端,接脉冲变压器一次绕组连接公共端。

P1~P6端为集成化六脉冲触发电路功放管V1~V6集电极输出端,分别接脉冲变压器一次绕组的另一端。

UC端为移相控制电压输入端。

三相桥式半控整流电路与三相桥式全控整流电路基本相同,仅将共阳极组VT4,VT6,VT2的晶闸管元件换成了VD4,VD6,VD2整流二极管,以构成三相桥式半控整流电路。

2.3 pwm控制的基本原理PWM又叫脉冲宽度调制,原理如下:PWM基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。

也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。

按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。

例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。

这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。

如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。

可以看出,各脉冲宽度是按正弦规律变化的。

根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。

对于正弦的负半周,也可以用同样的方法得到PWM波形。

在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,PWM 逆变电路输出的脉冲电压就是直流侧电压的幅值。

根据上述原理,在给出了正弦波频率,幅值和半个周期内的脉冲数后,PWM 波形各脉冲的宽度和间隔就可以准确计算出来。

按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。

2.4 PWM整流器的发展现状PWM整流器的研究始于20世纪80年代,这一时期由于自关断器件的日趋成熟及应用,推动了PWM技术的应用与研究。

1982年Busse Alfred,Holtz Joachim首先提出了基于可关断器件的三相全桥PWM整流器拓扑及其网侧电流幅相控制策略,并实现了电流型PWM整流器网侧单位功率因数正弦波电流控制。

1984年Akagi Hirofumi等提出了基于PWM整流器拓扑的无功补偿器控制策略,这实际上就是电压型PWM整流器早期设计思想。

到20世纪80年代末,随着A. W. Green等人提出了基于坐标变换的PWM整流器连续离散动态数学模型及控制策略,PWM整流器的研究发展到一个新的高度。

自20世纪90年代以来,PWM整流器一直是学术界关注和研究的热点。

随着研究的深人,基于PWM整流器拓扑结构及控制的拓展,相关的应用研究也发展起来,如有源滤波器、超导储能、交流传动、高压直流输电以及统一潮流控制等,这些应用技术的研究,又促进了PWM整流器及其控制技术的进步和完善。

这一时期PWM整流器的研究主要集中于以下几个方面:(1) PWM整流器的建模与分析;(2)电压型PWM整流器的电流控制;(3)主电路拓扑结构研究;(4)系统控制策略研究;(5)电流源型PWM整流器研究;当前主要的研究领域有如下五个方面:(1)关于PWM整流器的建模研究(2)关于电压型PWM整流器的电流控制策略研究(3)关于PWM整流器拓扑结构的研究(4) PWM整流器系统控制策略的研究随着PWM整流器及其控制策略研究的深入,研究人员相继提出了一些较为新颖的系统控制策略,分述如下:(1)无电网电动势传感器及无网侧电流传感器控制(2)基于Lyapunov稳定性理论的PWM整流器控制(3)PWM整流器的时间最优控制(4)电网不平衡条件下的PWM整流器控制三设计内容3.1 仿真模型三相电压型pwm整流电路仿真模型图3-1-1 DC regulator结构图3-1-2Controller结构图3-1-3 Anti-aliasing结构图3-1-4 DC Voltage Regulator结构图3-1-5Current Regulators结构图3-1-6 PID结构图3-1-73.2 各个元件参数交流电源电压、短路电容:图3-2-1外接负载:图3-2-2 变压器变比:图3-2-33.3 仿真结果Ctrl_Signals仿真结果图3-3-1 Vab_VSC仿真结果图3-3-2Vdc仿真结果图3-3-3 Vala仿真结果图3-3-4 PQ仿真结果图3-3-53.4 结果分析由上图可以看出,0.05s前,仿真波形是类似正弦波,0.05s后,波形逐渐平稳,最后变成一条直线,可以得知,此整流器有整流的效果。

相关文档
最新文档