Poisson过程
第三章泊松(Poisson)过程.

4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
二章Poisson过程-精品文档

k t exp t Poison分布,即:p N s t N t k ,k 0 , 1 ,
• 例2.1顾客依Poisson过程到达某商店,速率为4人/小时。 已知商店上午9:oo开门。试求到9:30时仅到一位顾客,
而到11:30时总计已到达5位顾客的概率。
互独立同分布的随机变量,且与 相互独立, N t, t 0
称随机过程 为复合泊松过程。 X t, t 0
i位旅客的 NtΒιβλιοθήκη 位客人,就是 。 Et Wi i1
Nt
W t .而所要求的平均总等待时间
• 为求出它可以先求条件期望:
N t n E t W N t n t W N t n i i E 1 1 i i n nt E W t n i N 1 i
m 12 sds 195
12 0
195 195 p N 12 N 0 100 e ! K 0 K
100 K
• 2.3.2 复合Poisson过程 • 定义2.3设 是一个泊松过程, 是一列相 Y1,Y2 , N t, t 0
• 注意到给定 N 的联合密度是与 ( 0, t ] t n , W , i 1 , 2 , , n i 上均匀分布中随机样本 ,的次序统计量 U i 1 , 2 , ,n i,
U i 1 , 2 , ,n的联合密度是一样的。所以: i,
n n n nt E W t n E U E U iN i i i 1 i 1 i 1 2
的Poisson过程到达车站。若火
Poisson过程

第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。
教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。
教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。
3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。
教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。
教学难点:Poisson 过程的定义与其等价定义等价性的证明。
Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。
计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。
如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。
即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。
若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。
即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。
第三章 泊松过程

第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即
泊松过程poisson

研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较
poisson过程 大数定律

poisson过程大数定律
大数定律(Law of Large Numbers)是概率论中的一个定理,它描述了当独立随机变量的个数很大时,这些随机变量的均值会接近它们的期望值。
对于泊松过程(Poisson Process)来说,它是一种随机过程,用来描述事件在一定时间或空间范围内的随机发生情况。
泊松过程的特点是事件发生的间隔时间服从指数分布。
如果我们在一段时间内观察泊松过程发生的事件次数,根据大数定律,当观察事件次数足够大时,这些事件次数的平均值会接近于其期望值,即泊松分布的参数λ乘以观察的时间长度。
换句话说,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
用数学符号表示,设N(t)为在时间段[0,t]内发生的事件次数,λ为泊松分布的参数(表示单位时间内事件的平均发生率),则根据大数定律:
lim(t->∞) N(t)/t = λ
即当观察时间t趋向无穷大时,事件次数N(t)除以观察时间t 的比值会接近λ。
总结起来,大数定律表明,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
这个定律在
众多实际应用中具有重要的意义,尤其在统计学和概率论中扮演着重要的角色。
泊松过程的定义

泊松过程的定义泊松过程(Poisson Process)是一种随机过程,它表示了在固定时间段内发生的不同类型事件的概率分布。
泊松过程由泊松分布发展而来,它是一种概率分布,其中包含一个无限的平均特征。
泊松过程是一种重要的概率过程,在许多领域都有应用,例如通讯、生物学、信号处理等等。
泊松过程的定义是描述一个不断发生的随机事件的概率分布,即它是一种持续的随机过程,表示在给定的时间段内,某种类型的事件在某个时间段内会发生多少次。
这种过程的性质是:在一个给定的时间段内,随机事件的发生次数是一个服从泊松分布的随机变量。
泊松过程的定义一般可以描述为:设定一个时间段Δt,若在Δt内某种类型的事件发生m次,则该事件的发生概率满足泊松分布:P(m) = (λΔt)^me-λΔt/ m!,其中λ 是发生次数的平均数,Δt 是时间段,m 是发生次数。
泊松过程的定义还包括“独立性”的要求,即在一定的时间段内,发生的每一次事件都是相互独立的。
此外,泊松过程还有一个重要的性质——“不确定性”,即在一定时间段内,发生的每一次事件是不确定的,也就是说,我们不能准确预测每次发生的次数。
泊松过程是一种重要的概率过程,在一定的时间段内,对某种事件的发生次数的预测,可以使用泊松分布来实现。
泊松过程的应用可以追溯到19世纪,由法国数学家和物理学家泊松(Simeon Denis Poisson)发现,并且受到广泛的应用。
泊松过程的定义和性质是概率论中的重要概念,它主要用于描述在一定的时间段内,某种类型的事件发生的概率分布。
它可以用来描述不同类型事件发生的概率,从而可以模拟不同类型事件的发生情况。
同时,它可以用来研究一定时间段内,某种类型事件发生的概率,从而帮助我们更好地预测未来事件的发生情况。
泊松过程公式范文

泊松过程公式范文泊松过程(Poisson process)是概率论中的一种重要的随机过程。
它以数学家西莫恩·庞加莱(Siméon Denis Poisson)的名字命名,他在19世纪早期首次引入了这个概念。
泊松过程是一种离散时间(时间按照一定的间隔划分)连续状态(可以不断地发生事件)的随机过程。
泊松过程的定义是:在一段时间内,事件发生的次数服从泊松分布(Poisson distribution)。
这段时间可以是无穷小的时间间隔,也可以是有限的时间窗口。
泊松过程的关键特征是事件之间的时间间隔都是独立的且呈指数分布。
所谓指数分布是指事件之间的时间间隔满足指数分布的概率密度函数,即事件发生的概率与时间间隔的长度成正比。
泊松过程的数学定义可以表示为:P(N(t)=k)=(e^(-λt)*(λt)^k)/k!其中,N(t)表示在时间t内发生的事件次数,k表示事件的个数,λ表示单位时间内平均发生的事件个数。
根据泊松过程的定义,可以得到一些重要的性质和公式。
首先是事件发生的概率。
在时间t内发生k次事件的概率可以用公式P(N(t)=k)表示,其中λt表示单位时间内平均发生的事件个数。
这个公式是泊松分布的概率质量函数。
其次是事件之间的时间间隔。
由于泊松过程中时间间隔是独立的且呈指数分布,所以事件发生的时间间隔满足无记忆性(memoryless)的特性。
无记忆性意味着事件的发生与之前的事件的发生时间无关,只与发生事件的频率有关。
再次是事件的到达间隔。
事件的到达间隔是指两个连续事件之间的时间间隔。
根据泊松过程的定义,事件的到达间隔呈指数分布。
事件的到达间隔的期望值(也称为平均间隔)为1/λ,即单位事件到达的平均时间间隔。
最后是超过特定事件个数的概率。
假设我们需要计算在一定时间内超过n次事件发生的概率。
可以用公式P(N(t) > n) = 1 - P(N(t) <= n)= 1 - ∑(i=0 to n) (e^(-λt) * (λt)^i) / i!来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。
教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。
教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。
3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。
教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。
教学难点:Poisson 过程的定义与其等价定义等价性的证明。
Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。
计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。
如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。
即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。
若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。
即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。
Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。
.独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立增量.和平稳增量的计数过程定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =;(2)过程具有独立增量; (3),0,s t ≥对任意的(()-())P N t s N s n +=!ntt en λλ-=()例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求(1)9:0010:005从到这一小时内最多有名顾客的概率?(2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率?(解:见板书。
)注:(1)Poisson 过程具有平稳增量。
(2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。
)(3)0lim (()-()0)t P N t s N s +→+=0lim 1()tt e t o t λλ+-→==-+ 0lim (()-()1)t P N t s N s +→+=0lim ()t t te t o t λλλ+-→==+ 0lim (()-()2)()t P N t s N s o t +→+≥=(让同学们通过讨论来解释这几个极限结果的实际意义,适当引导学生结合实际并应用二项分布与Poisson 分布之间的关系来解释这3个极限。
),根据稀有事件原理在概率论中我们已经学到:,Bernoulli 试验中,每次试验成功的概率很小而,实验的次数很多时二项.Poisson 分布会逼近分布.这一现象也体现在随机过程中(0,]t 首先,将划分为 n 个相等的时间小区间,则由(4)'n →∞条件可知,当时,在每个小区间内事件220.→发生次或次以上的概率事件发生一次的概(),,tp h p nλλ≈⋅=率显然很小1这恰好是次.Bernoulli 试验1,,其中发生次为成功不发生的为失败再由(2)'给出 ,()N t n 的平稳增量就相当于次独立Bernoulli 试验中试验成功的总次数。
由()Poisson N t 分布的二项逼近可知,将服从t Poisson λ参数为的分布。
(让学生讨论如何判断一个计数过程是不是Poisson 过程,则必须验证是否满足(1)——(3),条件(1)说明计数过程从0开始,条件(2)通常可以从我么对过程的实际情况去直接验证,然而条件(3)一般完全不清楚,如何去判断?是否可以从我们所得到的Poisson 过程的这三条性质来判断定义中的条件(3)是否成立?接下来就证明计数过程满足Poisson 过程定义中的条件(1)和(2)及这里的性质的时候,该计数过程是一个Poisson 过程。
于是得到Poisson 过程的等价定义)定义3.2’: 一计数过程{(),0}N t t ≥λ称为参数为Poisson 的过程,若满足:(1)'(0)0N =;(2)'是独立增量及平稳增量过程,即任取120,n t t t n N <<<<∈,1211()(0),()(),,()()n n N t N N t N t N t N t ----相互独立;,0,0,{()()}{()}s t n P N s t N t n P N t n ∀>≥+-===且 (3)'0,0,t h >>对任意和充分小的有{()()1}()P N t h N t h h λο+-==+(4)'0,0,t h >>对任意和充分小的有{()()2}()P N t h N t h ο+-≥=定理3.1: 3.2 3.2'定义与定义是等价的。
证明: 3.2' 3.2⇒定义定义由增量平稳性,记:(){()}{()()}n P t P N t n P N s t N s n ===+-= (I )0n =情形:因为{()0}{()0,()()0},0N t h N t N t h N t h +===+-=>我们有:0(){()0,()()0}P t h P N t N t h N t +==+-=00={()0}{()()0}()()P N t P N t h N t P t P h =+-==另一方面0(){()()0}1(())P h P N t h N t h h λο=+-==-+代入上式,我们有:000()()()()P t h P t h P t h h ολ+-⎛⎫=-+ ⎪⎝⎭令0h →我们有:0000()()()(0){(0)0}1t P t P t P t e P P N λλ-'=-⎧⇒=⎨===⎩ (II )0n >情形:因为:{()}{(),()()0}N t h n N t n N t h N t +===+-={()1,()()1}N t n N t h N t =-+-=2{(),()()}n l N t n l N t h N t l =⎡⎤=-+-=⎢⎥⎣⎦故有:1()()(1())()(())()n n n P t h P t h h P t h h h λολοο-+=--+++化简并令0h →得:1()()()n n n P t P t P t λλ-'=-+两边同乘以t e λ,移项后有:1()()(0){(0)}0t tn n nd e P t e P t dt P P N n λλλ-⎧⎡⎤=⎪⎣⎦⎨⎪===⎩ 当1n =时,有:111(),(0)0()()t td e P t P P t t e dtλλλλ-⎡⎤==⇒=⎣⎦ 由归纳法可得:0()(),!n tn t P t e n N n λλ-=∈注意:{()}{()}E N t E N t t tλλ=⇒=,因此λ代表单位时间内事件A 出现的平均次数。
3.2 3.2'⇒定义定义{()()1}P N t h N t +-={()(0)1}P N h N =-=1()1!hh eλλ-= 0()!nn h h n λλ∞=-=∑(1())h h o h λλ=-+()h o h λ=+--------(3)'——成立。
{()()2}P N t h N t +-≥{()(0)2}P N h N =-≥2()!nhn h en λλ∞-==∑ 2()!n hn h en λλ∞-==∑0()[1]!n hn h e h n λλλ∞-==--∑[1]h h e e h λλλ-=-- 1h h e he λλλ--=--()h ο=---------------------------(4)'——成立。
例3.2:{()0},N t t Poisson λ≥设,服从强度为的过程求(1{(5)4};P N =)(2{(5)4,(7.5)6,(12)9};P N N N ===)(3{(2)9|(5)4}.P N N ==)例3.3:A Poisson λ事件的发生形成强度为的过程{(),0},N t t ≥如果每次事件P 发生时以概率能够被记()M t t 录下来,并以表示时刻记录下来的事件总数,则 {(),0}M t t P Poisson λ≥是一个强度为的过程。
例3.4:,某商场为调查顾客到来的客源情况考察了男女.顾客来商场的人数假设男女顾客到达商场的人数分12Poisson 别是独立服从每分钟人与每分钟人的过程。
(1)到达商场顾客的总人数应该服从什么分布?(2)50,30t 已知时刻已有人到达的条件下问其中有位是女性顾客的概率有多大?平均有多少女性顾客?作业1:Poisson 设通过某十字路口的车流可以看做过程,1如果分钟内没有车 0.2.辆通过的概率为121()求分钟内有多于辆车通过的概率。
(2)5在分钟内平均通过的车辆数。
35()在分钟内平均通过的车辆数方差。
45()在分钟内至少有一辆车通过的概率。
3.2 Poisson 过程相联系的若干分布教学目的:掌握n X 和n T 的分布;理解事件发生时刻的条件分布。
教学重点:n X ,n T 的分布;事件发生时刻的条件分布。
教学难点:事件发生时刻的条件分布。
{(),0}Poisson N t t ≥过程的一条样本路径一般是1跳跃度为的阶梯型函数。