6.2用留数定理计算实积分
应用留数定理计算实变函数定积分

应用留数定理计算实变函数定积分留数定理是复变函数中的一个重要定理,用于计算围道中的奇点处的留数(residue),并应用于计算复变函数的积分。
但是,在实变函数中,我们也可以将留数定理应用于特定的情况下,来计算实变函数的定积分。
留数定理的基本思想是将实变函数扩展为复变函数,然后计算复变函数在久里斯曼圆中的奇点处的留数,最后应用留数定理将奇点的贡献转化为整个久里斯曼圆的贡献,从而得到实变函数的定积分。
下面我们将介绍如何应用留数定理计算实变函数的定积分。
首先,我们考虑一个一元实变函数f(x),我们希望计算其在[x_1,x_2]区间上的定积分∫[x_1,x_2] f(x) dx。
为了将实变函数扩展为复变函数,我们可以将f(x)视为复变函数在实轴上的取值,即f(z) = f(x),其中z = x+iy为复平面上的复数,x为实数,y为虚数。
接下来,我们将实变函数扩展为复变函数的方法是引入一个收敛的复函数F(z),并构造一个包含[x_1,x_2]区间的有限大小圆C的闭合曲线Γ,该圆C不包含[x_1,x_2]区间上的任何奇点。
然后,我们计算复变函数F(z)在久里斯曼圆C中的奇点处的留数。
根据留数定理,F(z)在C中的奇点处的留数之和等于C中的奇点数目与围道曲线Γ绕过奇点的次数的乘积。
由于圆C的半径是有限的,其包含的奇点数量是有限的。
因此,F(z)在C中的奇点处的留数之和是有限的。
然后,我们利用留数定理的一个推论,即围道曲线Γ上的积分等于复变函数F(z)在久里斯曼圆C中的奇点处的留数之和。
具体而言,我们有∫Γ F(z) dz = 2πi * (围道圆C中的奇点处的留数之和)。
最后,我们将上述等式中的围道曲线Γ替换为两条直线的组合,一条是[x_1,x_2]区间上的水平线段,另一条是连接x_1和x_2的垂直线段。
这样,我们得到了实变函数f(x)在[x_1,x_2]区间上的定积分∫[x_1,x_2] f(x) dx = 2πi * (围道圆C中的奇点处的留数之和)。
用留数定理计算实积分

例 5.16 计算热传导问题中的积分
I e
0
ax 2
cos bx d x, a 0, b R 的值.
【解】 本题不能用前面几种类型的积分来求,因为当 本题不能用前面几种类型的积分来求 因为当 z 时, 时
e
az 2
在半圆上不一致趋于零.考虑作如下变换:
图5.8
(P115)
18
用留数定理计算实积分
利用留数定理计算实积分 般可采用如 d 一般可采用如 f ( x)dx
下步骤: (1)添加辅助曲线,使积分路径构成闭合曲线; (2)选择一个在围线内除了一些孤立奇点外都解析 的 被 积 函 数 F ( z ) , 使 得 满 足 F ( x ) f ( x ), ) 通常选用
数四次,且为偶函数,它在上半平面内有两个单极点
0
1 d x 的值. 4 x 1
z1 e 4 , z 2 e
i
3 i 4
,所以
i 3 i 4
I i[Resf ( e 4 ) Resf ( e
)]
3 9 1 i i 1 4 4 i 3 9 i ( e e ) i 4 4i 4 4e 4e
【解】 若令 z e , 则有:
1 1 dz 2i I z 1 z z 1 dz z 1 z z 1 iz z 1 z 2 4 z 1 dz 2 2 2 2 易知在单位圆内被积函数只有一个一阶极点 z 2 3 ,且
1 Re s 2 , 2 3 lim z 4z 1 z 2
21
2
【证明】 若令 z e , 则
(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
6.2 用留数定理计算实积分

sin x cos x x2 x dx, e dx, 1 x 2 dx,
或者即使可以求出原函数,但往往计算比较复杂,例如
1 (1 x 2 )2 dx.
利用留数方法计算这些实积分,只须算出有关函数的留数, 也就基本解决了.该方法不是普遍适用的方法,也不是解 决所有实积分的计算方法,而是考虑几类特殊类型的实积 分的计算,并且着重讨论实积分化为围线积分的方法.
×
二、形如
P( x) dx 的积分 Q( x )
SR
R
2
引理6.1 设f(z)沿圆弧
SR : z Rei (1 2 , R充分大)
1
x
0
上连续,且 lim zf ( z ) 于SR上
R
一致成立(即与1 2 中的 无关), 则
R
π
1 z 1 dz m 2 4 i | z | 1 z 5 z 2 z 2
2m
1 z 2m 1 dz m 4i |z|1 z 2 z 1 z 2
1 2 πi Res f ( z ) Res f ( z ) 1 z 0 4i z 2 ( m ) 1 1 m 2πi lim z f ( z ) lim z f ( z ) 1 z 0 4i 2 z 2
l 于是(6.10)式不超过 2 1 R
R R0 时,有不等式 | zf ( z) | , z S . R 2 1
(其中 l 为SR的
长度,即
l R(2 1 ) ).
P (z) 为有理分式,其中 定理6.7 设 f ( z ) Q( z )
6.2.函数在无穷远点的留数及其应用

∫
Γ−
− 2π i , dz = n z 0,
n = 1 n ≠ 1
f ( z) = L+ c−2 z−2 + c−1 z −1 + c0 + c1 z + L+ cn zn + L
dz −2π i , n = 1 及∫ − n = 可推出 Γ z n≠1 0,
∫
z=∞
Γ
f (z) =L+ c−2z + c−1z + c0 + c1z +L+ cnz +L 1)在0 <| t |≤ 1 内的洛朗展式为 则f ( t r
n
再利用洛朗级数证明这个公式 设f ( z)在r ≤| z |< +∞内的洛朗展式为
−2 −1
1) = L+ c t 2 + c t + c + c t −1 +L+ c t −n +L f (t 0 1 n −2 −1 1) 1 =L+ c + c t−1 + c t−2 + c t−3 +L+ c t−n−2 +L f ( t t2 0 1 n −2 −1
15
I = 2π i[− Re s f (z)]
z=∞
Re s f (z) = −c−1
z=∞
I = 2π i ⋅ c−1
z 易知z = ∞是f ( z) = 2 的一阶零点 2 4 3 ( z + 1) ( z + 2)
15
∴c−1 = limzf (z) = lim
z→∞ z→∞
在∞ 的去心邻域内有 c −1 c −2 ∴ f (z) = + 2 +L z cz ∴ zf ( z ) = c−1 + −2 + L 16 z z
复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用§ 1.留数1. (定理6.1柯西留数定理):dz = 2 mJc£=i2. (定理6.2):设a为f⑵的m阶极点,事(町(…尸’其中響:刃在点a解析,梓丄0,贝U3. (推论6.3):设a为f(z)的一阶极点,Re^f(z),a) = <p(a)4. (推论6.4):设a为f⑵的二阶极点® ⑴=(Z-A)V(«)则5. 本质奇点处的留数:可以利用洛朗展式6. 无穷远点的留数:RES(F(R「8)=霜/严f(z)dz=- j即,血血垃S)等于f⑵在点的洛朗展式中这一项系数的反号7. (定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Z畑⑴°,但是,如果点为f(z)的可去奇点(或解析点),则血昭⑵妙)可以不为零。
8. 计算留数的另一公式:(昭詞§ 2•用留数定理计算实积分Q R(cos^,sin&)M型和分—引入注:注意偶函数1. (引理6.1大弧引理):»上limzf(z)= X则limH'J-M B2. (定理6.7) 设f(-器梯理分式,其中P(z) = e o z m + 耳厂,+ + c m(c0丰 0)QCz) = b Q x n + %0勺 + * + 丰 0)为互质多项式,且符合条件:(1)n-m >2;(2)Q(z股有实零点于是有f(x)dx — 2ui工Res(f(z)t au}Jrtiajt >0注:以fg可记为PM广;«x)dx丿;黔厂心型积分3. (引理6.2若尔当引理):设函数g(z)沿半圆周5£=恥叫0彰"・丘充金走上连续,且lim鸟⑵=0在「里上一致成立。
则lim f幻(胡叫E = o■ rn4. (定理6.8):设車勿=話,其中P(z)及Q(z)为互质多项式,且符合条件:(1) Q 的次数比P 高;(2) Q 无实数解;(3) m>0特别的,上式可拆分成:及四. 计算积分路径上有奇点的积分5. (引理6.3小弧引理):S m 询lim(z-a)f (2)=X r-+D于5'r 上一致成立,则有limf /wdz=i (02-五. 杂例六. 应用多值函数的积分§ 3.辐角原理及其应用即为:求解析函数零点个数 f'M2.(引理6.4):( 1)设a为f(z)的n 阶零点,贝U a 必为函数 的一阶极点,并且(2)设b 为f(z)的m 阶极点,贝U b 必为函数的一阶极点,并且Res 2ni1 X) Res{ff (2je in ^f a^则有1.对数留数:3. (定理6.9对数留数定理):设C 是一条周线,f(z)满足条件:(1) f(z)在 C 的内部是亚纯的;(2) f(z)在 C 上解析且不为零。
应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分1问题在物理学中,研究阻尼振动时计算积分0sin xdx x∞⎰,研究光的衍射时计算菲涅耳积分20sin()x dx ∞⎰,在热学中遇到积分cos (0,ax e bxdx b a ∞->⎰为任意实数)如果用实函数分析中的方法计算这些积分几乎不可能。
而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系起来。
2应用留数定理求解实变函数定积分的类型将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有12()()()ll l f z dz f x dx f z dz =+⎰⎰⎰Ñ;3)()l f z dz ⎰Ñ可以应用留数定理,1()l f x dx ⎰就是所求的定积分。
如果2()l f z dz ⎰较易求出(往往是证明为零)或可用第一个积分表示出,问题就解决了.类型一20(cos ,sin )R x x dx π⎰.被积函数是三角函数的有理式;积分区间为[0,2π].求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理.可以设ixz e =,则dz izdx =∴dz dx iz=而11cos ()22ix ix e e x z z --+==+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z kz z z z dzI R i Resf z i iz π--=+-==∑⎰Ñ 类型二-()f x dx ∞∞⎰.积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0.求解方法:如果f(x)是有理分式()/()x x ϕψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少高于()x ϕ两次. 如图2,计算积分lim()RRR I f x dx -→∞=⎰图1()()()RRlRC f z dz f x dx f z dz -=+⎰⎰⎰Ñ根据留数定理,2{()}=()()RRRC i f z l f x dx f z dz π-+⎰⎰在所围半圆内各奇点的留数之和令R →∞,有2{()}=()()RC i f z l f x dx f z dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和而()()()max ()max ()0RRRC C C dz dzRf z dz zf z zf z zf z zf z zzRππ=≤≤=⋅→⎰⎰⎰所以()=2{()}f x dx i f z l π∞-∞⎰在所围半圆内各奇点的留数之和类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰.积分区间是[0,+∞];偶函数()F x 和奇函数()G x 在实轴上没有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面或实轴上→∞时,()F x 及()G x 一致地→0.约当引理 如m 为正数,R C 是以原点为圆心而位于上半平面的半圆周,又设当z 在上半平面及实轴上→∞时()F x 一致地→0,则lim ()0Rimz C R F z e dz →∞=⎰求解方法:000111()cos ()()()()222imx imx imx imx F x mxdx F x e e dx F x e dx F x e dx ∞∞∞∞--=+=+⎰⎰⎰⎰经自变量代换,上式变为000111()cos ()()()222imx imximx F x mxdx F x e dx F x e dx F x e dx ∞∞∞-∞-∞=+=⎰⎰⎰⎰同理1()sin ()2imxG x mxdx G x e dx i∞∞-∞=⎰⎰ 由类型二可知2{()}=()()Rimx imz C i f z l F x e dx F z e dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和由约当定理2{()}=()imx imx i F x e l F x e dx π∞-∞⎰在所围半圆内各奇点的留数之和同理2{()}=()imx imx i G x e l G x e dx π∞-∞⎰在所围半圆内各奇点的留数之和所以()cos {()}imz F x mxdx i F z e π∞=⎰在上半平面所有奇点的留数之和()sin {()}imx G x mxdx G x e π∞=⎰在上半平面所有奇点的留数之和实轴上有单极点的情形 考虑积分-()f x dx ∞∞⎰,被积函数()f x 在实轴上有单极点z α=,除此之外,()f x 满足类型二或类型三的条件.求解方法:由于存在这个奇点,我们以z α=为圆心,以充分小的正数ε为半径作半圆弧绕过奇点α构成如图3所示积分回路. 于是()()()()()RRlRC C f z dz f x dx f x dx f z dz f z dz εαεαε--+=+++⎰⎰⎰⎰⎰Ñ取极限R →∞,0ε→,上式左边积分值等于2()iResf z π∑上半平面.右边第一、第二项之和即为所求积分.按类型二或类型三的条件,第三项为零. 对于第四项,计算如下:将()f z 在z α=的领域展为洛朗级数,有()1()a f z P z z αα-=+-- 其中()P z α-为级数的解析部分,它在C ε上连续且有界,因此()()()max max C C P z dz P z dz P z εεααπεα-≤-=⋅-⎰⎰所以()0lim 0C P z dz εεα→-=⎰而()()01111i i C C a a a dz d z e id ia iResf z z e εεϕϕπαεϕππαααε----=-==-=---⎰⎰⎰ 于是()-()2()f x dx iResf z iResf ππα∞∞=+∑⎰上半平面若实轴上有有限个单极点,则()-()2()f x dx i Resf z iResf z ππ∞∞=+∑∑⎰上半平面实轴上3应用留数定理求解物理学中实变函数的定积分(1)计算阻尼振动的狄利克雷型积分0sin xdx x∞⎰ 解:由类型三,将原积分改写sin 12ixx e dx dx x i x∞∞-∞=⎰⎰这个积分的被积函数ixe x除了在实轴上有单极点0x =外,满足类型三的条件.由于被积函数在上半平面无奇点,有图310=1=2222ix ix e e dx z i x x πππ∞-∞⎧⎫==⋅⎨⎬⎩⎭⎰被积函数在单极点的留数 即sin =2x dx x π∞⎰推论:对于正的m ,0sin sin ()2mx mx dx d mx x mx π∞∞==⎰⎰ (m >0)对于负的m ,0sin sin 2m x mx dx dx x x π∞∞=-=-⎰⎰ (m <0)(2)计算在研究光的衍射时菲涅耳积分20sin()x dx ∞⎰和20cos()x dx ∞⎰解:∵2222sin()Im ,cos()Re ix ix x e x e ==∴2210ix I iI e dx ∞+=⎰取图4所示回路l .由于2ix e 没有有限远奇点,所以根据留数定理得20izle dz =⎰Ñ 即22/42()/40()0i RRix iz i ei C Re dx e dz e d e πρπρ++=⎰⎰⎰令R →∞.222()/4/4/40lim lim()i i i i i RRR R e e d e e d e e d ρππρπρρρρ∞--→∞→∞=-=-⎰⎰⎰/4(1)28i e i πππ=-=-+/4222222i RRiz Reiz izC C z Redz e dz e iziz π==+⎰⎰2Riz C e dz ⎰而222/4102222R iR R i e e e iRe iR R R π---≤+→ (于R →∞)2222sin 2cos 2sin 22222222R RRiz R iR R i i C C C eeedz Re id Rd iz iR eRϕϕϕϕϕϕϕ-+-=≤⎰⎰⎰2sin 221max 02424R e R R ϕππ-⎛⎫≤=→⎪ ⎪⎝⎭(于R →∞) 图4所以21(1)08I iI iπ+-+=即18Iπ=,28Iπ=(3)计算求解热传导问题的偏微分方程时遇到的积分2co0)s(,axe bx bdx a∞->⎰为任意实数解:由类型三,将原积分改写221cos2ax ax ibxe bxdx e e dx∞∞---∞=⎰⎰取如图所示回路,由于矩形区域内函数2ax ibxe-+无奇点,所以根据留数定理得20az ibzle dz-+=⎰Ñ即2222234N ax ibx az ibz az ibz az ibzN l l le dx e dz e dz e dz-+-+-+-+-+++=⎰⎰⎰⎰当N→∞时,2222234ax ibx az ibz az ibz az ibzl l le dx e dz e dz e dz∞-+-+-+-+-∞=---⎰⎰⎰⎰只要求出上式等号右边的三个积分就可以计算出2ax ibxe dx∞-+-∞⎰所以,2cosaxe bxdx∞-⎰就可以求出.四、结语留数定理是复变函数论具体应用于积分计算中的一个非常有力的工具,把难以求解的定积分和反常积分转化为留数的计算问题,且能推广留数定理在阻尼振动、菲涅耳衍射及热传导等具体物理问题所遇到的反常积分的求解上,简化了计算过程。
第2节--用留数计算实积分

于是就有 g(z) , z R
g(z)eimzdz g(Rei )eimRei Rei id
R
0
R emRsin d , (6.13) 0
由于 g(Rei ) , Rei i R,以及
e e e . imRei
mRsin imR cos
mR sin
于是由Jordan不等式 2 sin (0 ),
形如 2π 0
R(cos
,
sin
)d
的积分
令 z ei
dz iei d d dz ,
iz
sin 1 (ei ei ) z2 1,
2i
2iz
3
cos 1 (ei ei ) z2 1,
2
2z
当 经历变程 [0,2π ] 时,
z 沿单位圆周 z 1的正方向绕行一周.
n
2π
0
R(cos ,sin )d
f
z 1
(z)dz
2 i
k 1
Re s
z ak
f
( z ).
z的有理函数 , 且在单位圆周上分 包围在单位圆周 母不为零 , 满足留数定理的条 内的诸孤立奇点. 注件:关.键是引进代换z ei , R(sin,cos )在[0, 2 ]上连续可
不必检验,只要看变换后被积函数在 z 1是否有奇点.
为互质函数,且合条件(1)n m 2, (2)在实轴上Q(z) 0, 于是有
f (x)dx 2πi Re s f (z). (6.11)
Im ak 0 zak
17
证明 由条件(1),(2)及数学分析的结论,知
f (x)dx存在,且等于它的主值
lim R f (x)dx. 记为P.V . f (x)dx.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 = + h( z ), 当z ≠0 时 z z
其中h(z)是在z=0的解析函数。因此
例4: eiz
iz
e 1 dz = ∫ dz + ∫ h( z )dz = −πi + ∫ h( z )dz , ∫Γε z Γε z Γε Γε
由于,h(z)在z=0的解析,在z=0的一个邻域内, | f(z)|有上界 M < +∞ 于是当 充分小时
例1、
例1、 计算积分
I =∫
2π
0
dt , a + sin t
其中常数a>1。 it 解:令 e = z ,那么sin t 而且当t从0增加到
2π
1 1 dz = ( z − ), dt = 2i z iz
时,z按反时针方向绕 圆C:|z|=1一周。
例1、
因此
2dz I =∫ 2 , C z + 2iaz − 1
I = ∫ R( x)dx,
−∞
的积分,其中R(x)是有理分式,分母在实轴上不 为零,并且分母的次数比分子的次数至少高2次 ,即积分绝对收敛。
引理6.1:
上连续的复变函数,并且设 Γr 是 以 O 为 心 、 r 为半径的圆弧在这闭区域上的一段 (r ≥ r0 ) 如果 当z在这闭区域上时, 引理3.1设f(z)是闭区域 θ1 ≤ Argz ≤ θ 2 , r0 ≤| z |≤ +∞(r0 ≥ 0,0 ≤ θ1 ,θ 2 ≤ π )
或者有时可以求出原函数,但计算也往往非常 复杂,例如 1
∫ (1 + x
2 2
)
dx,
留数定理的应用--积分的计算:
利用留数计算积分的特点: (1)、利用留数定理,我们把计算一些积分的 问题,转化为计算某些解析函数在孤立奇点的 留数,从而大大化简了计算; (2)、利用留数计算积分,没有一些通用的方 法,我们主要通过例子进行讨论; (3)我们只讨论应用单值解析函数来计算积分 ,应用多值解析函数来计算积分在课本中有讨 论。由于时间的关系,我们不讨论应用多值解 析函数来计算积分的问题,同学们可以自学。
r r ix
例4:
作积分路径如下图。在上 半平面上作以原点为心、 ε与r 为半径的半圆 Γε 与Γr 于是我们有 ix iz ix iz re −r e e e ∫ε x dx + ∫Γr z dz + ∫−ε x dx + ∫Γε z dz = 0, 在这里沿 Γε 与Γr 的积分分别是按幅角减小与 增加的方向取的。 iz e dz 的极限。 现在求当 ε 趋近于0时,∫Γ ε z
dz 现在估计积分 ∫ Γr (1 + z 2 ) 2 我们有 dz 1 |∫ |≤ 2 ⋅ πr , 2 2 2 Γr (1 + z ) (r − 1)
例2:
I=
= . ∫−∞ (1 + x ) 4 2
2 2
注解:
注解1、我们计算所得的值这个广义积分的柯西 主值,但由于此积分收敛,所以积分值等于主 值。 注解2、应用同样得方法,我们可以计算一般形 如 +∞
2 1 Res( f , z1 ) = = . 2 z1 + 2ia i a 2 − 1
于是求得
1 2π I = 2πi = 2 . 2 i a −1 a −1
注解:
注解1、应用同样得方法,我们可以计算一般形 如 2π
I = ∫ R(sin t , cos t )dt ,
0
的 积 分 , 其 中 R(x,y) 是 有 理 分 式 , 并 且 在 圆 C:|z|=1上,分母不等于零。
ε
| ∫ h( z )dz |≤ M ⋅ 2πε ,
Γε
e 从而 lim ∫ dz = −πi, ε →0 Γε z 令ε → 0, r → +∞ ,应用引理3.1,可以得到所
例4:
iz
求积分收敛,并且
I=
π
2
留数定理的应用--儒歇定理:
应用留数定理,我们也可以解决有关零点 与极点的个数问题,因为教学时间的关系,我 们只介绍儒歇定理,并应用它来决定方程在一 些区域内根的个数。 儒歇定理(定理6.2)设D是在复平面上的一个 6.2 D 有界区域,其边界C是一条或有限条简单闭曲线 。设函数f(z)及g(z)在D及C所组成的闭区域上解 析,并且在C上,|f(z)|<|g(z)|,那么在D上,f(z) 及 f(z)+g(z)的零点的个数相同。
第六章 留数理论及应用
第6.2节 用留数定计算实积分 节
留数定理的应用--积分的计算:
在数学分析中,以及许多实际问题中,往 往要求计算出一些定积分或反常积分的值,而 这些积分中的被积函数的原函数,不能用初等 函数表示出来;例如
sin x cos x x2 ∫ x dx, ∫ e dx, ∫ 1 + x 2 dx,
例2、 计算积分 I =
例2:
∫
∞
0
dx , 2 2 (1 + x )
解:首先,这是一个广义积分,它显然是收敛 的。我们应用留数定理来计算它。考虑函数
1 2 2 (1 + z )
这个函数有两个二阶极点 ,在上半平面上的一个是 z=i。作以O为心、r为半径 的圆盘。
例2:
考虑这一圆盘在上半平面的部分,设其边界为 Cr 。取r>1,那么z=i包含在Cr 的内区域内。沿 1 Cr取 的积分,得 2 2
z
n
n
证明:令 g ( z ) = −e , f ( z ) = az , iθ 由于当 | z |=| e |= 1 时,
| g ( z ) |=| −e |= e
z
c > e,
n
azn-ez 在|z|<1内的零点的个数与azn 相同,即n个 ,因此方程 z n
例4:
例4、 计算积分 I =
∫
+∞
0
sin x dx, x
−ix
解:取 ε及r ,使 r > ε > 0 ,我们有
eiz 函数 只是在z=0有一个一阶极点。 z
sin x e −e ∫ε x dx = ∫ε 2ix dx ix ix re −r e i = − [ ∫ dx + ∫ dx], −ε x 2 ε x
e = az
在单位圆内有n个根。
lim f ( z ) = 0,
z →∞
那么我们有
r → +∞ Γr
lim ∫ f ( z )e dz = 0.
iz
证明:设M(r)是f(z)在 Γr 上的最大值,则有
引理6.1:
iz Γr
| ∫ f ( z )e dz |≤ M (r ) ∫ e
Γr
−t sin θ
rdθ
π
2 0 − r sin θ
cos x e +e 1 e dx = ∫ dx = ∫ 2 dx, 2 2 0 2( x + 1) x iz 1 + 2 −r x + 1
r
e
例3:
于是我们有
∫
r
e
2
ix
−r
x +1
dx + ∫ e
2 iz
e
2
iz
Γr
z +1 , i) =
dz ,
= 2πi Re s (
π
e
z +1
其中 Γr 表示Cr 上的圆弧部分,沿它的积分是 按幅角增加的方向取的。
由于当|z|=1时,我们有
| f ( z ) |≥| −5 z | −1 = 4,
5
而
| g ( z ) |≤| z | + | 2 z |= 3,
8
已给方程在|z|<1内根的个数与-z5+1在|z|<1内根 的个数相同,即5个。
例2:
例2、 如果a>e,求证方程 单位圆内有n个根。
z
e = az
≤ M (r ) ∫ e
0
π
− r sin θ
rdθ = 2M (r ) ∫ e
时,
rdθ .
因为当 0 < θ <
π
2
2
π
≤
sin θ
θ
≤ 1,
引理6.1: 2 π π − rθ 所以 π 2 − r sin θ 2 e rdθ ≤ ∫ e rdθ ∫
0 0
<∫ e
0
+∞
− rθ
2
π
rdθ =
π
例3: 现在应用引理3.1,取
1 f ( z ) = 2 ,θ1 = 0,θ 2 = π , r0 = 2 z +1
那么在这引理中所设各条件显然成立。 因此,令r → +∞ ,就得到
r → +∞ − r ix
lim ∫
r
e
2
x +1
dx =
π
e
,
从而可见积分I收敛,并且
I=
π
2e
.
注解:
注解1、应用同样得方法,我们可以计算一般形 如 +∞ ix
注解:
注解1、应用此定理时,我们只要估计和在区域 边界上模的值。 注解2、f(z)及g(z)选择的原则是,f(z)在内的零点 个数好计算。
例1、 求方程 z − 5 z − 2 z + 1 = 0, 在|z|<1内根的个数。 解:令 5 8
8 5
例1:
f ( z ) = −5 z + 1, g ( z ) = z − 2 z,
(1 + z )
dx dz ∫−r (1 + x 2 ) 2 + ∫Γr (1 + z 2 ) 2 1 1 π = 2πiRes( , i ) = 2πi = . 2 2 (1 + z ) 4i 2