高中数学选修4-4模块训练题

合集下载

高中数学选修4-4习题(含答案)

高中数学选修4-4习题(含答案)

高中数学选修4-4习题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值. 2.已知极坐标的极点在平面直角坐标系的原点O 处,极轴与O 轴的正半轴重合,且长度单位相同。

直线O 的极坐标方程为:O =√2sin (O −O4),点P (2cos O ,2sin O +2),参数O ∈[0,2O ]. (I )求点O 轨迹的直角坐标方程; (Ⅱ)求点O 到直线O 距离的最大值.1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=(2)因为圆心(1,2)--到直线10x y +-==所以点M 到直线l 距离的最大值为 1.r = 2、解:(Ⅰ)设P(x,y),则{x =2cosαy =2sinα+2,且参数α∈[0,2π],消参得:x 2+(y −2)2=4所以点P 的轨迹方程为x 2+(y −2)2=4 (Ⅱ)因为ρ=√2sin(θ−π4)所以ρ√2sin (θ−π4)=10 所以ρsinθ−ρcosθ=10,所以直线l 的直角坐标方程为x −y +10=0 法一:由(Ⅰ)点P 的轨迹方程为x 2+(y −2)2=4 圆心为(0,2),半径为2. d =√22=4√2,P 点到直线l 距离的最大值等于圆心到直线l 距离与圆的半径之和, 所以P 点到直线l 距离的最大值4√2+2. 法二:d =√22=√2|cosα−sinα+4|=√2|√2cos (α+π4)+4|当a =74π时,d max =4√2+2,即点P 到直线l 距离的最大值为4√2+2.6.33.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{x =cosθy =√3sinθ(θ为参数),曲线C 2的参数方程为{x =4−√22t y =4+√22t(t ∈R ,t 为参数).(1)求曲线C 1的普通方程和曲线C 2的极坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】(1)对曲线C 1:cos 2θ=x 2,sin 2θ=y 23,∴曲线C 1的普通方程为x 2+y 23=1.对曲线C 2消去参数t 可得t =(4−x)×√2,且t =(y −4)×√2, ∴曲线C 2的直角坐标方程为x +y −8=0.又∵x =ρcosθ,y =ρsinθ,∴ρcosθ+ρsinθ−8=√2ρsin (θ+π4)−8=0 从而曲线C 2的极坐标方程为ρ=4√2sin(θ+π4)。

高中数学人教A版选修4-4模块检测卷(一)

高中数学人教A版选修4-4模块检测卷(一)

模块检测卷(一)一、选择题(本大题共12小题,每小题5分,共60分)1.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|PA |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆,它的面积为4π. 2.柱坐标⎝⎛⎭⎫2,π3,1对应的点的直角坐标是( ) A .(3,-1,1) B .(3,1,1) C .(1,3,1)D .(-1,3,1)解析:选C 由直角坐标与柱坐标之间的变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z可得⎩⎪⎨⎪⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0B. 2C.2+1D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|PA |min =2-1.4.直线⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( ) A .105° B .75° C .15° D .165°解析:选A 参数方程⎩⎪⎨⎪⎧ x =sin θ+t sin 15°,y =cos θ-t sin 75°⇒⎩⎪⎨⎪⎧x =sin θ+t cos 75°,y =cos θ-t sin 75°, 消去参数t 得,y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan (180°-75°)=tan 105°. 故直线的倾斜角是105°.5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( )A .y =±22xB .y =±12xC .y =±2xD .y =±2x解析:选D 把参数方程化为普通方程得y 24-x 2=1,渐近线方程为y =±2x .6.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析:选A ∵ρ=cos θ,∴x 2+y 2=x 表示圆.∵⎩⎪⎨⎪⎧x =-1-t ,y =2+3t ,∴y +3x =-1表示直线. 7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θD .ρ=-πcos θ解析:选D设M (ρ,θ)为所求直线上任意一点,由图形知|OM |cos ∠POM =π,∴ρcos(π-θ)=π.∴ρ=-πcos θ. 8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34B .k ≥-34C .k ∈RD .k ∈R 且k ≠0解析:选A 由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k 2+1=1,得-k =34.若满足题意,只需-k ≥34.即k ≤-34即可.9.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝⎛⎭⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( ) A .椭圆的一部分 B .双曲线的一部分C .抛物线的一部分,且过点⎝⎛⎭⎫-1,12 D .抛物线的一部分,且过点⎝⎛⎭⎫1,12 解析:选D 由y =cos 2⎝⎛⎭⎫π4-θ2=1+cos ⎝⎛⎭⎫π2-θ2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ得x 2-1=sin θ,∴参数方程可化为普通方程x 2=2y , 又x =1+sin θ∈[0,2].∴表示抛物线的一部分,且过点⎝⎛⎭⎫1,12. 10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图所示,围成的图形为△OPQ ,可得S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34.11.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 的距离为71010的点的个数为( ) A .1B .2C .3D .4解析:选B 曲线C 的标准方程为(x -2)2+(y +1)2=9,它表示以(2,-1)为圆心,3为半径的圆,其中圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010且3-71010<71010,故过圆心且与l 平行的直线与圆交于两点,满足题意的点即为该两点. 12.已知直线⎩⎪⎨⎪⎧x =2-t sin 30°,y =-1+t sin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302解析:选C ⎩⎪⎨⎪⎧x =2-t sin 30°,y =-1+t sin 30°⇒⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′(t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2+4×3=30, 弦心距d =8-304=22,S △BCO =12|BC |·d =152. 二、填空题(本大题共4小题,每小题5分,共20分)13.将参数方程⎩⎨⎧ x =a 2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.解析:参数方程变为⎩⎨⎧2xa =t +1t ,2y b =t -1t,∴(2x )2a 2-(2y )2b 2=4,∴x 2a 2-y 2b2=1.答案:x 2a 2-y 2b2=114.在极坐标中,直线ρsin ⎝⎛⎭⎫θ+π4=2被圆ρ=4截得的弦长为________. 解析:直线ρsin ⎝⎛⎭⎫θ+π4=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得2r 2-d 2=242-⎝ ⎛⎭⎪⎫2222=4 3.答案:4 315.(广东高考)已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t (t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析:曲线C 的普通方程为:x 2+y 2= ( 2 cos t )2+( 2 sin t )2=2(cos 2t +sin 2t )=2,由圆的知识可知,圆心(0,0)与切点(1,1)的连线垂直于切线l ,从而l 的斜率为-1,由点斜式可得直线l 的方程为y -1=-(x -1),即x +y -2=0.由ρcos θ=x ,ρsin θ=y ,可得l 的极坐标方程为ρcos θ+ρsin θ-2=0.答案:ρsin ⎝⎛⎭⎫θ+π4= 216.(重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4,①⎩⎪⎨⎪⎧x =t 2,y =t 3化为普通方程为y 2=x 3,② ①②联立得A (4,8),B (4,-8), 故|AB |=16. 答案:16三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y 2.由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧ x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数) (2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.18.(江苏高考)(本小题满分12分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y=2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1. 19.(福建高考)(本小题满分12分)已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π).(1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ)∴图象为抛物线.设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ,消去θ得顶点轨迹是椭圆x 216+y 29=1.(2)联立⎩⎪⎨⎪⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0. 弦长|AB |=|y 1-y 2|=47-2cos θ, 当cos θ=-1,即θ=π时,弦长最大为12. 20.(本小题满分12分)曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.解:由题意,设A (ρ1,θ),B (ρ2,π+θ),C ⎝⎛⎭⎫ρ3,θ+π2,D ⎝⎛⎭⎫ρ4,θ+3π2. 则|AB |+|CD |=(ρ1+ρ2)+(ρ3+ρ4) =21-cos θ+21+cos θ+21+sin θ+21-sin θ=16sin 22θ.∴当sin 22θ=1即θ=π4或θ=3π4时,两条直线的倾斜角分别为π4,3π4时,|AB |+|CD |有最小值16.21.(辽宁高考)(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数).求a ,b 的值. 解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4. 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0.由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.22.(辽宁高考)(本小题满分12分)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

选修模块好题选修4-4)全套含答案

选修模块好题选修4-4)全套含答案

C.一条直线和一个圆 D .一个圆
x 3 4t
1.直线
(t为 参 数 ) 的斜率为 ______________________ 。
y 4 5t
2.参数方程
t
t
xe e
( t为 参 数 ) 的普通方程为 __________________ 。
t
t
y 2( e e )
), ( k Z ) 3
x 1 3t
53 )
2
2
5. D
2
y2
22
y2
x t,
1 t 1 x ,x
1, 而 t 0, 0 1 t 1,得 0 y 2
4
4
6. C
x 2t y 1t
x 2 2t 2 , 把 直 线
2
2 y 1 2t
2
x
2
t 代入
(x
2
3)
y 1t
2
( y 1)
25 得
2
( 5 t)
(2
2
t)
2
25, t
7t
2
0 , t1 t2
5
4.若点 P (3, m ) 在以点 F 为焦点的抛物线 x 4t 2 (t为 参 数 ) 上,则 P F 等于(

y 4t
A. 2 5.极坐标方程
B. 3
C. 4
cos 2 0 表示的曲线为(

D. 5
A.极点
B.极轴
C.一条直线
6.在极坐标系中与圆
4 sin 相切的一条直线的方程为(
D .两条相交直线 )
1 A. ( , 2 )
2
31 B. ( , )
42

成都石室联合中学金沙校区高中数学选修4-4第二章《参数方程》检测(含答案解析)

成都石室联合中学金沙校区高中数学选修4-4第二章《参数方程》检测(含答案解析)

一、选择题1.设直线1l 的参数方程为113x ty t =+⎧⎨=+⎩(t 为参数),直线2l 的方程为34y x =+,则1l 与2l 的距离为( )A .1BCD .22.已知直线:60l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为( ) A.2 B.C.D.2+3.直线2413x t y t =-+⎧⎨=--⎩(t 为参数)被圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为( ) A .6B .5C .8D .74.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 5.已知点(,)P x y 的坐标满足条件1,1,350,x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩点(43,31)Q m m +-,则||PQ 的最小值为( ) A .2 B .115C .95D .16.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A.4 BC.2D.57.已知椭圆()222210,x y a b M a b+=>>为椭圆上一动点,1F 为椭圆的左焦点则线段1MF 的中点P 的轨迹是( ) A .椭圆 B .圆 C .双曲线的一支 D .线段8.已知M 为曲线3sin :cos x C y θθ=+⎧⎨=⎩(θ为参数)上的动点,设O 为原点,则OM 的最大值是 A .1 B .2 C .3 D .49.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r10.直线(为参数)与圆(为参数)的位置关系是( )A .相离B .相切C .过圆心D .相交不过圆心 11.动点1293cos 4sin 1,cos sin 2(55M θθθθθ⎛⎫--++ ⎪⎝⎭为参数)的轨迹的普通方程为( )A .22(1)(2)1259x y +-+=B .22(1)(2)1259x y -++=C .22(1)(2)1925x y +-+=D .22(1)(2)1925x y -++=12.在平面直角坐标系中,参数方程2211x ty t⎧=-⎪⎨=+⎪⎩(t 是参数)表示的曲线是( ) A .一条直线 B .一个圆 C .一条线段D .一条射线二、填空题13.已知曲线C 参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),直线l 方程为:250x y -+=,将曲线C 横坐标缩短为原来的12,再向左平移1个单位,得到曲线1C ,则曲线1C 上的点到直线l 距离的最小值为______.14.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.15.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴,建立极坐标系.已知抛物线C 的极坐标方程为2cos 4s 0()in ρθθρ≥=,直线l 的参数方程为31x ty t ⎧=⎪⎨=+⎪⎩(t 为参数).设直线l 与抛物线C 的两个交点为A 、B ,点F 为抛物线C 的焦点,则||||AF BF 的值为________.16.直线415{315x ty t =+=--(t 为参数)被曲线2cos 4πρθ⎛⎫=+ ⎪⎝⎭所截得的弦长为 .17.坐标系与参数方程选做题)直线截曲线(为参数)的弦长为___________18.已知曲线2cos 5:,0,sin 6x y θπθθ=⎧⎛⎫⎡⎤Γ∈⎨⎪⎢⎥=⎣⎦⎝⎭⎩上一动点P ,曲线Γ与直线1x =交于点Q ,则OP OQ ⋅的最大值是_________.19.已知直线212:(222x l t y t ⎧=--⎪⎪⎨⎪=+⎪⎩为参数)与曲线:(2x cos C y sin θθθ=⎧⎪⎨=⎪⎩为参数)交于,A B 两点,则点()1,2M -与,A B 两点的距离之积MA MB ⋅=______.20.已知点()11,A x y ,()22,B x y 是椭圆2212x y +=两个不同的动点,且满足11222x y x y ⋅+⋅=-2212x x +的值是_____. 三、解答题21.已知曲线1C 的极坐标方程为1ρ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy . (1)若曲线2C :12x ty t=+⎧⎨=+⎩(t 为参数)与曲线1C 相交于两点A ,B ,求AB ;(2)若M 是曲线1C 上的动点,且点M 的直角坐标为(,)x y ,求2x y +的最大值.22.已知直线l 的参数方程为2122x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).在平面直角坐标系xOy 中,()1,2P ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线M 的极坐标方程为4cos ρθ=,直线l 与曲线M 交于A ,B 两点. (1)求曲线M 的直角坐标方程; (2)求PA PB ⋅的值.23.在直角坐标系xOy 中,曲线1C 的参数方程为213x ty t=+⎧⎨=+⎩ (t 为参数),曲线2C 的参数方程为212x m y m ⎧=-⎨=⎩(m 为参数). (1)求曲线1C ,2C 的普通方程;(2)已知点(2,1)M ,若曲线1C ,2C 交于A ,B 两点,求||MA MB -‖‖的值.24.已知曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的极坐标方程为cos()4πρθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程; (2)设点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 25.在直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)若曲线C 上两点,M N ,有OM ON ⊥,求OMN 面积最小值.26.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x xy y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】消掉参数t ,得出直线1l 的普通方程,再由两平行线的距离公式求解即可. 【详解】∵1:32l y x =-,234l x =+,∴d ===. 故选:C 【点睛】本题主要考查了参数方程化普通方程,求两平行线间的距离,属于中档题.2.A解析:A 【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -. 【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式, 圆22:(1)(1)4C x y -+-= ,圆心C 为(1,1) ,半径2r.已知直线:60l x y -+=,那么,圆心C 到直线l 的距离为d r ==> ,故直线l 与圆C 相离,所以C 上各点到l 的距离的最小值为2d r -=. 故选:A. 【点睛】本题主要考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.3.A解析:A 【分析】把直线和圆的参数方程化为普通方程,结合点到直线的距离公式和利用圆的弦长公式,即可求解. 【详解】由题意,直线2413x ty t =-+⎧⎨=--⎩(t 为参数)可得直线的方程为34100x y ++=,圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的普通方程为22(2)(1)25x y -+-=, 可得圆心(2,1)C ,半径为=5r ,所以圆心到直线34100x y ++=的距离为4d ==,由圆的弦长公式可得,弦长6L ===. 故选:A. 【点睛】本题主要考查了参数方程与普通方程的互化,以及直线与圆的位置关系的应用,其中解答中把参数方程化为普通方程,结合圆的弦长公式求解是解答的关键,着重考查推理与运算能力.4.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。

人教版高中数学选修4-4 模块综合评价

人教版高中数学选修4-4 模块综合评价

模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的直角坐标是(-1,3),则点M 的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z) 解析:点M 的极径是2,点M 在第二象限,故点M 的极坐标是⎝⎛⎭⎪⎫2,2π3.答案:C2.极坐标方程cos θ=32(ρ∈R)表示的曲线是( )A .两条相交直线B .两条射线C .一条直线D .一条射线解析:由cos θ=32,解得θ=π6或θ=116π,又ρ∈R ,故为两条过极点的直线.答案:A3.曲线ρcos θ+1=0关于直线θ=π4对称的曲线的方程是( )A .ρsin θ+1=0B .ρcos θ+1=0C .ρsin θ=2D .ρcos θ=2解析:因为M (ρ,θ)关于直线θ=π4的对称点是N ⎝ ⎛⎭⎪⎫ρ,π2-θ,从而所求曲线方程为ρcos ⎝ ⎛⎭⎪⎫π2-θ+1=0,即ρsin θ+1=0. 答案:A4.直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)解析:将x =1+t2,y =-33+32t 代入圆方程,得⎝ ⎛⎭⎪⎫1+t 22+⎝ ⎛⎭⎪⎫-33+32t 2=16, 所以t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,所以x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3). 答案:D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1解析:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0或ρcos θ=x =1. 答案:C6.极坐标方程分别是ρ=2cos θ和ρ=4sin θ的两个圆的圆心距是( )A .2 B.2 C .5 D. 5解析:ρ=2cos θ是圆心为(1,0),半径为1的圆;ρ=4sin θ是圆心为()0,2,半径为2的圆,所以两圆的圆心距是 5.答案:D7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎪⎨⎪⎧x =4t +3,y =3t +1(t 为参数)的距离为( )A .1B .2C .3D .4解析:由题意易知圆的圆心M (1,2),由直线的参数方程化为一般方程为3x -4y -5=0,所以圆心到直线的距离为d =|3×1-4×2-5|32+42=2.答案:B8.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( ) A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3 C.⎝⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6解析:点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标为⎝⎛⎭⎪⎫1,4π3. 答案:A9.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)和参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)所表示的图形分别是( )A .直线、射线和圆B .圆、射线和双曲线C .两直线和椭圆D .圆和抛物线解析:因为(ρ-1)(θ-π)=0,所以ρ=1或θ=π(ρ≥0),ρ=1表示圆,θ=π(ρ≥0)表示一条射线,参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)化为普通方程为y 24-x 2=1,表示双曲线.答案:B10.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =at ,y =a 2t -1(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =2sin θ(θ为参数),且它们总有公共点.则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0∪(0,+∞) B .(1,+∞)C.⎣⎢⎡⎭⎪⎫-32,+∞D.⎣⎢⎡⎭⎪⎫-32,4 解析:由已知得⎩⎪⎨⎪⎧at =1+cos θ,a 2t -1=2sin θ,则4(at -1)2+(a 2t -1)2=4, 即a 2(a 2+4)t 2-2a (a +4)t +1=0,Δ=4a 2(a +4)2-4a 2(a 2+4)=16a 2(2a +3). 直线l 与椭圆总有公共点的充要条件是Δ≥0, 即a ≥-32.答案:C11.已知圆锥曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为( )A .ρcos θ+3ρsin θ= 3B .ρcos θ-3ρsin θ= 3 C.3ρcos θ+ρsin θ= 3 D.3ρcos θ-ρsin θ= 3解析:圆锥曲线为椭圆,c =1,故F 2的坐标为(1,0),直线AF 2的直角坐标方程是x +y3=1,即3x +y =3,化为极坐标方程就是3ρcos θ+ρsin θ= 3.答案:C12.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,直线l 的参数方程为⎩⎨⎧x =2t -1,y =22t(t 为参数),则直线l 与曲线C 相交所得弦长为( )A .1B .2C .3D .4解析:曲线C 的直角坐标方程为x 2+y 2-6y =0, 即x 2+(y -3)2=9,直线⎩⎨⎧x =2t -1,y =22t的直角坐标方程为x -2y +1=0, 因为圆心C 到直线l 的距离d =|0-2×3+1|12+(-2)2=5,所以直线l 与圆C 相交所得弦长为2r 2-d 2= 29-5=4. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在极坐标系中,点⎝⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为________.解析:结合图形不难知道点⎝ ⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为⎝⎛⎭⎪⎫22,π4. 答案:⎝⎛⎭⎪⎫22,π414.已知圆的渐开线的参数方程⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数),当φ=π4时,对应的曲线上的点的坐标为________.解析:当φ=π4时,代入渐开线的参数方程,得⎩⎪⎨⎪⎧x =3cos π4+3·π4·sin π4,y =3sin π4-3·π4·cos π4,x =322+32π8,y =322-32π8,所以当φ=π4时,对应的曲线上的点的坐标为⎝ ⎛⎭⎪⎫322+32π8,322-32π8. 答案:⎝ ⎛⎭⎪⎫322+32π8,322-32π8 15.若直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=32,曲线C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.解析:直线的直角坐标方程为x +y -6=0,曲线C 的方程为x 2+y 2=1,为圆;d 的最大值为圆心到直线的距离加半径,即为d max =|0+0-6|2+1=32+1. 答案:32+116.在直角坐标系Oxy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a >b >0).在极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=32,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则a =________.解析:椭圆C 的普通方程为x 2a 2+y 2b 2=1(a >b >0),直线l 的直角坐标方程为x -3y -3=0,令x =0,则y =-1,令y =0,则x =3,所以c =3,b =1,所以a 2=3+1=4,所以a =2. 答案:2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1. 18.(本小题满分12分)在极坐标系下,已知圆O :ρ=cos θ+sinθ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)由ρ=cos θ+sin θ,可得ρ2=ρcos θ+ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,代入得⊙O :x 2+y 2-x -y =0, 由l :ρsin ⎝⎛⎭⎪⎫θ-π4=22,得:22ρsin θ-22ρcos θ=22,ρsin θ-ρcos θ=1,又⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,代入得:x -y +1=0.(2)由⎩⎪⎨⎪⎧x -y +1=0,x 2+y 2-x -y =0,解得⎩⎪⎨⎪⎧x =0,y =1,又⎩⎨⎧ρ2=x 2+y 2,tan θ=y x ,得ρ=1,tan θ不存在, 又因为θ∈(0,π),则θ=π2,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.19.(本小题满分12分)已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t (t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)当m =2时,直线l 与曲线C 交于A 、B 两点,求|AB |的值. 解:(1)由ρ=2cos θ,得:ρ2=2ρcos θ,所以x 2+y 2=2x ,即(x -1)2+y 2=1, 所以曲线C 的直角坐标方程为(x -1)2+y 2=1. 由⎩⎨⎧x =32t +m ,y =12t 得x =3y +m ,即x -3y -m =0,所以直线l 的普通方程为x -3y -m =0. (2)设圆心到直线l 的距离为d , 由(1)可知直线l :x -3y -2=0, 曲线C :(x -1)2+y 2=1,圆C 的圆心坐标为(1,0),半径1, 则圆心到直线l 的距离为d =|1-3×0-2|1+(3)2=12. 所以|AB |=21-⎝ ⎛⎭⎪⎫122= 3.因此|AB |的值为 3.20.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t (t 为参数),直线l 与圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标;(2)求△PAB 面积的最大值.解:(1)圆C 的直角坐标方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.所以圆心坐标为(1,-1),圆心极坐标为⎝ ⎛⎭⎪⎫2,7π4. (2)直线l 的普通方程为22x -y -1=0,圆心到直线l 的距离d =|22+1-1|3=223, 所以|AB |=22-89=2103, 点P 到直线AB 距离的最大值为2+223=523,故最大面积S max =12×2103×523=1059. 22.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点、x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.。

(北师大版)宁波市高中数学选修4-4第二章《参数方程》测试题(有答案解析)

(北师大版)宁波市高中数学选修4-4第二章《参数方程》测试题(有答案解析)

一、选择题1.已知直线:60l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为( ) A .322-B .32C .23D .322+2.在极坐标系中,曲线C 的方程为22312sin ρθ,以极点O 为直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系xOy ,设(),P x y 为曲线C 上一动点,则1x y +-的取值范围为( )A .31,31⎡⎤---⎣⎦B .[]3,1-C .[]22-,D .[]2,1--3.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() A .33B .33-C .3D .33±4.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .5.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为( ) A 22B .22C 6D .46.记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(12n =,,),当点()x y ,分别在1Ω,2Ω,…上时,x y +的最大值分别是1M ,2M ,…,则lim n n M →+∞=( ) A .0B .14C .2D .227.在直角坐标系xOy 中,过点()1,2P -的直线l 的参数方程为212222x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与抛物线2y x 交于点,A B ,则PA PB ⋅的值是( )A 2B .2C .32D .108.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC 2(sin θ+cos θ)=rD 2(sin θ+cos θ)=-r9.直线22{x ty t=+=-(t 为参数)被曲线4cos p θ=所截的弦长为( )A .4B 85C 165D .810.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB.CD.11.参数方程22sin {12x y cos θθ=+=-+ (θ为参数)化成普通方程是( )A .240x y -+=B .240x y +-=C .[]240,2,3x y x -+=∈D .[]240,2,3x y x +-=∈ 12.动点1293cos 4sin 1,cos sin 2(55M θθθθθ⎛⎫--++ ⎪⎝⎭为参数)的轨迹的普通方程为( )A .22(1)(2)1259x y +-+=B .22(1)(2)1259x y -++=C .22(1)(2)1925x y +-+=D .22(1)(2)1925x y -++=二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.过椭圆C:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,则11m n+的值为______. 15.点P 在椭圆7x 2+4y 2=28上,则点P 到直线3x -2y -16=0的距离的最大值为________ 16.曲线C 的参数方程为4cos sin x y αα=⎧⎨=⎩(α为参数),M 是曲线C 上的动点,若曲线T极坐标方程2sin cos 20ρθρθ+=,则点M 到T 的距离的最大值为__________. 17.已知(3,0)A -,(3,0)B ,点P 在圆22(3)(4)4x y -+-=上运动,则22PA PB +的最小值是________.18.在平面直角坐标系xOy 中,直线l 的参数方程为5,4x t y t=+⎧⎨=--⎩(t 为参数),圆C 的参数方程是cos ,sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 与圆C 交于两个不同的点A 、B ,当点P 在圆C 上运动时,PAB ∆面积的最大值为__________. 19.若点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,R θ∈)上,则yx 的最小值是__________. 20.已知圆心是直线(1x tt y t =⎧⎨=-⎩为参数)与x 轴的交点,且与直线340x y c -+=相切的圆C 的极坐标方程是2cos ρθ=,则c = .三、解答题21.在平面直角坐标系xOy 中,曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),在以直角坐标系的原点为极点,x 轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为sin 4πρθ⎛⎫-=⎪⎝⎭(1)求曲线C 在直角坐标系中的普通方程和直线l 的倾斜角.(2)设点()0,1P ,若直线l 与曲线C 相交于不同的两点,A B ,求||||PA PB +的值. 22.以直角坐标系xOy 的原点为极坐标系的极点,x 轴的正半轴为极轴.已知曲线1C 的极坐标方程为4cos 8sin ρθθ=+,P 是1C 上一动点,2OP OQ =,点Q 的轨迹为2C . (1)求曲线2C 的极坐标方程,并化为直角坐标方程; (2)若点(0,1)M ,直线l 的参数方程cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数),直线l 与曲线2C 的交点为A B ,,当MA MB +取最小值时,求直线l 的普通方程.23.在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos sin x t y αα=⎧⎨=⎩,(0,t α>为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线lsin()34πθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值; (Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.24.在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.已知直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭C 的极坐标方程为2sin cos ρθθ=. (1)写出直线l 和曲线C 的直角坐标方程;(2)过动点20000()(),P x y y x <且平行于l 的直线交曲线C 于,A B 两点,若2PA PB ⋅=,求动点P 到直线l 的最近距离.25.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x x y y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.26.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -. 【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式,圆22:(1)(1)4C x y -+-= ,圆心C 为(1,1) ,半径2r.已知直线:60l x y -+=,那么,圆心C 到直线l的距离为d r ==> ,故直线l 与圆C 相离,所以C 上各点到l的距离的最小值为2d r -=. 故选:A. 【点睛】本题主要考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.2.B解析:B 【分析】 将曲线C 的方程22312sin ρθ化为直角坐标形式,可得2213x y +=,设x α=,sin y α=,由三角函数性质可得1x y +-的取值范围.【详解】解:将cos =x ρθ ,sin y ρθ=代入曲线C 的方程22312sin ρθ,可得:2222sin 3ρρθ+=,即2233x y +=,2213x y+=设x α=,sin y α=,可得1sin 1sin )12sin()1213x y πααααα+-=-=+++--=, 可得1x y +-的最大值为:1,最小值为:3-, 故选:B. 【点睛】本题主要考查极坐标和直角坐标的互换及椭圆的参数方程,属于中档题,注意运算准确.3.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

(完整版)高中数学选修4-4习题(含答案)

(完整版)高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系中,直线的参数方程为为参数),以原点xOy l 12,(2x t t y t =+⎧⎨=-⎩为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线O x 的极坐标方程为 .C 22cos 4sin 40ρρθρθ+++=(1)求的普通方程和的直角坐标方程;l C (2)已知点是曲线上任一点,求点到直线距离的最大值.M C M l 2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长O x 度单位相同。

直线的极坐标方程为:,点,参数l ρ=102sin (θ‒π4)P (2cosα,2sinα+2).α∈[0,2π](I )求点轨迹的直角坐标方程;P (Ⅱ)求点到直线距离的最大值.P l1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-=因为,222,cos ,sin x y x y ρρθρθ=+==所以,即222440x y x y ++++=22(1)(2)1x y +++=(2)因为圆心到直线,(1,2)--10x y +-==所以点到直线距离的最大值为M l 1.r +=+2、解:(Ⅰ)设,则,且参数,P (x ,y ){x =2cosαy =2sinα+2 α∈[0,2π]消参得:x 2+(y ‒2)2=4所以点的轨迹方程为P x 2+(y ‒2)2=4(Ⅱ)因为ρ=102sin (θ‒π4)所以ρ2sin (θ‒π4)=10所以,ρsinθ‒ρcosθ=10所以直线的直角坐标方程为l x ‒y +10=0法一:由(Ⅰ)点的轨迹方程为P x 2+(y ‒2)2=4圆心为(0,2),半径为2.,d =|1×0‒1×2+10|12+12=42点到直线距离的最大值等于圆心到直线距离与圆的半径之和,P l l 所以点到直线距离的最大值.P l 42+2法二:d =|2cosα‒2sinα‒2+10|12+12=2|cosα‒sinα+4|=2|2cos (α+π4)+4|当时,,即点到直线距离的最大值为.a =74πd max =42+2P l 42+26.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲C 1{x =cosθy =3sinθθ线的参数方程为(,t 为参数).C 2{x =4‒22ty =4+22tt ∈R(1)求曲线的普通方程和曲线的极坐标方程;C 1C 2(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.C 1C 24.在直角坐标系中曲线的参数方程为(为参数,以坐标原xOy 1C cos x y αα=⎧⎪⎨=⎪⎩α点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为x 2C .sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出的普通方程和的直角坐标方程;1C 2C (2)设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C ||PQ P3、【详解】(1)对曲线:,,C 1cos 2θ=x 2sin 2θ=y 23∴曲线的普通方程为.C 1x 2+y 23=1对曲线消去参数可得且C 2t t =(4‒x )×2,t =(y ‒4)×2,∴曲线的直角坐标方程为. C 2x +y ‒8=0又,∵x =ρcosθ,y =ρsinθ∴ρcosθ+ρsinθ‒8=2ρsin (θ+π4)‒8=0从而曲线的极坐标方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修4-4模块训练题一、选择题(本大题共10个小题,每小题5分,共50分) 1.若直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2-4t (t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35 C.35 D.452.椭圆x 29+y 24=1的点到直线x +2y -4=0的距离的最小值为( ) A.55 B. 5 C.655D .0 3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0 B. 2 C.2+1 D.2-1 4.直线⎩⎨⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165°5.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )、A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1 D .θ=0(ρ∈R ) 和ρcos θ=16.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2 D .2 27.已知点P 的极坐标为(π,π),过点P 且垂直于极轴的直线的极坐标方程为( )A .ρ=πB .ρ=cos θC .ρ=πcos θD .ρ=-πcos θ8.已知直线l :⎩⎨⎧x =2+t ,y =-2-t(t 为参数)与圆C :⎩⎨⎧x =2cos θ+1,y =2sin θ(0≤θ≤2π),则直线l 的倾斜角及圆心C 的直角坐标分别是( )A.π4,(-1,0) B.π4,(-1,0) C.3π4,(1,0) D.3π4,(-1,0) 9.在极坐标系中,若过点A (3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A ,B 两点,则|AB |=( )A .2 3 B. 3 C .2 D .1 10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13二、填空题(本大题有4小题,每小题5分,共20分)11.在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.12.已知曲线C 1的参数方程是⎩⎨⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.13.已知直线l 的参数方程为⎩⎨⎧x =2+t ,y =3+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.14.在极坐标系中,曲线C 1 与C 2 的方程分别为 2ρcos 2θ=sin θ与 ρcosθ=1,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,则曲线C 1 与C 2交点的直角坐标为________.三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α,0≤α≤2π,M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.16.(本小题满分12分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程; (2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.17.(本小题满分12分)已知曲线C:x24+y29=1,直线l:⎩⎨⎧x=2+t,y=2-2t(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值..18.(本小题满分14分)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.高中数学选修4-4模块训练题答案1解析:选B 由l 的参数方程可得l 的普通方程为4x +3y -10=0,设l 的倾斜角为θ,则tan θ=-43.由1cos 2θ=sin 2θ+cos 2θcos 2θ=tan 2θ+1,得cos 2θ=925.又π2<θ<π, ∴cos θ=-35.2.柱坐标⎝ ⎛⎭⎪⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1)解析:选C 由直角坐标与柱坐标之间的变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,可得⎩⎨⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0 \ B. 2 C.2+1D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|PA |min =2-1.4.直线⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165°解析:选A 参数方程⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°⇒⎩⎪⎨⎪⎧x =sin θ+t cos 75°,y =cos θ-t sin 75°.消去参数t ,得y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan(180°-75°)=tan 105°. 故直线的倾斜角是105°.5.(高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ) A .θ=0(ρ∈R )和ρcos θ=2 B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1 D .θ=0(ρ∈R ) 和ρcos θ=1解析:选B 由ρ=2cos θ,可得圆的直角坐标方程为(x -1)2+y 2=1,所以垂直于x 轴的两条切线方程分别为x =0和x =2,即所求垂直于极轴的两条切线方程分别为θ=π2(ρ∈R )和ρcos θ=2,故选B.6.(高考)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2D .2 2解析:选D 由题意得,直线l 的普通方程为y =x -4,圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =|2-0-4|2=2,直线l 被圆C 截得的弦长为222-22=2 2.7.已知点P 的极坐标为(π,π),过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ解析:选D 设M (ρ,θ)为所求直线上任意一点, 由图形知OM cos ∠POM =π, ∴ρcos (π-θ)=π. ∴ρ=-πcos θ.8.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t(t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(0≤θ≤2π),则直线l 的倾斜角及圆心C 的直角坐标分别是( )A.π4,(-1,0) B.π4,(-1,0)\ C.3π4,(1,0) D.3π4,(-1,0) 解析:选C 因为直线l 的普通方程为y =-x ,所以其斜率是-1,倾斜角是3π4.将圆的参数方程化为普通方程得(x -1)2+y 2=4,所以圆心C 的直角坐标是(1,0),故选C.9.在极坐标系中,若过点A (3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A ,B 两点,则|AB |=( )A .2 3 B. 3 C .2D .1解析:选A 曲线ρ=4cos θ可转化为(x -2)2+y 2=4,则圆心(2,0)到直线x =3的距离是1,所以|AB |=2 4-1=2 3.10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 二、填空题(本大题有4小题,每小题5分,共20分)11.(高考)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.解析:由题意知,点⎝⎛⎭⎪⎫2,π6的直角坐标是(3,1),直线ρsin θ=2的直角坐标方程是y =2,所以所求的点到直线的距离为 1.12.(高考)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为____答案:(3,1)解析:由题意,得⎩⎪⎨⎪⎧x =ty =3t3 ⇒x 2=3y 2(x ≥0,y ≥0),曲线C 2的普通方程为x 2+y2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4x 2=3y2,得⎩⎨⎧x =3,y =1,即C 1与C 2的交点坐标为(3,1).13.(高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=__答案: 5解析:依题意,直线l 与曲线C 的直角坐标方程分别是x -y +1=0,y 2=4x .由⎩⎪⎨⎪⎧x -y +1=0,y 2=4x得x 2-2x +1=0,解得x =1,则y =2,因此直线l 与曲线C 的公共点的直角坐标是(1,2),该点与原点的距离为12+22=5,即直线l 与曲线C 的公共点的极径ρ= 5.14.(高考)在极坐标系中,曲线C 1 与C 2 的方程分别为 2ρcos 2θ=sin θ与 ρcos θ=1,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,则曲线C 1 与C 2交点的直角坐标为_答案:(1,2)解析:由2ρcos 2θ=sin θ⇒2ρ2cos 2θ=ρsin θ⇒2x 2=y ,又由ρcos θ=1⇒x=1,由⎩⎪⎨⎪⎧2x 2=y ,x =1⇒⎩⎪⎨⎪⎧x =1,y =2,故曲线C 1与C 2交点的直角坐标为(1,2).三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α,0≤α≤2π,M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2.因为M 点在C 1上,所以 ⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.16.(本小题满分12分)(新课标卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 17.(本小题满分12分)(新课标卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.18.(本小题满分14分)(高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.。

相关文档
最新文档