抽屉原理四个知识点
抽屉原理的三个公式

抽屉原理的三个公式抽屉原理(也称为鸽笼原理)是离散数学中的一项基本原理,用于解决一类关于集合和计数的问题。
该原理指出,当将n+1个物体放入n个容器中时,至少有一个容器中必然有两个或两个以上的物体。
这个原理虽然看似简单,却被广泛应用于各个领域,如图论、计算机科学等。
在本文中,我们将通过阐述抽屉原理的三个公式来进一步理解和应用这一原理。
公式一:抽屉问题公式在抽屉问题中,我们要研究的是如何将n个物体放入m个抽屉中,使得至少有一个抽屉中装有k个或更多的物体。
那么根据抽屉原理,我们可以得到如下公式:n ≥ (k-1) * m + 1这个公式告诉我们,当抽屉的数量m不足以容纳k个物体时,至少有一个抽屉中会有k个以上的物体。
公式二:鸽笼问题公式鸽笼问题是抽屉原理的一种特殊形式,它要求从n个物体中选择m 个物体,保证至少有一个物体被选中两次。
根据抽屉原理,我们可以得到如下公式:m ≥ n这个公式告诉我们,当鸽笼的数量m小于等于物体的数量n时,至少有一个鸽笼会被分配到两个或更多的物体。
公式三:化简公式在某些情况下,我们需要对抽屉原理进行化简,以求得更简洁的表达式。
当物体的数量n不足以填满抽屉的数量m时,我们可以利用抽屉原理进行化简,得到如下公式:n ≤ (k-1) * m这个公式告诉我们,当抽屉的数量m过多时,至少会有一个抽屉为空。
同时,它也提醒我们在实际问题中进行有效的资源利用,避免抽屉的浪费。
综上所述,抽屉原理是离散数学中一项重要的原理,通过公式的运用,我们能够更好地理解和应用这一原理。
通过抽屉问题公式,我们可以确定至少某抽屉中装有一定数量的物体;通过鸽笼问题公式,我们可以确定至少某个物体会被选中两次;通过化简公式,我们可以对抽屉原理进行简化,提醒我们有效利用资源。
无论是在理论还是实践中,抽屉原理的三个公式都具有重要的指导意义。
所以,我们应该深入学习和掌握这些公式,并能够在适当的时候灵活运用,解决实际问题。
五年级第12讲抽屉原理

抽屉原理是数学中的一种基本原理,也是组合数学的重要概念之一、在数学中,通常用来解决一些问题中存在的矛盾或者重复的情况。
下面我们来详细介绍一下抽屉原理。
抽屉原理最简单的形式可以这样表述:如果有n+1个物体放入n个抽屉中,至少有一个抽屉中会放有多于一个物体。
抽屉原理从直观上来说是很容易理解的,我们可以想象抽屉的个数比物体的个数少,那么总会有至少一个抽屉中会有多个物体。
抽屉原理的形式化表述如下:用S1,S2,...,Sn表示n个集合。
并且满足之间的交集都是空集,即Si∩Sj=Ø。
若这n个集合中的元素的总数大于n,则至少存在一个集合Si中包含至少两个元素。
这个原理的证明是基于反证法,即假设所有集合中的元素的总数不大于n-1,然后推导出与之前的假设矛盾的结论,从而可以得出结论为真。
抽屉原理的应用非常广泛,可以用来解决各种问题。
比如在排列组合问题中,可以用抽屉原理来证明一些集合中必然会出现其中一种排列方式。
在概率论中,也可以用抽屉原理来证明一些事件发生的概率。
下面我们通过一个例子来进一步说明抽屉原理的应用。
例1:有7个梨和6个苹果,他们放在5个抽屉里,请证明至少有一个抽屉里既有苹果也有梨。
假设所有的抽屉都没有同时放有苹果和梨,那么根据抽屉原理,最多只能有5个苹果和5个梨被放入这些抽屉中。
但是实际上有7个梨和6个苹果,所以这个假设是不成立的。
根据反证法,我们可以得出结论,至少有一个抽屉里既有苹果也有梨。
通过这个例子,我们可以看到抽屉原理的应用非常直观和简单。
在解决问题时,只需要假设所有的情况都不满足,然后推导出矛盾的结论,就可以得出结论为真。
除了上述的简单形式,抽屉原理还有很多扩展形式,比如多重抽屉原理、大理数抽屉原理等,用来应对更加复杂的情况。
总的来说,抽屉原理在数学中起着非常重要的作用,不仅能够用于解决各种问题,还能够培养学生的逻辑思维能力和数学思维能力。
在进行数学证明过程中,抽屉原理是一种常见的证明方法之一,因此对于学生来说,掌握抽屉原理是十分必要的。
抽屉原理精华及习题附含答案

第九讲抽屉原理一、知识点:1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,假设余数不为零,那么“答案〞为商加1,假设余数为零,那么“答案〞为商。
★抽屉原那么一:n个以上的苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。
★抽屉原那么二:把多于m×n个苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。
二、根底知识训练〔再蓝皮书〕1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了个苹果。
4、从个抽屉中〔填最大数〕拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。
三、思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
精选汇博教育五年级Top奥数班训练题六〔1〕班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有人成绩相同。
〞请问王老师说的对吗?为什么?从1,2,3,,100这100个数中任意挑选出51个数来,证明在这51个数中,一定:〔1〕有2个数互质;〔2〕有两个数的差为50;圆周上有2000个点,在其上任意地标上0,1,2,,1999〔每一点只标一个数,不同的点标上不同的数〕。
奥数知识点解析之抽屉原理

奥数知识点解析之抽屉原理第一步:初步理解该知识点的定理及性质1、提出疑问:什么是抽屉原理?2、抽屉原理有哪些内容呢?【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。
【抽屉原理2】:将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
第二步:学习最具有代表性的题目【例1】证明:任取8个自然数,必有两个数的差是7的倍数。
【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除。
【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。
以上的题目我们都是运用抽屉原理一来解决的。
第三步:找出解决此类问题的关键【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
{1,2,4,8,16}{3,6,12},{5,10,20}{7,14},{9,18}{11},{13},{15},{17},{19}。
【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。
第四步:重点解决该类型的拓展难题我们先来做一个简单的铺垫题:【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。
【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。
【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。
什么是抽屉原理?(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
奥数三大原理之抽屉原理(一)

【重要知识点】抽屉原理一般有两种形式,通常称为原理Ⅰ和原理Ⅱ。
原理Ⅰ将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果。
原理Ⅱ将mn+1个苹果放入n个抽屉中,则必有一个抽屉中至少有m+1个苹果。
在第二种形式中,如果m=1,就是第一种形式,也就是说(Ⅰ)包括在(Ⅱ)中。
有时我们也要反向使用这两个基本形式:现有n个抽屉,如果要保证必有一个抽屉中至少有m+1个苹果,那么我们至少要放入mn+1个苹果。
同样的,如果苹果换成鸽子,把抽屉换成笼子,也有同样类似的结论,所以人们有时也把抽屉原理叫成鸽笼原理。
这一讲着重介绍抽屉原理的基本用法。
【经典题例】例1五(1)班学雷锋小组有13人。
教数学的张老师说:“你们这个小组至少有2个人在同一月过生日”。
你知道张老师为什么这样说吗?例2五(2)班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?例3幼儿园大班有25名小朋友,老师给他们分80颗糖,试说明至少有一名小朋友分到了不少于4颗糖。
例4小红家来了5位客人,她拿出糖果来招待他们。
要保证有的客人能吃到6颗糖,她至少要准备多少颗糖?例5一次任意取3个不同的整数,则其中必有两个数的和是偶数。
例 6 每个星期四是学校图书馆对五(2)班开放的日子。
这个星期四,五(2)班共有38人去图书馆办理了借书手续。
已知图书馆共有科技书、文艺书和连环画三类,且每名同学每次可从图书馆借任意的两本书。
问这38名同学中有多少名同学借的书的种类是一样的?例7光明小学每天共有560人在学校吃中餐。
某天中午,学校食堂共准备了4个荤菜、3个素菜和2种汤,每个同学都打了一个荤菜、一个素菜和一个汤。
问至少有多少个同学吃的菜是一样的?例8摸球游戏。
有外形相同的红、黄、绿三色球各l0个,混合后放人同一布袋中。
①一次至少摸几个球,才能保证有两个球、是同色的?②一次至少摸几个球,才能保证有两个球是不同颜色的?③一次至少摸几个球,才能保证有两种颜色的同色球各一对?【综合训练与课后作业】1.小明说:“我掷了7次骰子,其中.至少有两次的点数是一致的”,你说他说对了吗?2.五(2)班共有41人,在新学期排座位,把全班分成四大组。
六下数学第五单元知识点总结

六下数学第五单元知识点总结一、鸽巢原理(抽屉原理)1. 基本概念。
- 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
例如:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
- 可以用公式表示为:物体数÷抽屉数 = 商……余数,至少数=商 + 1(当余数不为0时);至少数 = 商(当余数为0时)。
2. 简单应用。
- 例1:有5只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了几只鸽子?- 这里物体数是5(鸽子的数量),抽屉数是3(鸽笼的数量)。
- 5÷3 = 1·s·s2,商是1,余数是2。
- 根据公式至少数 = 商+1,所以至少有一个鸽笼飞进1 + 1=2只鸽子。
- 例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进几本书?- 7÷3 = 2·s·s1,商是2,余数是1。
- 至少数 = 商 + 1,即2+1 = 3本。
二、鸽巢原理的应用。
1. 摸球问题。
- 例如:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?- 把两种颜色看作2个抽屉(红和蓝),考虑最差情况:先摸出2个球,一个红球和一个蓝球,此时再任意摸出1个球,无论这个球是什么颜色,都能保证有2个球颜色相同。
- 所以最少摸出2+1 = 3个球。
2. 组合问题中的应用。
- 例:从1 - 10这10个自然数中,至少任选几个数,就可以保证其中一定包括两个数的差是5?- 把1 - 10这10个数按差为5进行分组:(1,6)、(2,7)、(3,8)、(4,9)、(5,10)共5组。
- 考虑最差情况:先选出5个数,分别是这5组中的一个数,此时再任意选一个数,就一定会出现两个数在同一组,也就是差是5。
- 所以至少任选5 + 1=6个数。
抽屉原理[1].
![抽屉原理[1].](https://img.taocdn.com/s3/m/69c28463aef8941ea66e055b.png)
一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中 的问题,因此,也被称为狄利克雷原则•抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可 以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放 两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹 果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一) 、利用公式进行解题 苹果十抽屉=商……余数 余数:(1)余数=1,结论:至少有(商+ 1)个苹果在同一个抽屉里 (2)余数=x 1Y :X Y n-1,结论:至少有(商+ 1 )个苹果在同一个抽屉里(3) 余数=0,结论:至少有“商”个苹果在同一个抽屉里(二) 、利用最值原理解题将题目中没有阐明的量进行极限讨论, 将复杂的题目变得非常简单, 也就是常说的极限思想 “任我意” 方法、特殊值方法.知识精讲模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论【例1】6只鸽子要飞进5个笼子,每个笼子里都必须有 1只,一定有一个笼子里有 2只鸽子•对吗?【巩固】 把9条金鱼任意放在 8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.8-2抽屉原理、【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人•教数学的张老师说:“你们这个小组至少有2个人在同一月过生日•”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样. 【巩固】光明小学有367名2000年出生的学生,请问是否有生日相冋的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相冋.【例2】向阳小学有730个学生,问:至少有几个学生的生日是冋一天?【巩固】试说明400人中至少有两个人的生日相同.【例3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名冋学,他们在数学小组中都有一些朋友,请你说明:至少有两名冋学,他们的朋友人数一样多.【例5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。
小学奥数抽屉原理

抽屉原理知识框架一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接用公式进行解题(1)求结论【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【考点】抽屉原理 【难度】1星 【题型】解答【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯÷=,1126511定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
〖针对性练习〗
1、新兴镇上设置了3个信箱,现在有16封信要发出去,不管这些信怎样投,必有一个信箱至少要投进6封信。你知道为什么吗?
2、阳光实验小学六年级(2)班一共有42人,那么至少有几人在同一个月内过生日?
318个小朋友中,至少有()个小朋友在同一个月出生。760人中至少有()人的生日在同一天.
〖针对性练习〗
1、某小学有1千多名学生,从学生中最少选取()人,才能使得这些人中有3人属相相同。
2、某校六年级有3个班,在一次数学竞赛中,至少有()人获奖才能保证在获奖的同学中一定有4名学生同班
3学校中年龄最大的同学是13岁,最小的6岁,从()个同学中挑选,一定可
以找到两个同学岁数相同
4啦啦队有28位同学,至少要准备()套队服,才能保证至少有一个队员能分到
知识点一:抽屉原理(一)
1、把m个物体任意放进n个空抽屉里(m>n,n≥2,m、n为正整数,m-n<n),那么一定有一个抽屉中至少放进了2个物体。
例1、7个苹果放进6个抽屉里,总有一个抽屉里至少放有2个苹果。为什么?
〖针对性练习〗
1、在班级里任选15名同学,其中至少有2名同学的属相是相同的。为什么?
4六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至
少有()名学生订阅的杂志种类相同。
知识a个物体放进同一个抽屉,那么物体的总个数至少是(a-1)n+1
例1、把16个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有4个玻璃球?
两套队服
知识点四;最不利原则解决抽屉问题
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。对这个知识点的考查很少去求“抽屉”的数量,而是求抽屉中至少放多少苹果。基本的题型特征为“至少„„„,才能保证„„”。“保证”后面的情况是一种必然发生的情况。针对这类抽屉问题,我们常用的解题方法为:最不利原则,即考虑最差的情况,让最差的情况都发生,则其他情况也就一定会发生
例.一副扑克去掉大王和小王共有52张牌,问:至少抽出多少张,才能保证有3张牌的花色相同?
最好的情况,就是抽出的前三张牌的花色恰好相同。但是,这种情况不是一定发生的。考虑最差的情况。抽出1张牌(肯定为梅花、方片、红桃、黑桃之一),接下来,抽第二张牌,花色和前一张相同,很幸运;但是第三张牌的花色就和前两张不同了,第4张又和第三张花色相同,若第五张还和第1,2,或3,4张花色相同,我们就达到目的了,但是,很不幸,又抽到另一种花色,依次类推:每种花色恰好都只抽出了两张,还是没达到有三张花色相同的目的。此时,若再抽出一张牌,这张牌肯定在四种花色之中,所以一定有三张花色相同,故至少抽出:2+2+2+2+1=9张牌
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子至少有两
种颜色,至少应取出()顶帽子,要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两个是同色的,则至少应取出()顶
〖针对性练习〗
1.一副扑克54张牌,问:至少抽出多少张才能保证有4张花色相同?
2.布袋里有黄、蓝、红三种颜色的筷子各6根,它们除了颜色不同外完全相同,现在
从中至少摸出( )根筷子,才能保证有1双筷子.
3.箱子里有2个白球和若干个红球,一次至少要摸出( )个球,才能保证有红球.
4.盒子中有红球、黄球、蓝球若干个,从中至少取()个球,才能保证有4个球同色
2、衣柜里有10件绿色的衣服,6件白色的衣服,7件红色的衣服,2件蓝色的衣服,如果闭着眼睛取衣服,那么至少要取()件,才能保证使取出的衣服最少有两件颜色是相同的
3在3个抽屉里放入14个文具盒,至少有一个抽屉里要放进()个文具盒
知识点二:抽屉原理(二)
1、把多于kn个物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。