信号与系统 matlab答案

合集下载

信号与系统matlab实验及答案

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。

n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。

观察并分析a 和0t 的变化对波形的影响。

t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。

抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。

请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。

可能用到的函数为plot, stem, hold on 。

fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。

⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。

x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。

信号与系统_MATLAB_实验_课后习题答案

信号与系统_MATLAB_实验_课后习题答案

第三章练习题 1、a=[1,1,1]; b=[1,1]; sys=tf(b,a); t=[0:0.01:10]; figure;subplot(2,2,1); step(sys);subplot(2,2,2);x_step=zeros(size(t)); x_step(t>0)=1; x_step(t==0)=1/2; lsim(sys,x_step,t); subplot(2,2,3); impulse(sys,t);title('Impulse Response'); xlabel('Time(sec)'); ylabel('Amplitude'); subplot(2,2,4);x_delta=zeros(size(t)); x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t); y2=y1;plot(t,y2);title('Impulse Response'); xlabel('Time(sec)'); ylabel('Amplitude');00.511.5Step ResponseTime (sec)A m p l i t u d eLinear Simulation ResultsTime (sec)A m p l i t u d e-0.500.51Impulse ResponseTime(sec) (sec)A m p l i t u d eImpulse ResponseTime(sec)A m p l i t u d e2、函数int1如下:function [F,tF]=int1(f,tf,a)T=tf(2)-tf(1);F=zeros(size(tf)); tF=zeros(size(tf));tF=tf;for n=1:length(tf)-1;F(n+1)=F(n)+T*f(n);end验证如下:t=[-1:0.01:4];e=zeros(size(t));e=(t>-1/2&t<1);[z,zz]=intl(e,t,-1);figure;plot(zz,z);第四章练习题1、T1=1;N1=10000; t1=linspace(0,T1-T1/N1,N1)';f1=1-2*t1;OMG=32*pi;K1=100;omg=linspace(-OMG/2,OMG/2-OMG/K1,K1)';X1=T1/N1*exp(-j*kron(omg,t1.'))*f1;fs1=OMG/2/pi/K1*exp(j*kron(t1,omg.'))*X1;T2=5;N2=10000;t2=linspace(0,T2-T2/N2,N2)';fs2=0*t2;f2=sawtooth(t2*2*pi,0);X2=T2/N2*exp(-j*kron(omg,t2.'))*f2;fs2=fs2+OMG/2/pi/K1*exp(j*kron(t2,omg.'))*X2;figure;subplot(2,2,1);plot(omg,abs(X1),'r');xlabel('Frequency'),ylabel('Amplitude')title('单个锯齿周期幅频特性曲线');subplot(2,2,2);plot(t1,fs1,'r');xlabel('Time'),ylabel('Amplitude')title('Function after recovered');subplot(2,2,3);plot(omg,abs(X2),'r');xlabel('Frequency'),ylabel('Amplitude')title('五个锯齿周期幅频特性曲线');subplot(2,2,4);plot(t2,fs2,'r');xlabel('Time'),ylabel('Function after recovered')title('Function after recovered');-100-5005000.20.40.60.8FrequencyA m p l i t u d e单个锯齿周期幅频特性曲线00.51-1-0.500.51TimeA m p l i t u d eFunction after recovered-100-5005000.511.52FrequencyA m p l i t u d e五个锯齿周期幅频特性曲线246-2-1012TimeF u n c t i o n a f t e r r e c o v e r e dFunction after recovered2、fsana 函数如下:function F=fsana(t,f,N); omg1=2*pi/(max(t)-min(t)); k=[-N:N]';F=1/length(t)*exp(-j*kron(k*omg1,t.'))*f; fssyn 函数如下:function f=fssyn(F,t)omg1=2*pi/(max(t)-min(t)); N=floor(length(F)/2); k=[-N:N];f=exp(j*kron(t,k*omg1))*F; 验证如下: clc clearclose allT1=1;N1=256; t=linspace(0,T1-T1/N1,N1)'; f=1-2*t;subplot(3,1,1); plot(t,f);title('验证原函数') N=25;F1=fsana(t,f,N); subplot(3,1,2); stem(abs(F1),'s');title('前N 项傅立叶级数系数幅度曲线') f2=fssyn(F1,t) ;subplot(3,1,3); plot(t,f2);xlabel('time[s]'),ylabel('Amplitude'); title('傅立叶逆变换后时域函数');00.10.20.30.40.50.60.70.80.91-101验证原函数00.20.4前N 项傅立叶级数系数幅度曲线00.10.20.30.40.50.60.70.80.91-202time[s]A m p l i t u d e傅立叶逆变换后时域函数第五章练习题1、(a) Residue计算a1=[1,5,6];b1=[4,5];[r1,p1,k1]=residue(b1,a1); t=[0:0.01:10];e1=zeros(size(t));for n=1:size(r1);e1=e1+r1(n)*exp(p1(n)*t); end;figure;subplot(1,2,1);plot(t,e1);title('residue计算');xlabel('t/s');ylabel('u/v');lism仿真sys1=tf([4,5],[1,5,6]);t=[0:0.01:10];delta=zeros(size(t));delta(t==0)=100;h1=lsim(sys1,delta,t); subplot(1,2,2);plot(t,h1);title('lism仿真');xlabel('t/s');ylabel('u/v');Residue计算和lism仿真结果相同(b)Residue计算t=[0,0.01,10];delta=zeros(size(t));delta(t==0)=100;e2=sin(t);figure;subplot(2,1,1);plot(t,e2);title('residue计算');xlabel('t/s');ylabel('u/v');lism仿真sys1=tf([1,0,2],[1,0,1]);t=[0:0.01:10];delta=zeros(size(t));delta(t==0)=100;h2=lism(sys1,delta,t); subplot(2,1,2);plot(h,t2);axis([0,10,-1,1]);title('lism仿真');xlabel('t/s');ylabel('u/v');Residue计算和lism仿真结果相同2、S=isstable(sys)函数:Function s=isstable(sys);X=ploe(sys);S=1;For n=1:Size(x)If x(n)>0S=0;break;End;End;稳定系统:Sys=tf(1,[1,2]);S=isstable(sys);S=1不稳定系统:Sys=tf(1,[1,-2]);S=isstable(sys);S=第七章练习题1、a=[1,0.5,-0.2,-0.1]; b=[1,-0.3];n=[0:10]';[hi,t]=impz(b,a,n); subplot(1,2,1);stem(n,hi);u=(n>=0);hn=filter(b,a,u); subplot(1,2,2);stem(n,hn);2、n1=[0:9]';n2=[10:19]';x1=(n1>=0);x2=-(n2>=10);a1=[1,-0.2,-0.1];a2=[1,-0.2,0.5];b=[1,0.01];[y1,wf1]=filter(b,a1,x1,[0,1]); [y2,wf2]=filter(b,a2,x2,wf1); stem(n1,y1);hold on;stem(n2,y2);。

长江大学信号与系统matlab实验答案

长江大学信号与系统matlab实验答案

实验1 信号变换与系统非时变性质的波形绘制●用MA TLAB画出习题1-8的波形。

●用MA TLAB画出习题1-10的波形。

Eg 1.8代码如下:function [y]=zdyt(t) %定义函数zdyty=-2/3*(t-3).*(heaviside(-t+3)-heaviside(-t));endt0=-10;t1=4;dt=0.02;t=t0:dt:t1;f=zdyt(t);y=zdyt(t+3);x=zdyt(2*t-2);g=zdyt(2-2*t);h=zdyt(-0.5*t-1);fe=0.5*(zdyt(t)+zdyt(-t));fo=0.5*(zdyt(t)-zdyt(-t));subplot(7,1,1),plot(t,f);title('信号波形的变化')ylabel('f(t)')grid;line([t0 t1],[0 0]);subplot(7,1,2),plot(t,y);ylabel('y(t)')grid;line([t0 t1],[0 0]);subplot(7,1,3),plot(t,x);ylabel('x(t)')grid;line([t0 t1],[0 0]);subplot(7,1,4),plot(t,g);ylabel('g(t)')grid;line([t0 t1],[0 0]);subplot(7,1,5),plot(t,h);ylabel('h(t)')grid;line([t0 t1],[0 0]);subplot(7,1,6),plot(t,fe);ylabel('fe(t)')grid;line([t0 t1],[0 0]);subplot(7,1,7),plot(t,fo);ylabel('fo(t)')grid;line([t0 t1],[0 0]);xlabel('Time(sec)')结果:Eg1.10代码如下:function [u]=f(t) %定义函数f(t) u= heaviside(t)-heaviside(t-2); endfunction [u] =y(t) %定义函数y(t)u=2*(t.*heaviside(t)-2*(t-1).*heaviside(t-1)+(t-2).*heaviside(t-2)); endt0=-2;t1=5;dt=0.01; t=t0:dt:t1; f1=f(t); y1=y(t); f2=f(t)-f(t-2); y2=y(t)-y(t-2); f3=f(t)-f(t+1); y3=y(t)-y(t+1);subplot(3,2,1),plot(t,f1); title('激励——响应波形图') ylabel('f1(t)')grid;line([t0 t1],[0 0]);-10-8-6-4-2024012信号波形的变化f (t)-10-8-6-4-2024012y (t)-10-8-6-4-2024012x (t)-10-8-6-4-2024012g (t)-10-8-6-4-2024012h (t)-10-8-6-4-202400.51f e (t)-10-8-6-4-2024-101f o (t)Time(sec)subplot(3,2,2),plot(t,y1); ylabel('y1(t)')grid;line([t0 t1],[0 0]); subplot(3,2,3),plot(t,f2); ylabel('f2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,4),plot(t,y2); ylabel('y2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,5),plot(t,f3); ylabel('f3(t)')grid;line([t0 t1],[0 0]); subplot(3,2,6),plot(t,y3); ylabel('y3(t)')grid;line([t0 t1],[0 0]); xlabel('Time(sec)')结果:实验2 微分方程的符号计算和波形绘制上机内容用MA TLAB 计算习题2-1,并画出系统响应的波形。

信号与系统第六章习题答案

信号与系统第六章习题答案

第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。

2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。

3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。

4、z 域系统函数()z H 及其应用。

5、离散系统的稳定性。

6、离散时间系统的z 域模拟图。

7、用MATLAB 进行离散系统的Z 域分析。

6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。

(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。

信号与系统 matlab答案

信号与系统 matlab答案

M2-3(1) function yt=x(t)yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x (t)yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5);t=0:0.001:6;subplot(3,1,1)plot(t,x2_3(t))title('x(t)')axis([0,6,-2,3])subplot(3,1,2)plot(t,x2_3(0.5*t))title('x(0.5t)')axis([0,11,-2,3])subplot(3,1,3)plot(t,x2_3(2-0.5*t))title('x(2-0.5t)')axis([-6,5,-2,3])图像为:M2-5(3) function y=un(k)y=(k>=0)untiled3.mk=[-2:10]xk=10*(0.5).^k.*un(k); stem(k,xk)title('x[k]')axis([-3,12,0,11])M2-5(6) k=[-10:10]xk=5*(0.8).^k.*cos((0.9)*pi*k) stem(k,xk)title('x[k]')grid onM2-7A=1;t=-5:0.001:5;w0=6*pi;xt=A*cos(w0*t);plot(t,xt)hold onA=1;k=-5:5;w0=6*pi;xk=A*cos(w0*0.1*k);stem(k,xk)axis([-5.5,5.5,-1.2,1.2])title('x1=cos(6*pi*t)&x1[k]')A=1;t=-5:0.001:5;w0=14*pi;xt=A*cos(w0*t);plot(t,xt)hold onA=1;k=-5:5;w0=14*pi;xk=A*cos(w0*0.1*k);stem(k,xk)axis([-5.5,5.5,-1.2,1.2])title('x2=cos(14*pi*t)&x2[k]')A=1;t=-5:0.1:5;w0=26*pi;xt=A*cos(w0*t);plot(t,xt)hold onA=1;k=-5:5;w0=26*pi;xk=A*cos(w0*0.1*k);stem(k,xk)axis([-5.5,5.5,-1.2,1.2])title('x1=cos(26*pi*t)&x1[k]')M2-9(1)k=-4:7;xk=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1];stem(k,xk,'file')(2) k=-12:21;x=[-3,0,0,-2,0,0,3,0,0,1,0,0,-2,0,0,-3,0,0,-4,0,0,2,0,0,-1,0,0,4,0,0,1,0,0,-1]; subplot(2,1,1)stem(k,x,'file')title('3倍内插')t=-1:2;y=[-2,-2,2,1];subplot(2,1,2)stem(t,y,'file')title('3倍抽取')axis([-3,4,-4,4])(3) k=-4:7;x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1]; subplot(2,1,1)stem(k+2,x,'file')title('x[k+2]')subplot(2,1,2)stem(k-4,x,'file')title('x[k-4]')(4) k=-4:7;x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1];stem(-fliplr(k),fliplr(x),'file')title('x[-k]')M4-1(1)对于周期矩形信号的傅里叶级数cn =-1/2j*sin(n/2*pi)*sinc(n/2) n=-15:15;X=-j*1/2*sin(n/2*pi).*sinc(n/2);subplot(2,1,1);stem(n,abs(X),'file');title('幅度谱')xlabel('nw');subplot(2,1,2);stem(n,angle(X),'file'); title('相位谱')(2)对于三角波信号的频谱是:Cn=-4n2π2+2nπsin nπ2+4n2π2cos nπ2n=-15:15;X=sinc(n)-0.5*((sinc(n/2)).^2); subplot(2,1,1);stem(n,abs(X),'file');title('幅度谱')xlabel('nw');subplot(2,1,2);stem(n,angle(X),'file');title('相位谱')M4-4(1) tau=0.5;T=100;N=T/tau;t=[0:tau:(T-tau)];x=(t>=0 & t<=2).*1;X=fftshift(tau*fft(x));w=-(pi/tau)+(0:N-1)*(2*pi/(N*tau)); plot(w,X)grid on(4)tau=0.1;T=50;N=T/tau;t=[0:tau:(T-tau)];x=(t>=0).*exp(-t);X=fftshift(tau*fft(x));X=abs(X);w=-(pi/tau)+(0:N-1)*(2*pi/(N*tau)); plot(w,X)grid on。

信号与系统实验__matlab

信号与系统实验__matlab

信号与系统部分01.分别用MATLAB 表示并绘出下列连续时间信号的波形:2()(2)()t f t e u t -=-02.分别用MATLAB 表示并绘出下列连续时间信号的波形:[]()cos()()(4)2tf t u t u t π=--03.分别用MATLAB 表示并绘出下列离散时间信号的波形:()12()()kf k u k =-04.分别用MATLAB 表示并绘出下列离散时间信号的波形:[]()()(8)f t k u k u k =--05.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。

()f t -06.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。

()f ata =0.507.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。

()f at ,a =208.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。

(0.51)f t +09.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*。

10.已知两信号1()()f t tu t =,20()()0t tt te u t f t t e-≥⎧=⎨<⎩,求卷积积分12()()()g t f t f t =*。

11.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和。

12.已知描述系统的微分方程如下,试用理论分析并计算系统的单位冲激响应h(t),并用MATLAB 绘出系统单位冲激响应的波形,验证结果是否相同。

''()4'()4()'()3()y t y t y t f t f t ++=+13.已知描述系统的微分方程如下,试用解析方法求系统的单位冲激响应h(t),并用MATLAB 绘出系统单位冲激响应的波形,验证结果是否相同。

信号与系统matlab实验习题3 绘制典型信号及其频谱图

信号与系统matlab实验习题3  绘制典型信号及其频谱图

绘制典型信号及其频谱图答案在下面四个常用信号及其傅里叶变换式如表1所示。

(1)绘制单边指数信号及其频谱图的MATLAB程序如下:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');figure;max_logF=max(abs(F));plot(w,20*log10(abs(F)/max_logF));xlabel('\omega');ylabel('|F(\omega)| indB');figure;plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');请更改参数,调试此程序,绘制单边指数信号的波形图和频谱图。

观察参数a 对信号波形及其频谱的影响。

注:题目中阴影部分是幅频特性的对数表示形式,单位是(dB),请查阅相关资料,了解这种表示方法的意义及其典型数值对应的线性增益大小。

(2)绘制矩形脉冲信号、升余弦脉冲信号和三角脉冲信号的波形图和频谱图,观察并对比各信号的频带宽度和旁瓣的大小。

(3)更改参数,调试程序,绘制单边指数信号的波形图和频谱图。

观察参数a对信号波形及其频谱的影响。

答案附上程序代码:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';E=1,a=1,波形图 频谱图更改参数E=2,a=1;更改参数a ,对信号波形及其频谱的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M2-3
(1) function yt=x(t)
yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x (t)
yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5);
t=0:0.001:6;
subplot(3,1,1)
plot(t,x2_3(t))
title('x(t)')
axis([0,6,-2,3])
subplot(3,1,2)
plot(t,x2_3(0.5*t))
title('x(0.5t)')
axis([0,11,-2,3])
subplot(3,1,3)
plot(t,x2_3(2-0.5*t))
title('x(2-0.5t)')
axis([-6,5,-2,3])
图像为:
M2-5
(3) function y=un(k)
y=(k>=0)
untiled3.m
k=[-2:10]
xk=10*(0.5).^k.*un(k); stem(k,xk)
title('x[k]')
axis([-3,12,0,11])
M2-5
(6) k=[-10:10]
xk=5*(0.8).^k.*cos((0.9)*pi*k) stem(k,xk)
title('x[k]')
grid on
M2-7
A=1;
t=-5:0.001:5;
w0=6*pi;
xt=A*cos(w0*t);
plot(t,xt)
hold on
A=1;
k=-5:5;
w0=6*pi;
xk=A*cos(w0*0.1*k);
stem(k,xk)
axis([-5.5,5.5,-1.2,1.2])
title('x1=cos(6*pi*t)&x1[k]')
A=1;
t=-5:0.001:5;
w0=14*pi;
xt=A*cos(w0*t);
plot(t,xt)
hold on
A=1;
k=-5:5;
w0=14*pi;
xk=A*cos(w0*0.1*k);
stem(k,xk)
axis([-5.5,5.5,-1.2,1.2])
title('x2=cos(14*pi*t)&x2[k]')
A=1;
t=-5:0.1:5;
w0=26*pi;
xt=A*cos(w0*t);
plot(t,xt)
hold on
A=1;
k=-5:5;
w0=26*pi;
xk=A*cos(w0*0.1*k);
stem(k,xk)
axis([-5.5,5.5,-1.2,1.2])
title('x1=cos(26*pi*t)&x1[k]')
M2-9
(1)
k=-4:7;
xk=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1];
stem(k,xk,'file')
(2) k=-12:21;
x=[-3,0,0,-2,0,0,3,0,0,1,0,0,-2,0,0,-3,0,0,-4,0,0,2,0,0,-1,0,0,4,0,0,1,0,0,-1]; subplot(2,1,1)
stem(k,x,'file')
title('3倍内插')
t=-1:2;
y=[-2,-2,2,1];
subplot(2,1,2)
stem(t,y,'file')
title('3倍抽取')
axis([-3,4,-4,4])
(3) k=-4:7;
x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1]; subplot(2,1,1)
stem(k+2,x,'file')
title('x[k+2]')
subplot(2,1,2)
stem(k-4,x,'file')
title('x[k-4]')
(4) k=-4:7;
x=[-3,-2,3,1,-2,-3,-4,2,-1,4,1,-1];
stem(-fliplr(k),fliplr(x),'file')
title('x[-k]')
M4-1
(1)对于周期矩形信号的傅里叶级数cn =-1/2j*sin(n/2*pi)*sinc(n/2) n=-15:15;
X=-j*1/2*sin(n/2*pi).*sinc(n/2);
subplot(2,1,1);
stem(n,abs(X),'file');
title('幅度谱')
xlabel('nw');
subplot(2,1,2);
stem(n,angle(X),'file'); title('相位谱')
(2)对于三角波信号的频谱是:Cn=-4
n2π2+
2

sin nπ
2
+
4
n2π2
cos nπ
2
n=-15:15;
X=sinc(n)-0.5*((sinc(n/2)).^2); subplot(2,1,1);
stem(n,abs(X),'file');
title('幅度谱')
xlabel('nw');
subplot(2,1,2);
stem(n,angle(X),'file');
title('相位谱')
M4-4
(1) tau=0.5;T=100;N=T/tau;
t=[0:tau:(T-tau)];
x=(t>=0 & t<=2).*1;
X=fftshift(tau*fft(x));
w=-(pi/tau)+(0:N-1)*(2*pi/(N*tau)); plot(w,X)
grid on
(4)
tau=0.1;T=50;N=T/tau;
t=[0:tau:(T-tau)];
x=(t>=0).*exp(-t);
X=fftshift(tau*fft(x));X=abs(X);
w=-(pi/tau)+(0:N-1)*(2*pi/(N*tau)); plot(w,X)
grid on。

相关文档
最新文档