留数定理在定积分计算中的应用论(参考模板)
留数定理在定积分中的应用

留数定理在定积分中的应用摘 要 留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文介绍留数定义和留数定理以及一些改进的留数计算方法,并讨论了留数理论在定积分计算中的应用。
关键词 留数定理;定积分;应用1. 留数定义定理及其他一些定理1.1 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.1.2 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…nC -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1 []1(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分)()()12Re knz a k Cf z dz i s f z π===∑⎰.2.留数定理在计算积分中的应用2.1 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
5.3_留数在定积分计算中的应用

K
故,我们得到
R iax R CR
0
iaz
Jordan引理3.1见下页
K
R ( x )e dx R ( z )e dz 2i Re s[ R ( z )e iaz , z k ]
k 1
从上面可以看出 本方法可以计算下列形式的积分: ,
R
R
R( x ) cos axdx R( x ) sin axdx ,
于是 1 p2 1 p4 I 2i 2 2ip 2ip 2 (1 p 2 )
6
(2) 形如 R( x)dx的积分
(有理函数积分)
(1) 被积函数与某一个解析函数相关联.
用z替换 x
要求!!
z n a1 z n 1 a n (1) 设R ( x ) R ( z ) m , m n 2. m 1 z b1 z bm 且 R ( z )在实轴上没有奇点.
用z替换 x
且 R ( z )在实轴上没有奇点.
(2) 积分线可化成沿着某个闭路的积分.
取积分路线如图,则构成了一个 闭路C C R [ R, R ], 使得R ( z )e
iaz
(2)
z2 zK
CR
z1
-R
R
在上半平面内所有的奇点都含于C内.
于是,有
R
R
R( x )e dx R ( z )e dz 2i Re s[ R ( z )e iaz , z k ]
函数R( z )在上半平面内的所有奇点为z ai, 且都为一级极点.
ze iz ea Re s[ R( z )e , ai] lim ( z ai) z ai ( z ai)( z ai) 2 于是,有
§5.3—留数在定积分计算中的应用

0
π
dx 2 ( a 0). a sin x
8
§ 5.3
例2
π
留数在定积分中的应用
计算
0
π
dx 2 ( a 0). a sin x
π dx dx 1 π d2 x 解: 0 2 a sin x 0 a 1 cos 2 x 2 0 a 1 cos 2 x 2 2 令 2x t,
留数,从而简化计算.
1
主要内容:
一、形如 二、形如
0 R(cos , sin )d R( x )dx
2π
三、形如
R( x )e aixdx (a 0)
四、小结与思考
2
§ 5.3
2π
留数在定积分中的应用
一、形如 0 R(cos , sin )d 的积分
z1. .
CR
zk 都包在这积分路线内.此时
R
.
0
.
R
x
C R 与 R, R 一起构成封闭曲线C , R(z)在C及其
内部(除去有限孤立奇点)处处解析. 根据留数定理得 :
R R( x )dx C
R
R
R( z )dz 2π i Res[R( z ), zk ],
此式不因 C R 的半径 R 不断增大而有所改变.
18
§ 5.3
因为
留数在定积分中的应用
1 z
z
mn
R( z )
1 a1 z 1 an z n 1 b1 z 1 bm z m
1 a1 z 1 an z n 1 b1 z 1 bm z m
1
留数在定积分计算上的应用

2
f z dz 2 i Re s f z , z k 其中C为单位圆: z 1 正向.
C k 1
n
zk k 1,2,, n 为包含在C内的f(z)的孤立奇点.
f(z)为z的有理函数,且在C上分母不为零,满足留数定理的条件,而
例1 计算I
为了使积分路线不通过奇点,取图示路线。
按照柯西-古萨基本定理,有
e e e e C R z dz R x dx Cr z dz r x dx 0
r R
iz
ix
iz
ix
从而上式中
r e R ix
ix e R r e r e dx , 令 x t, 则 R dt r dx R x t x
0
i Re sRz , zk
1 R x dx R x dx 2
应用公式 R x dx 2 i Re sRz , zk 要注意:
(1) R(x)中分母的次数至少比分子的次数高二次.并且R(z)在实轴 上没有孤立奇点. (2)zk是 R(z)所有的在上半平面内的奇点. 2 x dx .a 0, b 0的值。 例2 计算积分 I 2 2 2 2 x a x b [解] 这里 m 4, n 2, m n 2, z2 并且实轴上Rz 2 z a 2 z 2 b 2 没有孤立奇点,因此积分是存在的。
aRsin e d 0
2 ay e ds z
aR
2 2
0
2 1 e aR aR
y 1
2
y
2
留数在定积分计算中的应用

p]
lim
z p
(
z
p)
1 z4 2iz2(1 pz)(z
p)
因此
1 2ip2 (1
p4 p2
, )
I
2π
i
1 p2 2ip2
1 2ip2 (1
p2 p2 )
2π 1
p2 p2
.
例2
计算
π
0
1
dx sin 2
. x
解
π
0
1
dx sin 2
x
π
0
1
1
dx cos
2x
0π 2
d2 x 1 cos
2
x
2
令 2x t,
02 π
3
dt cos
t
1
z 1
3
(z2
1)
dz 2z 2
6
z
. 1
极点为 : z1 3 2 2
z2 3 2 2
CR Q(z)
0
P(R ei Q( R
)iR ei ei )
d
;
由于分母Q(z)的次数比分子P(z)的次数至少高两次,则
zP(z) 0, 当z 时. 即 Q(z)
P( R ei )R ei Q(R ei )
0,
当z
R 时.
从而
R :
R(z)dz 0 ;
m ema. 4a
注意 以上两型积分中被积函数中的R(z)在实轴
留数在定积分计算上的应用

0
2
Res[R(z), zk ].
例 4
计算
x2
x4
x2
dx 1
z 4 z 2 1 (z 2 1)2 z 2 (z 2 z 1)(z 2 z 1) 0
f (z) z 2 的四个一阶极点为: z4 z2 1
1 z1,2 2
3
1
2
i, z3,4
2
3 2
i,
其中z1
R
|z|1
z2 1, 2z
z2 1
2iz
dz iz
|z|1
f
(z)d
z
其中f (z)是z的有理函数, 且在单位圆周|z|=1上分母不为零, 根据留数定理有
n
f (z) d z 2π i Res[ f (z), zk ]
|z|1
k 1
其中zk (k=1,2,...,n)为单位圆 |z|=1内的 f (z)的孤立奇点.
§5.3 留数在定积分计算上的应用
留数定理是复变函数的定理,若要在实变函数定积 分中应用,必须将实变函数变为复变函数。这就要利 用解析延拓的概念。留数定理又是应用到回路积分的, 要应用到定积分,就必须将定积分变为回路积分中的 一部分。
b
l2
如图,对于实积分 a f (x)dx ,变量 x
定义在闭区间 [a,b] (线段 l1 ),此区间
rx
z CR
z Cr
R sin x
eiz
eiz
2i
dx dz dz .
rx
z CR
z Cr
因此, 要算出所求积分的值, 只需求出极限
lim eiz dz与lim eiz dz
z R CR
z r0 Cr
留数在定积分计算中的应用

3
§5.3 留数在定积分计算中的应用
第 五 章 P120 例5.24
留 解 由 1 2 p cos p2 (1 p)2 2 p(1 cos ) 及 0 p 1,
数 及
可知被积函数的分母不为零,因而积分是有意义的。
其 应
(1) 令 z ei ,
用
则 d d z , cos z z1 ,
在上半平面内, i 为一阶极点,
数
及 其
eiaz
Res[ f (z) , i ] 2z
ea
. 2i
应
z i
用
(2)
e ia x
ea
x2 1 dx 2 πi 2i
πea,
0
cos a x x2 1
dx
πea
2
;
同理
0
cos b x x2 1
iz
2
cos 2 ei2 ei2 z2 z2 ,
2
2
4
§5.3 留数在定积分计算中的应用
第
五
章
留
数
解
(2)
I
| z|1
z2 z2 2
1
2
p
z
1
z 1
p2
dz iz
及
2
其 应 用
| z|1
1 z4 2i z2(1 pz)(z
及
其 应
(3)
x2
x cos 2x
x
10
dx
π 3
e3 (cos1 3sin1);
用
x2
第五章 留数 留数在定积分计算中的应用

个有界区域,函数 f(z) 在 D 内除有限个孤立
奇点 z1 , z2 ,..., zn外处处解析. C是D内包围各 奇点的一条正向简单闭曲线,那么我们有:
n
C
f ( z )dz 2i Res[ f理的基本思想
D
zn C3 Cn z1 z2
z3
C1
显然,函数在z0处的留数C1就是积分 1 f ( z )dz 2 i C 的值.
其中,C为函数f ( z )的去心邻域0 z - z0 R 内绕z0的闭曲线,方向为逆时针方向.
注:留数Res[f(z), z0] 与圆C的半径r无关.
二、留数定理
定理 5.1 (留数定理)设 D 是复平面上的一
C
f ( z )dz 0
如果z0是f(z)的孤立奇点,则上述积分就不 一定等于零。
定义5.1 设z0是解析函数f ( z )的孤立奇点, 我们把f ( z )在z0处的洛朗展开式中负一次 幂项的系数C1称为f ( z )在z0处的留数.记作 Re s[ f ( z ), z0 ],即 Re s[ f ( z ), z0 ] C-1
求沿闭曲线C积分 求C内各孤立奇点处的留数.
三、留数的计算
求函数在孤立奇点处的留数的一般方法 ——将函数在以z0为中心的圆环内展开为 洛朗级数,求出级数中C-1(z-z0)-1项的系数C-1
如果z0是可去奇点,则Res[f(z), z0]=0;
如果z0是本性奇点,则往往只能用展开成洛朗
级数的方法来求C-1.
Res[f ( z ), z0 ] lim( z z0 ) f ( z )
z z0
P( z ) lim( z z0 ) z z0 Q ( z ) Q ( z0 ) P( z0 ) / Q '( z0 ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
留数定理在定积分计算中的应用引言在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理.1留数定义及留数定理1.1 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.1.2 留数的定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…n C -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1 []1(留数定理) 设()f z 在周线或复周线C 所在范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则()()12Re knz a k Cf z dz i s f z π===∑⎰. (1)证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得 ()()12Re knz a k Cf z dz i s f z π===∑⎰.2.留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.2.1形如()20cos ,sin f x x dx π⎰型的积分()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。
满足这两点之后,我们可以设ix z e =,则dz izdx =,21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z-++==得()2221011cos ,sin ,22z z z dzf x x dx f z iz izπ=⎛⎫--= ⎪⎝⎭⎰⎰()12Re knz z k i s f z π===∑.例1计算()222dxI xπ=+⎰.解:()2221021222z dxdzI iz xz z π===⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎰⎰ ()212443z zdz iz z ==+⎰1244313z zdziz z ==++⎰, 由于分母有两个根12z z ==121,1z z <>, 因此 I =142Re 43z z i s iππ=⋅=.2.2 形如()f x dx +∞-∞⎰型的积分此类积分计算时要注意,首先分析其函数特点,函数必须满足以下条件才能适用 (1)()()()P z f z Q z =,其中()P z ,()Q z 均为关于z 的多项式,且分母()Q z 的次数至少比分子()P z 的次数高两次;(2)()f z 在半平面上的极点为k z (k =1,2,3,…,n ),在实轴上的极点为kx (k =1,2,3,…,n )则有()()12Re k n z z k f x dx i s f z π+∞==-∞⎡⎤=⎢⎥⎣⎦∑⎰.例2 计算2421x I dx x x +∞-∞=++⎰. 解:取()()()224222111z z f z z z z z z z ==++-+++,孤立点为12341111,,,22222222z z z z i =+=-+=-=--,其中落在上半平面的为1z ,3z ,故()212Re k z z k I i s f z π====∑。
例3 计算()()22220x I dx a xa+∞-∞=>+⎰.解:由于()2222lim 0z z z za→∞⋅=+,且上半平面只有一个极点i a ,因此()2222x I xa+∞-∞=+⎰()22222Re z aiz i szaπ==⋅+()'222z aiz i z ai π=⎡⎤=⋅⎢⎥+⎢⎥⎣⎦2aπ=. 2.3 形如()()imxP x e dx Q x +∞-∞⎰型的积分定理2 []1(若尔当引理)设函数()g z 沿半径圆周:Re i R z θΓ=(0θπ≤<)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.证明:()00,0R εε∀>∃>,使当0R R >时,有 (),R g z z ε<∈Γ 于是()()Re sin 0ReRe i Rimzi im i mR g z e dz g ed Re d θππθθθθεθ-Γ=≤⎰⎰⎰ (2)这里利用了 ()Re ,Re i i g i R θθε<= 以及Re sin cos sin i im mR imR mR e e e θθθθ-+-==利用若尔当不等式2sin θθθπ≤≤(02πθ≤≤)将(2)化为()sin 02RimzmR g z e dz R e d πθεθ-Γ≤⎰⎰()220212mR mR e R e mR m m πθθπθπεπεεπ=--=⎡⎤⎢⎥=-=-<⎢⎥⎢⎥⎣⎦ 即 ()lim0Rimz R g z e dz Γ→+∞=⎰.例4 计算2210ixxe I dx x x +∞-∞=-+⎰.解:函数()2210izze f z z z =-+满足若尔当引理条件.这里1m =,()2210zg z z z =-+,函数有两个一阶极点13z i =+及13z i =-,()()()3'1321313Re 6210i izz iz ii e ze s f z izz -+=+=++==-+于是 2210ixxe I dx x x +∞-∞=-+⎰()31326i i e iiπ-++=()()33cos13sin13cos1sin133e ie ππ--=-++.2.4 形如()()cos P x mxdx Q x +∞-∞⎰和()()sin P x mxdx Q x +∞-∞⎰型积分定理3 []1 设()()()P x g z Q x =,其中()P x 和()Q x 是互质多项式,并且符合以下条件:(1)()Q x 的次数比()P x 的次数高; (2)在实轴上()0Q x ≠; (3)0m >.则有()()2Re kkimx imzz a ima g x e dx i s g z e π+∞=-∞⎡⎤=⎣⎦∑⎰(3)将(3)式实虚部分开,就可用得到形如()()cos P x mxdx Q x +∞-∞⎰及()()sin P x mxdx Q x +∞-∞⎰的积分. 例5 计算()()22cos 19xI dx x x +∞-∞=++⎰. 解:利用()()()221019z zz →→∞++以及若尔当引理,且分母在上半圆只有两个孤立奇点z i =和3z i =,得()()22cos 19xI x x +∞-∞=++⎰ ()()()()22223Re 2Re Re 1919iz izz i z i e e i s sz z z z π==⎛⎫ ⎪=+ ⎪++++⎝⎭ ()()()()''22223Re 21919iz iz z i z i e e i z z z z π==⎛⎫⎪=+ ⎪ ⎪++++⎝⎭13Re 21648e e i i i π--⎛⎫=+ ⎪-⎝⎭ ()233124eeπ=-.例6 计算44sin x mxI dx x a+∞=+⎰(0,0m a >>). 解 被积函数为偶函数,所以440sin x mx I dx x a +∞=+⎰44441sin 122imxx mx xe dx im dx x a x a+∞+∞-∞-∞==++⎰⎰, 设函数关系式为()44imzze f z z a =+,它共有四个一阶极点,即24k ik a aeππ+=(0,1,2,3k =)得 ()44Re k kimzz a z a ze s f z z a ===+(0,1,2,3k =),因为0a >,所以()f z 在上半面只有两个一阶极点0a 及1a ,于是444402Re k m k imx imzz a z a xe ze dx i s x a z a π+∞=>-∞=++∑⎰2ie aπ=, 故 440sin x mx I dx x a +∞=+⎰442122imx xe i im dx e x a aπ+∞-∞==+⎰结束语上面举例说明了常见的几种可以用留数定理计算的定积分类型,计算比较简捷,通过上面几例,可以看出实积分中是定积分计算与利用留数定理计算之间既有区别,也有联系.解题时应视具体情况而定,有使用实积分理论计算很困难甚至无法计算时,利用留数定理却能够得到很好的效果.参考文献[1]钟玉泉.复变函数论[M]高等教育出版社,2004.[2]盖云英.复变函数与积分变换指导[M]科学出版社,2004.[3]王玉玉.复变函数论全程导学及习题全解[M]中国时代经济出版社,2008. [4]王瑞苹.论留数与定积分的关系[J]菏泽学院学报,2005.[5]余家荣. 复变函数论[M]高等教育出版社,2004.[6]李红,谢松发.复变函数与积分变换[M]华中科技大学,2003.致谢感谢培养教育我的宿州学院,学院浓厚的学术氛围,舒适的学习坏境我将终生难忘!祝母校蒸蒸日上,永创辉煌。
感谢对我倾囊相授、鞭策鼓励的诸位恩师及学长、学姐们,祝恩师们身体健康,家庭幸福,祝学长、学姐们都有一份好工作,财源滚滚,人生平安,感谢指导教师晋守博老师对我的指导。
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。