小学奥数 3-3-2 行程综合问题.教师版
小学奥数行程问题(追击问题)(教师版)

行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。
2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。
3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。
追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。
由于速度不同,就发生快的追及慢的问题。
根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
1:甲、乙二人在同一条路上前后相距9千米。
他们同时向同一个方向前进。
甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车追赶甲。
几小时后乙能追上甲?(适于高年级程度)解:求乙几小时追上甲,先求乙每小时能追上甲的路程,是:10-5=5(千米)再看,相差的路程9千米中含有多少个5千米,即得到乙几小时追上甲。
9÷5=1.8(小时)综合算式:9÷(10-5)=9÷5=1.8(小时)答略。
2:甲、乙二人在相距6千米的两地,同时同向出发。
乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。
甲几小时才能追上乙?(适于高年级程度)解:甲每小时行:5×1.2=6(千米)甲每小时能追上乙:6-5=1(千米)相差的路程6千米中,含有多少个1千米,甲就用几小时追上乙。
6÷1=6(小时)答:甲6小时才能追上乙。
3:甲、乙二人围绕一条长400米的环形跑道练习长跑。
甲每分钟跑350米,乙每分钟跑250米。
二人从起跑线出发,经过多长时间甲能追上乙?(适于高年级程度)解:此题的运动路线是环形的。
三年级奥数讲义--行程问题相遇---教师版

相遇问题—--行程问题之一【知识要点】路程、速度、时间是行程问题中常常出现的量,它们有如下的关系:.速度时间路程=?这一关系也可以写成路程时间速度=?或速度时间=路程?相遇问题是行程问题中最常见的问题之一,主要研究物体相向运动中的速度、时间和路程三者之间关系的问题,常用的基本数量关系是:相遇路程=速度和×相遇时间这一关系也可以写成相遇时间=相遇路程÷速度和或速度和=相遇路程÷相遇时间【典型题解】例1:两地相距30千米,甲乙两人分别从A、B同时出发,相向而行。
甲每小时行3千米,乙每小时行2千米。
问:几小时后两人相遇?1练习1:A、B两地相距80千米。
甲乙两人分别从A、B同时骑自行车出发,相向而行。
甲每小时行19千米,乙每小时行21千米。
问:几小时后两人相遇?相遇点距离A点多少千米?例2:甲乙两人从A、B两地同时出发,相向而行。
甲每小时走3千米,乙每小时走2千米,6小时候两人相遇。
问:A、B相距多少千米?练习2:甲乙两人从A、B两地同时出发,相向而行。
甲每小时走3千米,6小时候两人相遇。
A、B两地相距30千米。
问:乙每小时走多少千米?2例3:A、B两地相距600千米。
上午8点客车以每小时60千米的速度从A开往B。
又有一列货以每小时50千米的速度从B开往A。
要使两车在AB的中点相遇,货车应在什么时候出发?练习3:李琳骑自行车、何英骑摩托车分别A、B两地同时出发,相向而行。
3小时后相遇,自行车比摩托车少走120千米。
摩托车每小时行50千米。
问:A、B相距多少千米?例4:两列火车分别从A、B两地同时出发,相向而行。
第一次相遇在离A地500千米的C地。
相遇后,两车继续前进,到达B或A后各自折回。
在离B地300千米的D地第二次相遇。
问:A、B相距多远?3练习4:小明从A地向B地走。
小红同时从B地向A地走。
各自到达目的地后立刻返回。
行走过程中,速度都保持不变。
两人第一次相遇在距A地40米处,第二次相遇在距B地15米处。
小学奥数-行程相遇问题(教师版)

小学奥数-行程相遇问题(教师版)work Information Technology Company.2020YEAR行程相遇问题甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。
解决行程问题,常常要借助于线段图。
【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?【解析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).【例2】★大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【解析】大头儿子和小头爸爸的速度和:30005060÷=(米/分钟),小头爸爸的速度:6024242+÷=()(米/分钟),大头儿子的速度:604218-=(米/分钟).【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【解析】方法一:由题意知聪聪的速度是:204262+=(米/分),两家的距离=明明走过的路程+聪聪走过的路程2020622040012401640=⨯+⨯=+=(米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S v t =和和.对于刚刚学习奥数的孩子,注意引导他们认识、理解及应用公式.方法二:直接利用公式:2062201640=+⨯=()(米).【例3】★★A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【解析】包子的速度:90303÷=(米/秒),菠萝的速度:90156÷=(米/秒),相遇的时间:90(36)10÷+=(秒),包子距B 地的距离:9031060-⨯=(米).【例4】★★甲、乙两车分别从相距360千米的A 、B 两城同时出发,相对而行,已知甲车到达B 城需4小时,乙车到达A 城需12小时,问:两车出发后多长时间相遇?【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360490÷=(千米/时),乙车的速度是3601230÷=(千米/时),则相遇时间是360(9030)3÷+=(小时).【例5】★★甲、乙两辆汽车分别从A 、B 两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A 、B 两地间的距离.聪聪S v t =和和【解析】这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48(15)288⨯+=(千米),505250+=(千米).⨯=(千米),288250538【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41282⨯=(千米),甲、乙两车同时相对而行路程:+=(千米/时),甲车行的时间:77082688-=(千米),甲、乙两车速度和:454186÷=(小时).688868【例6】★★甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【解析】题目中写的“还”相距15千米指的就是最简单的情况。
小学奥数3-3-2 行程综合问题.专项练习

1. 运用各种方法解决行程内综合问题。
2. 发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、 行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、 学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?行程综合问题知识精讲教学目标【例2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【例4】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
【例5】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。
甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分。
小学奥数行程问题(相遇问题)(教师版)

行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。
2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。
3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。
甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。
解决行程问题,常常要借助于线段图。
1:两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。
480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。
2:两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。
两车开了几小时以后相遇?(适于五年级程度)解:已知两个城市之间的路程是500千米,又知客车和货车的速度,可求出两车的速度之和。
用两城之间的路程除以两车的速度之和可以求出两车相遇的时间。
500÷(55+45)=500÷100=5(小时)答略。
3:甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
小学奥数-行程追及问题(教师版)

行程追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例1】★甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?【解析】甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)【例2】★哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?【解析】哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)【小试牛刀】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?【解析】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)【例3】★★一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
小学奥数-行程相遇问题(教师版)
行程相遇问题念知识梳理)甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么于辛- 甲乙-A B A B0时刻准备出发时间t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.$一般地,相遇问题的关系式为:速度和X相遇时间二路程和。
解决行程问题,常常要借助于线段图。
是:特色讲解)【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
小时两车相遇。
甲、乙两个城市的路程是多少千米【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48) X=94X=329 (千米).【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米【解析】根据相遇公式知道相遇时间是:2554- (45+40) =2554-85=3 (小时),所以甲走的路程为:45X3=135 (千米),乙走的路程为:40X3=120 (千米).【例2】★大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米(【解析】大头儿子和小头爸爸的速度和:3000^50 = 60(米/分钟),小头爸爸的速度:(60 + 24)*2 = 42(米/分钟),大头儿子的速度:60 - 42 = 18(米/分钟).【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗【解析】方法一:由题意知聪聪的速度是:20+42 = 62 (米/分),两家的距离=明明走过的路程+聪 聪走过的路程= 20 x 20 + 62 x 20 = 400 + 1240 = 1640咪),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v f ,/.对于刚刚学习奥数 的孩子,注意引导他们认识、理解及应用公式.方法二:直接利用公式:/ = (20 + 62) x20 = 1640 侏).【例3] B 两地相距90米,包子从A 地到3地需要30秒,菠萝从〃地到A 地需要15秒, 现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米【解析】包子的速度:90-30 = 3 (米/秒),菠萝的速度:90-15 = 6咪/秒),相遇的时间:90*(3 + 6) = 10(秒),包子距 B 地的距离:90-3x10 = 60 咪).【例4】★★甲、乙两车分别从相距360千米的A 、B 两城同时出发,相对而行,已知甲车到达B 城 需4小时,乙车到达A 城需12小时,问:两车出发后多长时间相遇【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360-4 = 90 (千米/时), 乙车的速度是360*12 = 30 (千米/时),贝IJ 相遇时间是360*(90 + 30) = 3 (小时).【例5】★★甲、乙两辆汽车分别从A 、B 两地出发相对而行,甲车先行1小时,甲车每小时行48千 米,乙车每小时行50千米,5小时相遇,求A 、3两地间的距离.【解析】这题不同的是两车不“同时”.求A 、〃两地间的路程就是求甲、乙两车所行的路程和.这 样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48x (1 + 5) = 288 (千米), 50x5 = 250 (千米),288+250 = 538 (千米).【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时 行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2 小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路 程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41x2 = 82 (-T-米),甲、 乙两车同时相对而行路程:770-82 = 688 (「米),甲、乙两车速度和:45 + 41 = 86(千米/时),甲聪聪 20分钟后相遇 V 明明车行的时间:688*86 = 8 (小时).【例6】★★甲、乙两辆汽车分别从A 、B 两地出发相向而行,甲车先行3小时后乙车从B 地出发, 乙车出发5小时后两车还相距15千米・甲车每小时行48千米,乙车每小时行50千米.求A 、B 两 地间相距多少千米【解析】题目中写的“还”相距15 T •米指的就是最简单的情况。
高思导引 四年级第十四讲 行程问题二教师版
第14讲行程问题二内容概述参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米.这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒.已知火车速度是每秒17米,求火车的长度.答案:14米/秒270米解析:(1)相遇问题,60米/分=1米/秒300−20=15 15-1=14(2)追击问题,(17-2)⨯18=270米2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?答案:25秒220米解析:(1)火车过桥(320+180)−20=25秒(2)20⨯21-200=220米3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?答案:10秒解析:火车相遇,路程为两车路程之和(180+200)÷(20+18)=10秒4. 甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?答案:120秒解析:火车追击,路程为两车路程之和(370+350)÷(21-15)=120秒5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?答案:300秒100秒解析:队尾到对头是追击问题450÷(3-1.5)=300秒对头到队尾是相遇问题450÷(3+1.5)=100秒6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒, 问:乙车全长多少米?答案:390米解析:相遇问题,从相遇到离开单位不统一60+48=108千米每时=30千米每秒30⨯13=390米7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?答案:快96米慢72米解析:齐头并进多走的是一个快车的车长(18-10)⨯12=96米车尾对齐多走的是一个慢车的车长(18-10)⨯9=72米8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米. A、B两地相距2700米.甲、乙两人从A、B两地同时出发相向而行,他们出发15分钟后,丙从B 地出发去追赶乙.请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?答案:6分钟54分钟解析:甲乙相遇时2700÷(40+50)=30分钟这时丙走了15分钟走了15⨯60=900米乙走了50⨯30=1500米,甲丙相距1500-900=600米600÷(40+60)=6分钟(600+50⨯6-60⨯6)÷(60-50)=54分钟9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米. 如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇.求A、B两地的距离.答案:16500米解析:甲丙相遇的路程是乙比丙多走的路程(60+40)⨯15=1500米1500÷(50-40)=150分钟150⨯(60+50)=16500米10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?答案:90千米解析:小辉行走的时间和两人从出发到相遇的时间是一样的75÷(6.5+6)=6小时6⨯15=90千米拓展篇1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?答案:4分钟240米解析:(1)火车过桥(2800+400)÷800=4分钟(2)15⨯64-720=240米2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?答案:200米10米/秒解析:从火车车头上桥,到车尾离开桥所走路程是:车长+桥长火车完全在桥上所走路程是:桥长-2个车长所以行走一个车长的距离用(120-80)÷2=20秒行走桥长用的时间是120-20=100秒1000÷100=10米/秒车长为200米3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?答案:40秒120秒解析:(800+400)÷(20+10)=40秒(800+400)÷(20-10)=120秒4.一列客车和一列货车同向而行,货车在前,客车在后.已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?答案:45秒解析:通过隧道走的路程都是:车长+桥长460-410=50 30-28=2 速度为50÷2=25米每秒车长为:25⨯30-460=290米54千米每时=15米每秒(290+160)÷(25-15)=45秒5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?答案:286米解析:3.6千米每时=1米每秒10.8千米每时=3米每秒(26⨯3-22)÷(26-22)=14 22⨯(14-1)=286米6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?答案:540米解析:两次跑的路程是一样的,两次速度分别为2米每秒6米每秒所以去的时候的时间是回来时的三倍6分钟=360秒360÷4⨯6=540米7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇. 如果这列客车从阿奇的背后开来,60秒后经过阿奇.试问:如果阿奇站着不动,客车多长时间可以经过阿奇?答案:48秒解析:迎面开来是路程和速度和背后开来是路程差速度差40(车速+人速)=60(车速-人速)车速=5人速路程为240人速240÷5=488.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒l米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.答案:210秒解析:小明发现货车用140秒就超过了他,所走路程为货车车长280÷140=2米每秒货车速度为2+20+1=23米每秒(350+280)÷(23-20)=210秒9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?答案:32千米每时解析:从甲车和卡车相遇开始计时,乙车和卡车相遇用了一个小时路程和为甲乙两车行走6小时的路程差(52-40)6=72千米72÷1=72千米每时72-40=32千米每时10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行.与此同时,丙从B地出发向A地前进.甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.答案:12千米解析:从甲丙相遇时开始计时,再过一段时间乙丙相遇甲的速度是乙速度的三倍所以相同时间内甲走的路程是乙路程的三倍当甲走9千米时乙走3千米所以乙丙速度相同所以甲走9千米时丙走3千米路程为12千米11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现在甲从A地向B地行进,乙、丙两人从B地向A地行进.三人同时出发,出发时,甲、乙步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进.试问:三人之中谁最先到达目的地?谁最后到达目的地?答案:丙最先到达,甲最后到达解析:画线段图总路程为四份,丙两份时间到达,甲四份时间到达乙不到四份时间12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行.请问:出发多长时间后,乙正好在甲和丙的中点?答案:7小时解析:由分析知乙正好在甲丙中点上时一定是甲丙相遇后的时间,相同时间内,甲走6份路程,乙走5份路程,丙走4份路程甲乙相差1份所以乙丙也相差一份根据容斥原理知道这一份为9份-56=1份所以一份路程为7 时间为7小时超越篇1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;’另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它.如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?答案:9:15 15秒米代表米老鼠客代表客车货代表货车解析:在速度上:30(货-米)=12(客+米)÷2 客=3货客=9米货=3米货车长度30(货-米)=30(3米-米)=60米客车车上12(客+米)=120米9:30相遇时米老鼠走了一份路程客车走了9份路程两人共走了10份路程走1:30时米老鼠路程为90米客车路程为810米货车路程为270米全程为900米900÷(270÷90+810÷90)=75分钟8:00+00:75=9:15分(60+120)÷(9+3)=15秒2.货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和B两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?答案:550米解析:108公里每时=30米每秒 72公里每时=20米每秒从相遇到错开客车走的路程为 150+450=600 600÷30=20秒20(30+20)-450=550米3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生.请问:工人与学生将在何时相遇?答案:14时40分解析:碰到工人是追击问题 30÷3.6-110÷15=1米每秒=60米每分碰到学生是相遇问题 110÷12-30÷3.6=65米每秒=50米每分 火车速度为30千米每时=500米每分工人与学生的时间为6(500-60)÷(50+60)=24分钟14时16份+24分=14时40分4.A 、B 两地相距120千米,甲、乙两人分别骑车从A 、B 两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在c 地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A 、B 出发相向而行,则甲、乙二人在C 点相遇,问丙的车速是多少?答案:70千米每时解析:第一次相遇可以求出乙的速度为 30千米每时 再过6分钟甲共走了80千米 第二次甲乙两人相遇时间为 120÷(44+36)=1.5时C 距离A 地66千米 追上乙,丙走了80-66=14千米 乙走了14-8=6千米 14÷(6÷30)=70千米每时5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米. 答案:18.4千米每时解析:每次都是速度差,路程差都一样是开始时距离骑车人的距离求出骑车人速度为16千米每时,路程差为0.8千米 慢车速度为18.4千米每时6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地.已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?答案:42分钟解析:与上题类似,求出刚开始距离东东的距离即可。
3-3-1比例解行程问题_题库教师版
1. 会解一些简单的方程.2. 掌握寻找等量关系的方法来构建方程.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
模块一:比例初步——利用简单倍比关系进行解题【例 1】 (难度等级 ※※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?知识精讲 教学目标比例解行程问题【解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。
(教师版)小学奥数3-2-3 猎狗追兔问题.专项检测题及答案解析
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
例题精讲【例1】猎狗前面26步远有一只野兔,猎狗追之.兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—方法二:设狗跑一步为1 个长度单位,则兔跑一步为个长度单位;在相同时间内,狗的速 ,根据题意有 26 ÷ (5 - ) = 18 (个单位时间).猎狗追 0 0 ⨯18 = 64 (个单位长度),故兔跑了 64 ÷ = 144 (步).“32=13(步)的路程,这个 13 步是猎狗的 13 步. 由此推知,要追上 26(狗)步,兔跑 了 72×(26÷13)=144(步),此时猎狗跑了 5×(144÷8)=90(步).49度为 5 ⨯ 1 = 5 ,兔的速度为 8 ⨯ 4 32 32=9 9 9上 兔 时 跑 了 5 ⨯ 1 8= 9 ( 个 单 位 长 度 ) , 所 以 狗 跑 了 9 0÷ 1= 9 ( 步 ) , 此 时 兔 跑 了3294 9方法三:统一为“兔跑 72 步”的情况:兔跑 72 步的时间里狗比兔多跑了 5 ⨯ 9 - 4 ⨯ 8 = 13 (步) 的路程,这里的步是狗步.由此推知,要追上 26 狗步,兔跑了 72 ⨯ (26 ÷ 13) = 144 (步),此 时猎狗跑了 5 ⨯ (144 ÷ 8) = 90 (步). 【答案】 90 步【巩固】 猎犬发现在离它 9 步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑 5步的路程,兔子跑 9 步,但兔子动作快,猎犬跑 2 步的时间,兔子跑 3 步,猎犬至少跑 多少步才能追上兔子?【考点】行程问题之猎狗追兔 【难度】3 星 【题型】解答【解析】狗 5 步=兔子 9 步,步幅之比=9:5;狗 2 步时间=兔子 3 步时间,步频之比=2:3;则速度之比是 9×2:5×3=6:5;这个 9 步是指狗的 9 步距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 运用各种方法解决行程内综合问题。
2. 发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、 行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、 学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l 0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。
【答案】5时【例 2】 小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 上山用了3小时50分,即60350230⨯+=(分),由2303010530÷+=(),得到上山休息了5次,走了230105180-⨯=(分).因为下山的速度是上山的1.5倍,所以下山走了180 1.5120÷= (分).由120304÷=知,下山途中休息了3次,所以下山共用12053135+⨯=(分)2=小时15分.行程综合问题知识精讲 教学目标【答案】2小时15分【例 3】 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】环形跑道与猎狗追兔 【难度】5星 【题型】解答【解析】 方法一:由题意,猫与狗的速度之比为9:25,猫与兔的速度之比为25:49.设单位时间内猫跑1米,则狗跑259米,兔跑4925米. 狗追上猫一圈需25675300194⎛⎫÷-= ⎪⎝⎭单位时间, 兔追上猫一圈需496253001252⎛⎫÷-= ⎪⎝⎭单位时间. 猫、狗、兔再次相遇的时间,应既是6754的整数倍,又是6252的整数倍. 6754与6252的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即]()675,62567562516875,8437.5424,22⎡⎡⎤⎣===⎢⎥⎣⎦. 上式表明,经过8437.5个单位时间,猫、狗、兔第一次相遇.此时,猫跑了8437.5米,狗跑了258437.523437.59⨯=米,兔跑了498437.516537.525⨯=米. 方法二:根据题意,猫跑35步的路程与狗跑21步的路程、兔跑25步的路程相等;而猫跑15步的时间与狗跑25步、兔跑21步的时间相同. 所以猫、狗、兔的速度比为152521::352125,它们的最大公约数为 ()[]15,25,211525211,,35212535,21,253557⎛⎫== ⎪⨯⨯⨯⎝⎭, 即设猫的速度为151225353557÷=⨯⨯⨯,那么狗的速度为251625213557÷=⨯⨯⨯,则兔的速度为211441253557÷=⨯⨯⨯. 于是狗每跑3300(625225)4÷-=单位时追上猫; 兔每跑25300(441225)18÷-=单位时追上猫. 而[]()3,2532575,4184,182⎡⎤==⎢⎥⎣⎦,所以猫、狗、兔跑了752单位时,三者相遇. 猫跑了752258437.52⨯=米,狗跑了7562523437.52⨯=米,兔跑了7544116537.52⨯=米. 【答案】16537.5米【例 4】 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
【考点】环形跑道与变速问题 【难度】3星 【题型】解答【解析】 因为相遇前后甲,乙的速度和没有改变,如果相遇后两人和跑一圈用 24 秒,则相遇前两人和跑一圈也用 24 秒。
以甲为研究对象,甲以原速V 跑了 24 秒的路程与以(V +2 )跑了 24 秒的路程之和等于 400米,24V +24(V +2 )=400 易得V = 173米/秒 【答案】173米/秒【例 5】 环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。
甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分。
甲第一次追上乙需多少分?【考点】环形跑道与变速问题 【难度】3星 【题型】解答【解析】 55分。
解:甲比乙多跑500米,应比乙多休息2次,即2分。
在甲多休息的2分内,乙又跑了200米,所以在与甲跑步的相同时间里,甲比乙多跑500+200=700(米),甲跑步的时间为700÷(120-100)=35(分)。
共跑了120×35=4200(米),中间休息了4200÷200-1= 20(次),即20分。
所以甲第一次追上乙需35+20=55(分)。
【答案】55分【例 6】 甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是 米.【考点】环形跑道与变速问题 【难度】2星 【题型】解答【解析】 如图,设跑道周长为1,出发时甲速为2,则乙速为5.假设甲、乙从A 点同时出发,按逆时针方向跑.由于出发时两者的速度比为2:5,乙追上甲要比甲多跑1圈,所以此时甲跑了21(52)23÷-⨯=,乙跑了53;此时双方速度发生变化,甲的速度变为2(125%) 2.5⨯+=,乙的速度变为5(120%)4⨯-=,此时两者的速度比为2.5:45:8=;乙要再追上甲一次,又要比甲多跑1圈,则此次甲跑了51(85)53÷-⨯=,这个53就是甲从第一次相遇点跑到第二次相遇点的路程.从环形跑道上来看,第一次相遇点跑到第二次相遇点之间的距离,既可能是52133-=个周长,又可能是51233-=个周长. 那么,这条环形跑道的周长可能为21001503÷=米或11003003÷=米. 【答案】300米【例 7】 如图所示,甲、乙两人从长为400米的圆形跑道的A 点背向出发跑步。
跑道右半部分(粗线部分)道路比较泥泞,所以两人的速度都将减慢,在正常的跑道上甲、乙速度均为每秒8米,而在泥泞道路上两人的速度均为每秒4米。
两人一直跑下去,问:他们第99次迎面相遇的地方距A 点还有 米。
【考点】环形跑道与变速问题 【难度】2星 【题型】解答【解析】 本题中,由于甲、乙两人在正常道路和泥泞道路上的速度都相同,可以发现,如果甲、乙各自绕着圆形跑道跑一圈,两人在正常道路和泥泞道路上所用的时间分别相同,那么两人所用的总时间也就相同,所以,两人同时出发,跑一圈后同时回到A 点,即两人在A 点迎面相遇,然后再从A 点出发背向而行,可以发现,两人的行程是周期性的,且以一圈为周期.在第一个周期内,两人同时出发背行而行,所以在回到出发点前肯定有一次迎面相遇,这是两人第一次迎面相遇,然后回到出发点是第二次迎面相遇;然后再出发,又在同一个相遇点第三次相遇,再回到出发点是第四次相遇……可见奇数次相遇点都是途中相遇的地点,偶数次相遇点都是A 点.本题要求的是第99次迎面相遇的地点与A 点的距离,实际上要求的是第一次相遇点与A 点的距离.对于第一次相遇点的位置,需要分段进行考虑:由于在正常道路上的速度较快,所以甲从出发到跑完正常道路时,乙才跑了20084100÷⨯=米,此时两人相距100米,且之间全是泥泞道路,此时两人速度相同,所以再各跑50米可以相遇.所以第一次相遇时乙跑了10050150+=米,这就是第一次相遇点与A 点的距离,也是第99次迎面相遇的地点与A 点的距离.【答案】150米【例 8】 甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3.甲跑第二圈时速度比第一圈提高了1/3;乙跑第二圈时速度提高了1/5.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米?【考点】环形跑道与变速问题 【难度】3星 【题型】解答【解析】 设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125.如下图:第一次相遇地点逆时针方向距出发点35的跑道长度.有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈,所以,这条椭圆形跑道的长度为1919040040÷=米. 【答案】400米【例 9】 如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【考点】环形跑道与变速问题 【难度】2星 【题型】解答【解析】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为 608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为 6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC + 且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38. 现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x . 有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x +=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x -=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN÷BN 1313232=÷131= 【答案】131【例 10】 一条环形道路,周长为2千米.甲、乙、丙3人从同一点同时出发,每人环行2周.现有自行车2辆,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑.已知甲步行的速度是每小时5千米,乙和丙步行的速度是每小时4千米,3人骑车的速度都是每小时20千米.请你设计一种走法,使3个人2辆车同时到达终点.那么环行2周最少要用多少分钟?【考点】环形跑道与变速问题 【难度】4星 【题型】解答【解析】 如果甲、乙、丙均始终骑车,则甲、乙、丙同时到达,单位“1”的路程只需时间120;乙、丙情况类似,所以先只考虑甲、乙,现在甲、乙因为步行较骑车行走单位“1”路程,耽搁的时间比为:1111:3:4520420⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭而他们需同时出发,同时到达,所以耽搁的时间应相等.于是步行的距离比应为耽搁时间的倒数比,即为4:3;因为丙的情形与乙一样,所以甲、乙、丙三者步行距离比为4:3:3.因为有3人,2辆自行车,所以,始终有人在步行,甲、乙、丙步行路程和等于环形道路的周长.于是,甲步行的距离为2×4433++=0.8千米;则骑车的距离为2×2-0.8=3.2千米; 所以甲需要时间为(0.8 3.2520+)×60=19.2分钟 环形两周的最短时间为19.2分钟.参考方案如下:甲先步行0.8千米,再骑车3.2千米;乙先骑车2.8千米,再步行0.6千米,再骑车0.6千米(丙留下的自行车) ; 丙先骑车3.4千米,再步行0.6千米.【答案】19.2分钟【例 11】 甲、乙两人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加O .5米,直到终点.那么领先者到达终点时,另一人距终点多少米?【考点】环形跑道与变速问题 【难度】4星 【题型】解答【解析】 对于这道题只能详细的分析逐步推算,以获得解答.先求出当第一次甲追上乙时的详细情况,因为甲乙同向,所以为追击问题.甲、乙速度差为8-6=2米/秒,当甲第一次追上乙时,甲应比乙多跑了一圈400米,即甲跑了400÷2×8=1600米,乙跑了400÷2×6=1200米.相遇后,甲的速度变为8-2=6米/秒,乙的速度变为6-0.5=5.5米/秒·显然,甲的速度大于乙,所以仍是甲超过乙.当甲第二次追上乙前,甲、乙速度差为6-5.5=0.5米/秒,追上乙时,甲应在原基础上再比乙多跑一圈400米,于是甲又跑了400÷0.5×6=4800米,乙又跑了400÷0.5×5.5=4400米.甲第二次追上乙后,甲的速度变为6-2=4米/秒,乙的速度变为5.5-0.5= 5米/秒.显然,现在乙的速度大于甲,所以变为乙超过甲.当乙追上甲时,甲、乙速度差为5-4=1米/秒,乙追上甲时,乙应比甲多跑一圈400米,于是甲又跑了400÷1×4=1600米,乙又跑了400÷1×5=2000米.。