人教版-高中数学选修4-5-柯西不等式

合集下载

人教版高中数学选修4-5第三讲第二节一般形式的柯西不等式教案1(2)

人教版高中数学选修4-5第三讲第二节一般形式的柯西不等式教案1(2)

选修4-5学案 §3.1.3柯西不等式 姓名☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定 了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值 定理、柯西积分不等式、柯西判别法、柯西方程等等.2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,则222222()()a b c d a c b d +++-+- ;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:222212122323()()()()x x y y x x y y -+-+-+-≥3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(. 当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重 要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面 都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径, 证明22212x y z a b c R ++≤++例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。

高二数学选修4-5:第二章 2.1 柯西不等式

高二数学选修4-5:第二章 2.1 柯西不等式

又 a,b,c 为正实数,∴a+b+c>0.
∴ab2+bc2+ca2≥a+b+c.
利用柯西不等式求最值
[例 3] 设 2x+3y+5z=29,求函数 u= 2x+1+ 3y+4+ 5z+6 的最大值.
[思路点拨] 本题考查三维柯西不等式的应用,解答本题 需要利用好特定条件,设法去掉根号.
[精解详析] 根据柯西不等式 120=3[(2x+1)+(3y+4)+(5z+6)] ≥(1× 2x+1+1× 3y+4+1× 5z+6)2, 故 2x+1+ 3y+4+ 5z+6≤2 30.
2.设 a,b,c 为正数,求证:ab2+bc2+ca2≥a+b+c.
证明:∵ab2+bc2+ca2(a+b+c)

a 2+ b
b 2+ c
ca2·[(
b)2+(
c)2+(
a)2]

a b·
b+
b c·
c+
c a·
a2=(a+b+c)2,
即ab2+bc2+ca2(a+b+c)≥(a+b+c)2,
8.已知 x,y,z 均为正实数,且 x+y+z=1,则1x+4y+9z的最小值 为________.
解析:利用柯西不等式.
由于(x+y+z)1x+4y+9z ≥
x·1x+
y·2y+
z·3z2=36,
所以1x+4y+9z≥36.
当且仅当 x2=14y2=19z2,即 x=16,y=13,z=12时,等号成立.∴
≥a1+a2+…+an,
∴ a12+a22+…+a2n· n≥a1+a2+…+an.
即得
a21+a22+n …+a2n≥a1+a2+n …+an,∴P≥Q.
答案:B
二、填空题 5.设 a,b,c,d,m,n 都是正实数,P= ab+ cd,Q=

人教版高中数学选修4-5课件:模块复习课 第三课 柯西不等式、排序不等式与数学归纳法

人教版高中数学选修4-5课件:模块复习课 第三课 柯西不等式、排序不等式与数学归纳法

a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1. 将上述n个式子相加,得:n(a1b1+a2b2+…+anbn) ≤(a1+a2+…+an)(b1+b2+…+bn) 上式两边除以n2,得
),
n=(1,1,1),利用|m·n|≤|m||n|可得证.
【证明】令m=(
),n=(1,1,1),则
m·n=
而|m|=
又|n|= ,由|m·n|≤|m||n|,得
所以
当且仅当a=b=c=1时,等号成立.
2.已知正数x,y,z满 足5x+4y+3z=10.
(1)求证:
(2)求
的最小值.
【解析】(1)根据柯西不等式,得 [(4y+3z)+(3z+5x)+(5x+4y)] ≥(5x+4y+3z)2, 因为5x+4y
≥ =.
又由柯西不等式,有
所以 <1-
<.
【方法技巧】利用柯西不等式证题 的技巧 (1)柯西不等式的一般形式为(a12+a22+…+an2)·(b12+ b22+…+bn2) ≥(a1b1+a2b2+…+anbn)2(ai,bi∈R,i=1, 2,…,n),形式简洁 、美观、对称性强,灵活地运用柯 西不等式,可以使一些较为 困难的不等式的证明问题 迎刃而解.
【延伸探究】在本例条件下,你能证明 吗?
【证明】能.由0<b+c-a,0<a+b-c,0<a+c-b,有 0<A(b+c-a)+C(a+b-c)+B(a+c-b)=a(B+C-A)+b(A+C-B) +c(A+B-C)=a(π-2A)+b(π-2B)+c(π-2C)=(a+b+c)π2(aA+bB+cC). 得

人教A版高中数学选修4-5课件:第三讲 柯西不等式与排序不等式 阶段复习课(共56张PPT)

人教A版高中数学选修4-5课件:第三讲 柯西不等式与排序不等式 阶段复习课(共56张PPT)
所谓的失言其实就是一不小心说了实话,人不要讲谎话,因为讲一句谎话要用十句甚至更多的谎话来圆谎,但有时候,人不能净说实话,如 果说实话效果不好,你可以用模棱两可的外交辞令代替! 好习惯的养成,在于不受坏习惯的诱惑。 只要你确信自己正确就去做。做了有人说不好,不做还是有人说不好,不要逃避批判。 当你无法从一楼蹦到三楼时,不要忘记走楼梯。要记住伟大的成功往往不是一蹴而就的,必须学会分解你的目标,逐步实施。 把自己当傻瓜,不懂就问,你会学的更多。 松软的沙滩上最容易留下脚樱钽也最容易被潮水抹去。 成功是一种观念,成功是一种思想,成功是一种习惯,成功是一种心态。 失败并不意味你浪费了时间和生命,失败表明,勤奋才能是攀登的绳索。
缺乏明确的目标,一生将庸庸碌碌。 能把在面前行走的机会抓住的人,十有八九都会成功。 大起大落谁都有拍拍灰尘继续走。 用最少的悔恨面对过去。 问候不一定要慎重其事,但一定要真诚感人。 觉得自己做得到和做不到,只在一念之间。 人生应该树立目标,否则你的精力会白白浪费。 你可以用爱得到全世界,你也可以用恨失去全世界。 过去不等于未来。 千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。 生命的道路上永远没有捷径可言,只有脚踏实地走下去。

高中新课程数学(新课标人教A版)选修4-5《32一般形式的柯西不等式》

高中新课程数学(新课标人教A版)选修4-5《32一般形式的柯西不等式》
第二节 一般形式的柯西不等式
【课标要求】 1.理解三维形式的柯西不等式,在此基础上,过渡到柯西
不等式的一般形式. 2.会用三维形式的及一般形式的柯西不等式证明有关不等
式和求函数的最值. 【核心扫描】 1.一般形式的柯西不等式的应用是本节考查的重点. 2.常与不等式、最值等问题综合考查.(难点)
课前自主学习
或存在一个数k,使得ai=kbi(i=1,2,3,…,n) 时,等号成立.
课前自主学习
课堂讲练互动
知能达标演练
想一想:在一般形式的柯西不等式中,等号成立的条件记为
ai=kbi(i=1,2,3,…,n),可以吗? 提示 不可以.不仅仅当ai=kbi(i=1,2,…,n)时,等号 成立,当bi=0(i=1,2,…,n)时等号也成立.
b+1 c+
c+a·
1
2
c+a
=(1+1+1)2=9.
课前自主学习
课堂讲练互动
知能达标演练
∴a+2 b+b+2 c+c+2 a≥a+9b+c. ∵a,b,c 互不相等, ∴等号不可能成立,从而原不等式成立.
规律方法 有些问题本身不具备运用柯西不等式的条件, 但是我们只要改变一下多项式的形态结构,就可以达到 利用柯西不等式的目的.
课堂讲练互动
知能达标演练
自学导引
1.三维形式的柯西不等式
设a1,a2,a3,b1,b2,b3∈R,则(a+a+a)·(b+b+b)≥
(a1b1+a2b2+a3b3)2
.当且仅当 b1=b2=b3=0或存在
一个数k,使得a1=kb1,a2=kb2,a3=kb3 时 , 等 号 成
立.
课前自主学习
课堂讲练互动
知能达标演练

解 4a+1+ 4b+1+ 4c+1 = 4a+1·1+ 4b+1·1+ 4c+1·1 ≤(4a+1+4b+1+4c+1)12(12+12+12)12 = 7× 3= 21. 当且仅当 4a1+1= 4b1+1= 4c1+1时取等号. 即 a=b=c=13时,所求的最大值为 21.

2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
2 2 2 2
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n

人教版高中数学选修4-5《3.1 柯西不等式》

人教版高中数学选修4-5《3.1 柯西不等式》
2 1 2 2 2 n 2 1 2 2 2 n
2
k,使 得a i kbi ( i 1,2, , n)时, 等 号 成 立 。 2n 问题: 1、柯西不等式里一共涉及多少个实数? 个 2、柯西不等式的结构有何特征?
平方和的乘积不小于乘积和的平方
1、柯西是什么人?
• 法一:问柯西本人;
2、他是怎么发现该不等式的?
4 4 2 2 3 3 2
(2)复杂问题:变形后运用柯西不等式。
例3 求函数 y 5 x 1 10 2 x的最大值
思考:该题目用了哪些变形技巧? 凑配系数,平方。
2.已知x y 1, 那么2 x 2 3 y 2的最小值是( 5 A. 6 6 B. 5 25 C. 36 36 D. 25 )
( 2) a b c d ac bd2 ຫໍສະໝຸດ 2 2222
2
自主探究: 1、这两个变式 怎么来的呢? 2、这三个不等 式取“=” 的条 件分别是什么?
进一步—理解—柯西不等式
• 1、代数理解。
2 2 2 2
• 2、几何理解。
(1) a b c d ac bd
小组讨论:根据变式一,你能给出柯西不 等式的几何解释吗?
柯西不等式
选修4-5 不等式选讲
定 理(一 般 形 式 的 柯 西 不 等 ) 式 设a1 , a 2 , a 3 , , a n , b1 , b2 , b3 , , bn是 实 数 ,则
(a a a )( b b b ) (a1b1 a2b2 anbb ) 当且仅当 bi 0( i 1,2, , n)或 存 在 一 个 数
教学目标:
• 1、发现、推导
柯西不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理(一般形式的柯西不等式) 设a1 , a2 , a3 ,, an , b1 , b2 , b3 ,, bn是实数,则
2 2 2 2 2 (a1 a2 an )( b12 b2 bn ) (a1b1 a2b2 anbb )2
当且仅当bi 0(i 1, 2,, n)或存在一个数 k , 使得ai kbi (i 1, 2,, n)时, 等号成立
证明 : (a c d )(b c d a ) (ab bc cd da )2 a b c d a , b, c , d是不全相等的正数, 不成立 b c d a (a 2 b 2 c 2 d 2 )2 (ab bc cd da )2 即 a 2 b 2 c 2 d 2 ab bc cd da
已知 a2+2b2=6,则 a+b 的取值范围是____________. 1 2 1 2 【解析】 ∵(a +2b )[1 +( ) ]≥(1· a+ 2b· ) =(a+b)2 2 2
2 2 2
3 ∴(a+b) ≤6× =9,∴-3≤a+b≤3, 2
2
故 a+b 的取值范围是[-3,3] 【名师点睛】 解此题关键在于构造因式,使其符合柯西不等
证 明: ( x 2 y 2 z 2 )(12 2 2 3 2 ) ( x 2 y 3 z ) 2 1 1 2 2 2 x y z 14 x y z 1 1 3 当 且 仅 当 即x , y , z 时 1 2 3值 14
2 2 2 2
二维形式的三角不等式
2 2 x1 y1 2 2 x2 y2 ( x1 x 2 ) 2 ( y1 y2 ) 2
2 2 2 2 2 2 三维形式的三角不等式 x1 y1 z1 x2 y2 z2
( x1 x2 )2 ( y1 y2 )2 ( z1 z2 )2
2 2 2 2 2 2 2 2
P 41 6. 设x1 , x 2 ,xn R , 且x1 x2 xn 1,
2 2 2 x1 x2 xn 1 求 证: 1 x1 1 x2 1 xn n 1
2 2 2 x1 x2 xn 证 明: ( n 1) ( ) 1 x1 1 x2 1 xn 2 2 x1 x2 (1 x1 1 x2 1 xn ) ( 1 x1 1 x2 2 xn x1 x2 ) ( 1 x1 1 x2 1 xn 1 x1 1 x2
4.设实数x , y满足3 x 2 2 y 2 6, 则P 2 x y的最大 值是 ______ 11
例1 已知a, b为实数 , 证明 (a 4 b4 )(a 2 b2 ) (a 3 b3 )2
例2 求函数y 5 x 1 10 2x的最大值
3.函数 y=3sinx+4 1+cos2x的最大值为____________.
例1 已 知a1 , a2 , , an都 是 实 数 ,求 证 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
证 明: (1 1 1 )(a a a )
2 2 2 2 1 2 2 2 n
(1 a1 1 a2 1 an )
一、二维形式的柯西不等式
定理1 (二维形式的柯西不等式 ) 若a , b, c , d都是 实数, 则 (a 2 b2 )(c 2 d 2 ) (ac bd )2 当且仅当ad bc时, 等号成立.
二维形式的柯西不等式的变式:
(1) a 2 b2 c 2 d 2 ac bd ( 2) a b c d ac bd
一般形式的三角不等式
2 2 2 x1 x2 xn 2 2 2 y1 y2 yn
( x1 y1 ) 2 ( x 2 y2 ) 2 ( x n yn ) 2
例3 已知x 2 y 3z 1, 求x y z 的最小值
2 2 2
式,此题有多种解法,比如用三角代换法求解,但过程较繁.
变式引申: 2 2 若2 x 3 y 1, 求4 x 9 y 的最小值 , 并求最小值点 .
解 : 由柯西不等式(4 x 2 9 y 2 )(12 12 ) ( 2 x 3 y )2 1, 1 2 2 4x 9 y . 2 当且仅当2 x 1 3 y 1, 即2 x 3 y时取等号. x 2 x 3 y 由 得 2 x 3 y 1 y
2 2
1 4 1 6
1 1 1 4 x 9 y 的最小值为 , 最小值点为( , ) 2 4 6
补充练习
2.已知x y 1, 那么2 x 2 3 y 2的最小值是( B ) 5 A. 6 6 B. 5 25 C. 36 36 D. 25
3 3.函数 y 2 1 x 2 x 1的最大值为 ______
3a 2b c 的最大值。
3.已知a,b,c为正实数,且a2+2b2+3c2=6,求
a+b+c的最小值。
xn 1 xn )2 ( x1 x2 xn )2 1 1 xn 2 2 2 x1 x2 xn 1 1 x1 1 x2 1 xn n 1
达标检测
1.已知a+b+c+d=1,求a2+b2+c2+d2的最小值。 2.已知a,b,c为正实数,且a+2b+3c = 9,求
2
2 2 2 n(a1 a2 an ) (a1 a2 an )2 1 2 2 2 2 (a1 a2 a n ) a1 a2 a n n
例2 已 知a , b, c , d是 不 全 相 等 的 正 数 ,证明 a 2 b 2 c 2 d 2 ab bc cd da
相关文档
最新文档