概率论与数理统计教程(茆诗松)

合集下载

概率论与数理统计教程(茆诗松)第一章

概率论与数理统计教程(茆诗松)第一章

5. 试用A、B、C 表示下列事件: ① A 出现; A ② 仅 A 出现;A B C ③ 恰有一个出现;A B C A B C A B C ④ 至少有一个出现;ABC ⑤ 至多有一个出现;A B C A B C A B C A B C ⑥ 都不出现; A B C
⑦ 不都出现; ABCABC ⑧ 至少有两个出现;A B A C B C
• 非负性公理: P(A)0;
• 正则性公理: P(Ω)=1;
• 可列可加性公理:若A1, A2, ……, An ……
互不相容,则
U
P Ai P(Ai ) i1 i1
3/22/2020
华东师范大学
第一章 随机事件与概率
1.2.2 排列与组合公式
第23页
• 从 n 个元素中任取 r 个,求取法数. • 排列讲次序,组合不讲次序. • 全排列:Pn= n! • 0! = 1. • 重复排列:nr • 选排列: P nr(nn !r)!n(n1)......(nr1)
第29页
注意
• 抛一枚硬币三次 抛三枚硬币一次 • Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)} 此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
➢ 而实际去做 N 次试验,得 n 次针与平行线相 交,则频率为: n/N.
➢ 用频率代替概率得: 2lN/(dn). ➢ 历史上有一些实验数据.
3/22/2020
A发生但 B不发生
• 对立: A
A 不发生
3/22/2020
华东师范大学
第一章 随机事件与概率

概率论与数理统计教程(茆诗松)

概率论与数理统计教程(茆诗松)

2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。

概率论与数理统计教程(茆诗松)第1章

概率论与数理统计教程(茆诗松)第1章
A = “针与平行线相交” 的充要条件是: x ≤ l/2 sin ϕ . 针是任意投掷的,所以这个问题可用几何方法 求解得
SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数

茆诗松概率论与数理统计教程第一章

茆诗松概率论与数理统计教程第一章
当n很大时事件a出现的频率fnanan将稳定地在某一数值p附近摆动且一般随试验次数n的增大摆动的幅度也越来越小则称该数值p为事件a发生的概率记为pap这种大量重复试验中事件出现的频率的稳定性表明随机事件发生的可能性大小是随机事件本身所固有的客观属性我们用这个频率的稳定值来表示事件发生的可能性大小是合理的这就是概率的频率化定义
n 10 20 23 30 40 50 P(A) 0.12 0.41 0.51 0.71 0.89 0.97
上表所列的答案是出乎很多人意料的, 因为”一个班
级至少有两个人生日相同”的概率, 并不如大多数人
直觉中想象的那样小, 而是相当大. 这个例子告诉我
们, “直觉”有时并不可靠, 这就说明研究随机现象
B=“两球都是红球”,共有22 种取法, C=“两球中至少有一只白球”, 则
AB=“两个球颜色相同”,事件CB,
故P(A)=(44)/(6 6) 0.444,P(B)=(22)/(6 6) 0.111, 则P(AB)=P(A)+P(B) 0.556, P(C)=1-P(B) .0.889
(b)不放回抽样
P(C)=1-P(B) =14/15
.
例六.(分房问题, 类比于教材中例1.2.6的盒子模型) 设有n个人, 每个人都等可能地被分配到N个房 间中的任一间去住(n≤N), 求下列事件的概率 (1)指定的n个房间各有一个人住 (2)恰好有n个房间, 其中各住一个人
解: 将n个人分配到N个房间去, 相当于对每个人, 我们从
.
.
例二(被闪电击中概率的研究).
如何求一个人在某年中被 闪电击中的概率?
中国1.1×109人中, 在2005年被闪电击中 的人数为3300人, 通过概率的频率方法 我们知道, 某人被闪电击中的概率为

峁诗松 概率论与数理统计

峁诗松 概率论与数理统计

华东师范大学
第三章 多维随机变量及其分布
第29页
3.2.1 边际分布函数
巳知 (X, Y) 的联合分布函数为 F(x, y),

X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第30页
3.2.2 边际分布列
(4) 当a<b, c<d 时,有 (非负性) F(b, d) F(b, c) F(a, d) + F(a, c) 0. 注意:上式左边 = P(a<Xb, c<Y d).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第6页
3.1.3 联合分布列 二维离散随机变量
第三章 多维随机变量及其分布
第33页
注 意 点 (1)
由联合分布可以求出边际分布.
但由边际分布一般无法求出联合分布.
所以联合分布包含更多的信息.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第34页
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ),
地取一整数值。试求(X, Y)的联合分布列.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第15页
3.1.4 联合密度函数
设二维随机变量(X, Y) 的分布函数为 F(x, y),若存在 非负可积函数 p(x, y),使得
则称 (X, Y) 为二维连续型随机变量。 称p(x, y) 为联合密度函数。

概率论与数理统计教程(茆诗松)第7章参数估计

概率论与数理统计教程(茆诗松)第7章参数估计

10/29/2020
10/29/2020
华东师范大学
第七章 假设检验
第12页
五、作出判断
在有了明确的拒绝域后,根据样本观测值 我们可以做出判断:
➢ 当 x108.684或 u1.时64,5则拒绝 H 0
即接收 H 1 ;
➢ 当 x108.684或 u1.645时,则接收 H 0
在例7.1.1中,由于 x 1 0 8 1 0 8 .6 8 4
的设计值 为不低于110(Pa)。为保证质量,该
厂每天都要对生产情况做例行检查,以判断生 产是否正常进行,即该合金的平均强度不低于
110(Pa)。某天从生产中随机抽取25块合金,
测得强度值为x1, x2 , …, x25,其均值为 x 108 (Pa),问当日生产是否正常?
10/29/2020
华东师范大学
第七章 假设检验
第3页
(1) 是参数估计问题吗?
(2) 回答“是”还是“否” ,假设检验问题。
(3) 命题“合金平均强度不低于110Pa”正确 与
否仅涉0及{如:下1两10个}参数 集1合{::110}
这两个非空参数集合都称作统计假设, 简称假设。
(4) 我们的任务是利用样本去判断假设(命题)
“ 0 ”是否成立。这里的“判断”在统 计学中

0
都有 g() ,
则称该检验是显著性水平为 的显著性检 验,简称水平为 的检验。
10/29/2020
华东师范大学
第七章 假设检验
第10页
四、给出拒绝域
确定显著性水平后,可以定出检验的拒绝域W。
在例7.1.1中,若取=0.05, 由于g()关于 单调减,只需要
g(110)5(c4110)0.05

概率论与数理统计教程(茆诗松)

概率论与数理统计教程(茆诗松)
A. ➢互不相容: A 和 B不可能同时发生.
例1.1.1
口袋中有a 个白球、b 个黑球,从中一个一个不返 回地取球。A = “取到最后一个是白球”, B = “取到最后一段是白球”。问 A 与 B 的关系?
解:1) 显然,B 发生必然导致A发生,所以 BA;. 2) 又因为A发生必然导致B发生,所以 AB, 由此得 A = B.
• 从 n 个元素中任取 r 个,求取法数.
• 排列讲次序,组合不讲次序.
• 全排列:Pn= n! • 0! = 1.
• •
重选复排排列:列Pn:r n(rn
常用大写字母 X、Y、Z …表示.
事件的表示
➢在试验中,A中某个样本点出现了, 就说 A 出现了、发生了,记为A.
➢维恩图 ( Venn ). ➢事件的三种表示
用语言、用集合、用随机变量.
1.1.5 事件间的关系
➢包含关系: A B, A 发生必然导致 B 发
生. ➢相等关系: A = B A B 而且 B
5. 试用A、B、C ห้องสมุดไป่ตู้示下列事件:
① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC
④ 至少有一个出现;A B C
⑤ 至多有一个出现;ABC ABC ABC ABC ⑥ 都不出现; ABC
⑦ 不都出现; ABC A B C ⑧ 至少有两个出现;AB AC BC
A A不发生、对立事件 A的余集
注意点(1)
基本事件互不相容,基本事件之并
=ΩA A A
A A Ω
A A
A A
A
A
AB A B
B

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】
为随机变量 X 癿数学期望,或称作该分布癿数学期望,简称期望或均值.若级数

xk p xk 丌收敛,则称 X 癿数学期望丌存在.
k =1
(2)连续型随机变量
定义:设连续随机变量 x 癿密度凼数为 p(x).如果
x p xdx
则称
E

X




xp

x

dx
为 X 癿数学期望,或称作该分布 p(x)癿数学期望,简称期望或均值.若

x p x dx 丌收敛,则称 X 癿数学期望丌存在.

2.数学期望癿性质 按照数学期望 E(X)癿定义,E(X)由其分布唯一确定.若要求随机变量 X 癿一个凼
5 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

数 g(X)癿数学期望,当然要先求出 Y=g(X)癿分布,再用此分布来求 E(Y).
lim
xx0
F

x

F

x0

即 F(x0+0)=F(x0)
返三个基本性质为判别某个凼数是否能成为分布凼数癿充要条件.
当 F(x)在 a 不 b 处连续时,有 F(a-0)=F(a),F(b-0)=F(b).
3.离散随机变量癿概率分布列
(1)定义:设 X 是一个离散随机变量,如果 X 癿所有可能叏值是 x1,x2,…,xn,…,
则称 X 叏 xi 癿概率 pi=p(xi)=P(X=xi),i=1,2,…n,…为 X 癿概率分布列或简称为
分布列,记为 X~{pi}.
分布列也可用下表来表示:
X
x1
x2

P P(x1) P(x2) …
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师范大学
第一章 随机事件与概率
第33页
1.2.5 确定概率的几何方法
若 ① 样本空间充满某个区域, 其度量(长度、面 积、体积)为S;
② 落在中的任一子区域A的概率, 只与子区域的度量SA有关, 而与子区域的位臵无关 (等可能的). 则事件A的概率为: P(A)= SA /S
第一章 随机事件与概率
第31页
例1.2.2
n 个人围一圆桌坐, 求甲、乙两人相邻而坐的概率.
解:考虑甲先坐好,则乙有n-1个位臵可坐, 而“甲乙相邻”只有两种情况,所以 P(A) = 2/(n-1)。
18 December 2013
华东师范大学
第一章 随机事件与概率
第32页
例1.2.3
n个人坐成一排, 求甲、乙两人相邻而坐的概率. (注意:请与上一题作比较)
若 A1,A2,……,An 有
1. Ai互不相容;
2. A1A2 ……An= Ω
则称 A1,A2,……,An 为Ω的一组分割.
18 December 2013
华东师范大学
第一章 随机事件与概率
第17页
课堂练习
1. 若A 是 B 的子事件,则 AB = ( B ), AB = ( A )
2. 设 A 与B 同时出现时 C 也出现,则( ③ ) ① AB 是 C 的子事件; ② C 是 AB 的子事件; ③ AB 是 C 的子事件; ④ C 是 AB 的子事件.
第一章 随机事件与概率
第29页
注 意
• 抛一枚硬币三次 抛三枚硬币一次
• Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)}
此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
第一章 随机事件与概率
第9页
例1.1.1
口袋中有a 个白球、b 个黑球,从中一个一个不返 回地取球。A = “取到最后一个是白球”, B = “取到最后一段是白球”。问 A 与 B 的关系? 解:1) 显然,B 发生必然导致A发生,所以 BA;.
2) 又因为A发生必然导致B发生,所以 AB, 由此得 A = B.
华东师范大学
第一章 随机事件与概率
第25页
注 意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
18 December 2013
华东师范大学
第一章 随机事件与概率
第26页
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
18 December 2013
华东师范大学
第一章 随机事件与概率
第20页
1.1.7 事件域
设Ω为样本空间,F 是由Ω的子集组成的集合 类,若F 满足以下三点,则称 F 为事件域 1. ΩF ; 2. 若 AF ,则 A F ;

3. 若 AnF ,n=1, 2, …, 则
18 December 2013
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
18 December 2013
华东师范大学
第一章 随机事件与概率Fra bibliotek第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象. • 特点:1. 结果不止一个; 2. 事先不知道哪一个会出现.
乘法原理
完成某件事情需先后分成 n 个步骤,做第一步有m1种方 法,第二步有 m2 种方法,依次类推,第 n 步有mn种方法, 则完成这件事共有 m1×m2×…×mn种不同的方法.
18 December 2013
华东师范大学
第一章 随机事件与概率
第27页
1.2.3 确定概率的频率方法
随机试验可大量重复进行. 进行n次重复试验,记 n(A) 为事件A的频数, n( A) 称 f n ( A) 为事件A的频率. n 频率fn(A)会稳定于某一常数(稳定值). 用频率的稳定值作为该事件的概率.
第一章 随机事件与概率
第23页
1.2.2 排列与组合公式
• 从 n 个元素中任取 r 个,求取法数. • • • • • 排列讲次序,组合不讲次序. 全排列:Pn= n! 0! = 1. 重复排列:nr n! r 选排列: Pn n(n 1)......( n r 1) (n r )!
A
n 1
n
F .
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小. • 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率. • 古典定义;几何定义.
18 December 2013
华东师范大学
第一章 随机事件与概率
18 December 2013
华东师范大学
第一章 随机事件与概率
第13页
记号
Ω φ AB AB=φ AB AB AB
概率论
样本空间, 必然事件 不可能事件 样本点 A发生必然导致B发生 A与B互不相容 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件
集合论
空间 空集 元素 A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集 A的余集
华东师范大学
A
18 December 2013
第一章 随机事件与概率
第14页
注意点(1)
基本事件互不相容,基本事件之并=Ω
A A
A A Ω
A A
A
A A
A
A B A B
AB
18 December 2013
华东师范大学
第一章 随机事件与概率
第1页
第一章 随机事件与概率
§1.1 §1.2 §1.3 §1.4 §1.5 随机事件及其运算 概率的定义及其确定方法 概率的性质 条件概率 独立性
18 December 2013
华东师范大学
第一章 随机事件与概率
第2页
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 确定性现象
第一章 随机事件与概率
第15页
注意点(2)
A B A B B, AB A
A B A AB
A B A ( B A) A ( B AB)
A AB AB
18 December 2013
华东师范大学
第一章 随机事件与概率
第16页
样本空间的分割
18 December 2013
华东师范大学
第一章 随机事件与概率
第8页
1.1.5 事件间的关系
包含关系: A B, A 发生必然导致 B 发生. 相等关系: A = B A B 而且 B A. 互不相容: A 和 B不可能同时发生.
18 December 2013
华东师范大学
18 December 2013
华东师范大学
第一章 随机事件与概率
第18页
3. 设事件 A = “甲种产品畅销,乙种产品滞销” , 则 A 的对立事件为( ④ ) ① 甲种产品滞销,乙种产品畅销; ② 甲、乙两种产品均畅销; ③ 甲种产品滞销; ④ 甲种产品滞销或者乙种产品畅销. 4. 设 x 表示一个沿数轴做随机运动的质点位臵, 试说明下列各对事件间的关系 AB ① A ={|xa|<σ},B ={x a<σ} ② A ={x>20}, B ={x≤22} 相容 ③ A ={x>22}, B ={x<19} 不相容
华东师范大学
18 December 2013
第一章 随机事件与概率
第6页
1.1.4 随机变量
表示随机现象结果的变量. 常用大写字母 X、Y、Z …表示.
18 December 2013
华东师范大学
第一章 随机事件与概率
第7页
事件的表示
在试验中,A中某个样本点出现了, 就说 A 出现了、发生了,记为A. 维恩图 ( Venn ). 事件的三种表示 用语言、用集合、用随机变量.
18 December 2013
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示. 2. 基本事件 —— Ω的单点集. 3. 必然事件 (Ω) 4. 不可能事件 (φ) —— 空集. 5. 随机变量 表示随机现象结果的变量. 常用大写字母 X、Y、Z …表示.
18 December 2013
华东师范大学
第一章 随机事件与概率
第10页
1.1.6 事件的运算
• • • • 并: A B 交: A B = AB 差: A B 对立: A A 与 B 至少有一发生 A 与 B 同时发生 A发生但 B不发生 A 不发生
18 December 2013
• 随机现象的统计规律性:随机现象的各种结果
会表现出一定的规律性,这种规律性称之为 统计规律性.
18 December 2013
华东师范大学
第一章 随机事件与概率
第4页
1.1.2 样本空间
1. 随机试验 (E) —— 对随机现象进行的实验与观察. 它具有两个特点:随机性、重复性. 2. 样本点 —— 随机试验的每一个可能结果. 3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合. 4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
相关文档
最新文档