圆锥曲线中的综合问题

合集下载

圆锥曲线综合试题(全部大题目)含答案

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。

(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。

6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

圆锥曲线的综合问题(含答案)

圆锥曲线的综合问题(含答案)

课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1 C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k2x 1+x 22-4x 1x 2]=2+k 2+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1. 【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -2-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0. 【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23. 【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a 2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b。

圆锥曲线的综合经典例题(有答案)

圆锥曲线的综合经典例题(有答案)

经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

高考数学专题十九圆锥曲线综合练习题

高考数学专题十九圆锥曲线综合练习题

培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。

新高考一轮复习人教版 圆锥曲线的综合问题 作业1

新高考一轮复习人教版 圆锥曲线的综合问题 作业1

9.5 圆锥曲线的综合问题一、选择题1.(2021浙江,9,4分)已知a,b ∈R,ab>0,函数f(x)=ax 2+b(x ∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是( ) A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线 答案 C 由题意知f(s)=as 2+b,f(s-t)=a(s-t)2+b=(as 2+b)+at(t-2s),f(s+t)=a(s+t)2+b=(as 2+b)+at(t+2s), ∵f(s -t),f(s),f(s+t)成等比数列,∴f(s -t)·f(s+t)=f 2(s)⇒[(as 2+b)+at(t-2s)][(as 2+b)+at(t+2s)]=(as 2+b)2⇒at(as 2+b)(t-2s+t+2s)+a 2t 2(t 2-4s 2)=0⇒2at 2(as 2+b)+a 2t 2(t 2-4s 2)=0,(*) ①当t=0时,s ∈R,故(s,t)的轨迹为一条直线; ②当t ≠0时,(*)式可化为2as 2+2b+at 2-4as 2=0, 即2as 2-at 2=2b,因为ab>0,所以s 2-t22=b a>0,故(s,t)的轨迹为双曲线,故选C.二、解答题2.(2022届广西开学考,22)设双曲线x 23-y 2=1的右焦点为F,过F 的直线与双曲线C 的右支交于A 、B 两点.(1)若直线AB 与x 轴不垂直,求直线的斜率的取值范围; (2)求AB 中点的轨迹方程.解析 (1)由题知F(2,0),设直线AB 的方程为y=k(x-2),代入方程x 23-y 2=1,得(3k 2-1)x 2-12k 2x+12k 2+3=0.设A(x 1,y 1),B(x 2,y 2),则{x 1+x 2=12k 23k 2-1>0,x 1x 2=12k 2+33k 2-1>0,Δ=144k 4-4(3k 2-1)(12k 2+3)=12k 2+12>0, 所以k ∈(-∞,-√33)∪(√33,+∞).(2)设AB 中点坐标为(x 0,y 0),若直线AB 的斜率存在,x 0=x 1+x 22=6k 23k 2-1,y 0=y 1+y 22=k(x 0-2)=2k 3k 2-1,消去k 得,(x 0-1)2-3y 02=1,此时x 0=6k 2-2+23k 2-1=2+23k 2-1>2,所以AB 中点的轨迹方程为(x-1)2-3y 2=1(x>2);若直线AB 的斜率不存在,则x 0=2,y 0=0,满足(x-1)2-3y 2=1.综上,AB 中点的轨迹方程为(x-1)2-3y 2=1(x ≥2).3.(2022届山西怀仁一中期中,21)已知点A(-2,0),B(2,0),设动点P 满足直线PA 与PB 的斜率之积为-34,记动点P 的轨迹为曲线E. (1)求曲线E 的方程;(2)若动直线l 经过点(1,0),且与曲线E 交于C,D(不同于A,B)两点,问:直线AC 与BD 的斜率之比是不是定值?若是定值,求出该定值;若不是定值,请说明理由.解析 (1)设P(x,y),由题意可得k PA ·k PB =-34,所以y x+2·y x -2=-34(x ≠±2),所以曲线E 的方程为x 24+y 23=1(x ≠±2). (2)由题意知,可设直线l:x=my+1,C(x 1,y 1),D(x 2,y 2),由{x =my +1,x 24+y 23=1(x ≠±2),可得(3m 2+4)y 2+6my-9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,因为直线AC 的斜率k 1=y 1x 1+2,直线BD 的斜率k 2=y 2x 2-2,且my 1y 2=32(y 1+y 2),所以k 1k 2=y 1(x 2-2)y 2(x 1+2)=y 1(my 2-1)y 2(my 1+3)=my 1y 2-y 1my 1y 2+3y 2=32(y 1+y 2)-y 132(y 1+y 2)+3y2=12y 1+32y 232y 1+92y 2=13,所以直线AC 和BD 的斜率之比为定值13. 4.(2021四省八校调研,20)已知圆锥曲线E:√(x -1)2+y 2+√(x +1)2+y 2=4,经过点Q(-4,4)的直线l 与E 有唯一公共点P,定点R(-1,0). (1)求曲线E 的标准方程;(2)设直线PR,QR 的斜率分别为k 1,k 2,求k 1k 2的值.解析 (1)由√(x -1)2+y 2+√(x +1)2+y 2=4可得,点(x,y)到定点(-1,0),(1,0)的距离的和为4.由椭圆的定义可知动点(x,y)的轨迹即圆锥曲线E 是以(-1,0),(1,0)为左、右焦点,2a=4为长轴长的椭圆(此处必须由定义说明圆锥曲线的类型),则其长半轴长a=2,则短半轴长b=√22-12=√3,故曲线E 的标准方程为x 24+y 23=1. (2)由题意得过点Q(-4,4)的直线l 的斜率存在,设为k,则直线l 的方程为y-4=k(x+4),即y=kx+4+4k, 代入x 24+y 23=1,整理,得(3+4k 2)x 2+32(k+1)kx+64k 2+128k+52=0(※).∵l 与E 仅有一个公共点,∴Δ=1024(k+1)2k 2-4(3+4k 2)(64k 2+128k+52)=0,即12k 2+32k+13=0.解得k=-12或k=-136.(k 的值有两个,需分两种情况求解)设P(x 0,y 0),当k=-12时,方程(※)为x 2-2x+1=0,得x 0=1,∴y 0=32,∴k 1=34,又k 2=-43,∴k 1k 2=-1.当k=-136时,方程(※)为49x 2+182x+169=0,得x 0=-137,∴y 0=-914,∴k 1=34,又k 2=-43,∴k 1k 2=-1.综上所述,k 1k 2的值为-1.5.(2022届甘肃名校月考,21)已知F 1,F 2分别是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,|F 1F 2|=6,当P 在E 上且PF 1垂直于x 轴时,|PF 2|=7|PF 1|. (1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C,BM 与x 轴交于点D.求证:四边形ABDC 的面积是定值.解析 (1)由题意知|PF 1|=b2a ,|PF 2|+|PF 1|=2a,|PF 2|=7|PF 1|,则8|PF 1|=2a,所以a=2b,又c=3,a 2=b 2+c 2,∴a=2√3,b=√3, ∴E 的标准方程是x 212+y 23=1.(2)证明:由题意知A(-2√3,0),B(0,√3),设M(m,n),C(0,t),D(s,0),因为A,C,M 三点共线,所以设AC ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ ,解得t=2√3n m+2√3,又B,D,M 三点共线,所以设BD⃗⃗⃗⃗⃗⃗ =μBM ⃗⃗⃗⃗⃗⃗ ,解得s=-√3m n -√3. 易知,|AD|=s+2√3,|BC|=√3-t,m 212+n 23=1,所以|AD|·|BC|=√3s-2√3t-st+6=-n -√3-m+2√3+(n -√3)(m+2√3)+6=-√3m √3n+36(m+2√3)(n -√3)+(n -√3)(m+2√3)+6=√3)(n √3)(n -√3)(m+2√3)+6=12.所以四边形ABDC 的面积为12|AD|·|BC|=6.故四边形ABDC 的面积是定值.6.(2022届长春外国语学校期中,21)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+√2=0与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (1)求椭圆C 的方程;(2)设M 是椭圆的上顶点,过点M 分别作直线MA,MB 交椭圆于A,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,证明:直线AB 过定点,并求出该定点.解析 (1)易知,等轴双曲线的离心率为√2,故椭圆C 的离心率e=√22.∵e 2=c 2a 2=a 2-b 2a2=12,∴a 2=2b 2.由x-y+√2=0与圆x 2+y 2=b 2相切,得√2√2=b,故b=1,∴a 2=2.∴椭圆C 的方程为x 22+y 2=1.(2)已知M(0,1).当直线AB 的斜率不存在时,设方程为x=x 0(x 0≠0),A(x 0,y 0),B(x 0,-y 0).由k 1+k 2=4,得y 0-1x 0+-y 0-1x 0=4,即x 0=-12.此时直线AB 的方程为x=-12.当直线AB 的斜率存在时,设AB 的方程为y=kx+m,依题意知m ≠±1.设A(x 1,y 1),B(x 2,y 2),由{y =kx +m,x 22+y 2=1得(1+2k 2)x 2+4kmx+2m 2-2=0.则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,得y 1-1x 1+y 2-1x 2=4,∴kx 1+m -1x 1+kx 2+m -1x 2=4,即2k+(m-1)x 1+x2x 1x 2=4, ∴k -km m+1=2,∴k=2(m+1),∴m=k 2-1.故直线AB 的方程为y=kx+k 2-1,即y=k (x +12)-1.∴直线AB 过定点(-12,-1).综上,直线AB 过定点(-12,-1).7.(2022届成都蓉城名校联盟联考一,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的长轴长与短轴长之比为2,过点P(0,2√5)且斜率为1的直线与椭圆E 相切. (1)求椭圆E 的方程;(2)过点T(2,0)的直线l 与椭圆E 交于A,B 两点,与直线x=8交于H 点,若HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,HB ⃗⃗⃗⃗⃗⃗ =λ2BT ⃗⃗⃗⃗⃗ .证明:λ1+λ2为定值.解析 (1)由题意知,a b =2,a=2b,切线方程为y=x+2√5.设椭圆方程为x 24b 2+y 2b 2=1,联立得{y =x +2√5,x 24b 2+y 2b 2=1,整理得5x 2+16√5x+80-4b 2=0,则Δ=0,即(16√5)2-20(80-4b 2)=0,则b 2=4,∴椭圆方程为x 216+y 24=1.(2)由题意知,直线l 的斜率一定存在.当直线l 的斜率为零时,易得λ1+λ2=0;当直线l 的斜率不为零时,设直线l:x=ty+2(t ≠0),A(x 1,y 1),B(x 2,y 2),联立{x =ty +2,x 2+4y 2=16,得(t 2+4)y 2+4ty-12=0,则y 1+y 2=-4t t 2+4,y 1y 2=-12t 2+4,直线l:x=ty+2,令x=8,则y=6t ,即H 8,6t .∵HA ⃗⃗⃗⃗⃗⃗ =(x 1-8,y 1-6t ),AT ⃗⃗⃗⃗⃗ =(2-x 1,-y 1),HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,∴{x 1-8=λ1(2-x 1),y 1-6t =-λ1y 1,∴1-6ty 1=-λ1,同理可得,1-6ty 2=-λ2,∴-λ1-λ2=1-6ty 1+1-6ty 2=2-6(y 1+y 2)ty 1y 2=2--24t t 2+4·t 2+4-12t=0.综上,λ1+λ2=0.8.(2021皖南八校第三次联考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左焦点为F,过点F 的直线l 与椭圆交于A,B两点,当直线l ⊥x 轴时,|AB|=√2,tan ∠AOB=2√2. (1)求椭圆C 的方程;(2)设直线l'⊥l,直线l'与直线l 、x 轴、y 轴分别交于M 、P 、Q,当点M 为线段AB 中点时,求PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ 的取值范围.解析 (1)由题意可知F(-c,0).当直线l ⊥x 轴时,|AB|=2b 2a =√2,tan ∠AOB=2tan ∠AOF1-tan 2∠AOF =2√2,解得tan ∠AOF=√22或-√2,∵∠AOF ∈(0,π2),∴tan∠AOF=√22=|AF||FO|=b 2a c,得b=c=1,a=√2,故椭圆C 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),依题意直线l 的斜率一定存在且不为零,设l:y=k(x+1),由{y =k(x +1),x 22+y 2=1,消去y 得(2k 2+1)x 2+4k 2x+2k 2-2=0,则x 1+x 2=-4k 22k 2+1,则y 1+y 2=k(x 1+x 2+2)=2k 2k 2+1.故M (-2k 22k 2+1,k2k 2+1),直线l':y-k 2k 2+1=-1k (x +2k 22k 2+1),令y=0,则P (-k22k 2+1,0),∵PM⊥MF,OQ ⊥PO,∴PM ⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗ |2,PO ⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗ =|PO ⃗⃗⃗⃗⃗ |2,∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2|PO⃗⃗⃗⃗⃗⃗⃗⃗ |2=(-k 22k 2+1--2k 22k 2+1)2+(0-k 2k 2+1)2(-k 22k 2+1)2=k 2+1k 2=1+1k 2,∵k 2∈(0,+∞),∴1+1k2∈(1,+∞), ∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ ∈(1,+∞). 9.(2022届四川内江六中月考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,过F 2且与x 轴垂直的直线与椭圆C 交于A,B 两点,△AOB 的面积为2√2,点P 为椭圆C 的下顶点,|PF 2|=√2|OP|. (1)求椭圆C 的标准方程;(2)经过抛物线y 2=4x 的焦点F 的直线l 交椭圆C 于M,N 两点,求|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |的取值范围.解析 (1)因为△OPF 2为直角三角形,所以b 2+c 2=|PF 2|2=(√2b)2,故b=c,又S △AOB =12·2b 2a ·c=b 2c a=2√2,所以b 2c=2√2a,又a 2=b 2+c 2,所以b 3=2√2·√b 2+c 2=4b,故b 2=4,所以a 2=b 2+c 2=4+4=8,故椭圆C 的标准方程为x 28+y 24=1. (2)由题意得F(1,0),M,N,F 三点共线,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=||FM ⃗⃗⃗⃗⃗⃗ |·|FN ⃗⃗⃗⃗⃗ |·cosπ|=|FM|·|FN|.若直线l 斜率为零,则|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(a-1)(a+1)=7;若直线l 斜率不为零,设直线l 的方程为x=my+1,M(x 1,y 1),N(x 2,y 2),则{x =my +1,x 28+y 24=1,消去x 得(m 2+2)y 2+2my-7=0,所以y 1+y 2=-2m m 2+2,y 1y 2=-7m 2+2,则|FM|=√(x 1-1)2+y 12=√(my 1+1-1)2+y 12=√m 2+1|y 1|,同理|FN|=√m 2+1·|y 2|,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(m 2+1)|y 1y 2|=(m 2+1)·7m 2+2=7(m 2+2)-7m 2+2=7-7m 2+2,因为m 2+2≥2,所以0<7m 2+2≤72,所以72≤7-7m 2+2<7.综上,|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|∈[72,7]. 10.(2022届黑龙江大庆月考,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,其离心率为12.椭圆E 的左、右顶点分别为A,B,且|AB|=4. (1)求椭圆E 的方程;(2)过F 1的直线与椭圆相交于C,D(不与顶点重合),过右顶点B 分别作直线BC,BD 与直线x=-4相交于N,M 两点,以MN 为直径的圆是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解析 (1)由题意得,c a =12,|AB|=2a=4,∴a=2,c=1,b=√a 2-c 2=√3,∴椭圆E 的标准方程为x 24+y 23=1.(2)恒过定点(-7,0)和(-1,0).由(1)知F 1(-1,0),B(2,0),由题意得,直线CD 的斜率不为0,设直线CD 的方程为x=my-1,代入椭圆E 的方程x 24+y 23=1,整理得(3m 2+4)y 2-6my-9=0.设C(x 1,y 1),D(x 2,y 2),则y 1+y 2=6m 3m 2+4①,y 1y 2=-93m 2+4②.直线BC:y=y 1my 1-3(x-2),令x=-4,可得N -4,-6y 1my 1-3,同理M (-4,-6y 2my 2-3),∴以MN 为直径的圆的方程为(x+4)(x+4)+y+6y 1my 1-3(y +6y 2my 2-3)=0,即x 2+8x+16+y 2+6y 1my 1-3+6y 2my 2-3y+36y 1y 2(my 1-3)(my 2-3)=0③,由①②得y 1+y 2=-23my 1y 2,代入③得圆的方程为x 2+8x+7+y 2-6my=0.若圆过定点,则{y =0,x 2+8x +7=0,解得{x =-1,y =0或{x =-7,y =0,∴以MN 为直径的圆恒过点(-7,0)和(-1,0).12.(2022届湘豫名校联盟11月联考,20)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的离心率e=√63,其左,右焦点为F 1,F 2,P为椭圆E 上任意一点,P 点到原点O 的距离的最小值为1. (1)求椭圆E 的方程;(2)设直线l:y=kx+m 与椭圆E 交于A(x 1,y 1),B(x 2,y 2)两点,且x 12+x 22=3,是否存在这样的直线l 与圆x 2+y 2=1相切?如果存在,直线l 有几条?如果不存在,请说明理由. 解析 (1)由题意知,e=√63,所以b 2a2=1-e 2=13,即a 2=3b 2,易知|PO|2∈[b 2,a 2],所以b 2=1,故椭圆E 的标准方程为x 23+y 2=1. (2)联立{y =kx +m,x 2+3y 2=3,整理得(3k 2+1)x 2+6kmx+3m 2-3=0.所以x 1+x 2=-6km 3k 2+1,x 1·x 2=3m 2-33k 2+1. 因为x 12+x 22=(x 1+x 2)2-2x 1·x 2=3,所以化简得12k 2m 2-2(m 2-1)·(3k 2+1)=(3k 2+1)2,即2m 2·(3k 2-1)=(3k 2+1)·(3k 2-1),所以3k 2-1=0或3k 2+1=2m 2,又直线l:y=kx+m 与圆x 2+y 2=1相切,所以√1+k2=1,即k 2+1=m 2.当3k 2-1=0时,解得k 2=13,m 2=43,直线l 的方程为y=±√33x±2√33;当3k 2+1=2m 2时,解得k 2=1,m 2=2,直线l 的方程为y=±x±√2.综上所述,存在满足题设条件的直线,且直线l 有八条.13.(2022届江西月考,21)过抛物线y 2=2px(p>0)的焦点F 作倾斜角为θ(θ≠π2)的直线,交抛物线于A,B 两点,当θ=π3时,以FA 为直径的圆与y 轴相切于点T(0,√3).(1)求抛物线的方程;(2)试问在x 轴上是否存在异于F 点的定点P,使得|FA|·|PB|=|FB|·|PA|成立?若存在,求出点P 的坐标;若不存在,请说明理由.解析 (1)取FA 的中点C,过C 作CE ⊥x 轴于E,连接CT.因为以FA 为直径的圆与y 轴相切于点T(0,√3),所以CT ⊥y 轴于T,故|CE|=|OT|=√3,因为θ=π3,即∠CFE=π3,所以|CF|=2,|EF|=1,所以C 1+p 2,√3,所以A (2+p 2,2√3),故(2√3)2=2p ·(2+p 2),又p>0,所以p=2,故抛物线的方程为y 2=4x.(2)设P(x 0,0)(x 0≠1),且F(1,0),由题意可知直线FA 的斜率不为0,故设直线FA:x=my+1,联立{x =my +1,y 2=4x,整理得y 2-4my-4=0,设A(x 1,y 1),B(x 2,y 2),则y 1y 2=-4.易知|FA||FB|=|y 1||y 2|,|PA||PB|=√10212√20222,因为|FA|·|PB|=|FB|·|PA|,即|FA||FB|=|PA||PB|,所以|y 1||y 2|=√(x 1-x 0)2+(y 1-0)2(x 2-x 0)2+(y 2-0)2,两边同时平方可得y 12y 22=y 12+(x 1-x 0)2y 22+(x 2-x 0)2,又因为y 12=4x 1,y 22=4x 2,所以y 12y 22=y 12+(y 124-x 0)2y 22+(y 224-x 0)2,化简整理可得(y 12-y 22)x 02=y 12y 22(y 12-y 22)16,所以x 02=y 12y 2216=(y 1y 2)216=1,所以x 0=±1,因为点P 异于点F,所以x 0=-1,故点P(-1,0).14.(2021山西太原二模,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别是A,B,直线l:x=23与椭圆C 相交于D,E 两个不同点,直线DA 与直线DB 的斜率之积为-14,△ABD 的面积为4√23.(1)求椭圆C 的标准方程;(2)若点P 是直线l:x=23的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q,过P 作BQ 的垂线,垂足为M,在x 轴上是否存在定点N,使得|MN|为定值?若存在,请求出点N 的坐标;若不存在,请说明理由. 解析 (1)设D (23,y 0),由题意得{k DA ·k DB =y 023+a ·y 023-a =-14,12×2a ×|y 0|=4√23,49a 2+y 02b 2=1,∴{b 2=1,a 2=4, ∴椭圆C 的方程为x 24+y 2=1.(2)假设存在这样的点N,设直线PM 与x 轴相交于点T(x 0,0),由题意得TP ⊥BQ,由(1)得A(-2,0),B(2,0),设P (23,t),t ≠0,Q(x 1,y 1),由题意可设直线AP 的方程为x=my-2,由{x =my -2,x 24+y 2=1得(m 2+4)y 2-4my=0,∴y 1=4m m 2+4或y 1=0(舍去),x 1=2m 2-8m 2+4,∵23=mt-2,∴t=83m ,∵TP⊥BQ,∴TP ⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ =(23-x 0)(x 1-2)+ty 1=0,∴x 0=23+ty 1x 1-2=23+83m ·4m m 2+4·m 2+4-16=0, ∴直线PM 过定点T(0,0), ∴存在定点N(1,0),使得|MN|=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
返回导航
下一页
专题五 解析几何
18
解:(1)因为抛物线 y2=2px 过点 P(1,2), 所以 2p=4,即 p=2. 故抛物线 C 的方程为 y2=4x. 由题意知,直线 l 的斜率存在且不为 0. 设直线 l 的方程为 y=kx+1(k≠0). 由yy2==k4xx+,1得 k2x2+(2k-4)x+1=0. 依题意 Δ=(2k-4)2-4×k2×1>0,解得 k<0 或 0<k<1. 又 PA,PB 与 y 轴相交,故直线 l 不过点(1,-2). 从而 k≠-3.所以直线 l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
上一页
返回导航
下一页
专题五 解析几何
26
[对点训练] (2019·丽水市高考数学模拟)如图,已知抛物线 C:x2=4y,直线 l1 与 C 相交于 A,B 两 点,线段 AB 与它的中垂线 l2 交于点 G(a,1)(a≠0). (1)求证:直线 l2 过定点,并求出该定点坐标; (2)设 l2 分别交 x 轴,y 轴于点 M,N,是否存在实数 a, 使得 A,M,B,N 四点在同一个圆上,若存在,求出 a 的值;若不存在,请说明理由.
上一页
返回导航
下一页
专题五 解析几何
17
[对点训练] 已知抛物线 C:y2=2px 经过点 P(1,2).过点 Q(0,1)的直线 l 与抛物线 C 有两个不同 的交点 A,B,且直线 PA 交 y 轴于 M,直线 PB 交 y 轴于 N. (1)求直线 l 的斜率的取值范围; (2)设 O 为原点,Q→M=λQ→O,Q→N=μQ→O,求证:1λ+μ1为定值.
上一页
返回导航
下一页
专题五 解析几何
27
解:(1)设 A(x1,y1),B(x2,y2), 则xx2221==44yy21, 两式相减可得(x1+x2)(x1-x2)=4(y1-y2),
上一页
返回导航
下一页
专题五 解析几何
14
即(2k+1)·44mk22+-14+(m-1)·4-k28+km1=0. 解得 k=-m+2 1.
当且仅当 m>-1 时,Δ>0,于是 l:y=-m+2 1x+m,
即 y+1=-m+2 1(x-2),所以 l 过定点(2,-1).
上一页
返回导航
下一页
专题五 解析几何
y2-2(t2-t 1)y-4=0,

2tyB=-4,即
yB=-2t ,所以
Bt12,-2t
.
上一页
返回导航
下一页
专题五 解析几何
4
又由于 xG=13(xA+xB+xC),yG=13(yA+yB+yC)及重心 G 在 x 轴上,故 2t-2t +yC=0, 得 C1t -t2,21t -t,G2t4-32t2t2+2,0. 所以直线 AC 的方程为 y-2t=2t(x-t2),得 Q(t2-1,0). 由于 Q 在焦点 F 的右侧,故 t2>2.从而 SS12=1212||QFGG||··||yyAC||=t2-12-t42-t342-t2t23+ 2t2t22+-21··|22tt|-2t=2tt44--1t2=2-tt24- -21.
从而可设 l:y=kx+m(m≠1).将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2
-4=0.
由题设可知 Δ=16(4k2-m2+1)>0.
上一页
返回导航
下一页
专题五 解析几何
13
设 A(x1,y1),B(x2,y2),则 x1+x2=-4k82k+m1,x1x2=44mk22+-14. 而 k1+k2=y1x-1 1+y2x-2 1=kx1+xm1 -1+kx2+xm2 -1 =2kx1x2+(m-x1x12)(x1+x2). 由题设 k1+k2=-1, 故(2k+1)x1x2+(m-1)(x1+x2)=0.
上一页
返回导航
下一页
专题五 解析几何
20
所以1λ+μ1=1-1yM+1-1 yN =(kx-1-1)1 x1+(kx-2-1)1 x2 =k-1 1·2x1x2-x(1xx21+x2) =k-1 1·k22+21kk-2 4
k2 =2.
所以1+1为定值. λμ
上一页
返回导航
下一页
专题五 解析几何
上一页
返回导航
下一页
专题五 解析几何
11
【解】 (1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点. 又由a12+b12>a12+43b2知,C 不经过点 P1,所以点 P2 在 C 上. 因此ab1122+=413b,2=1,解得ab22= =41,. 故 C 的方程为x42+y2=1.
21
“ 肯定顺推法”求解探究性问题
[典型例题] (2019·温州市高考数学二模)已知椭圆xa22+by22=1(a>b>0)的两
个焦点为 F1,F2,焦距为 2,设点 P(a,b)满足△PF1F2 是等腰三角形. (1)求该椭圆方程;
(2)过 x 轴上的一点 M(m,0)作一条斜率为 k 的直线 l,与椭圆交于点 A,B 两点,问是 否存在常数 k,使得|MA|2+|MB|2 的值与 m 无关?若存在,求出这个 k 的值;若不存在,
令-24k2+18=0,得 k2=34,即 k=±23. 此时|MA|2+|MB|2=7 与 m 无关符合题意.
上一页
返回导航
下一页
专题五 解析几何
25
探索性问题的求解方法 (1)处理这类问题,一般要先对结论作出肯定的假设,然后由此假设出发,结合已知条 件进行推理论证,若推出与已知、定理或公理相符的结论,则存在性得到肯定;若导致 矛盾,则否定存在性.若证明某结论不存在,也可以采用反证法. (2)采用特殊化思想求解,即根据题目中的一些特殊关系,归纳出一般结论,然后进行 证明,得出结论.
上一页
返回导航
下一页
专题五 解析几何
23
y=k(x-m)
(2)联立方程x42+y32=1
,整理得:
(3+4k2)x2-8k2mx+4k2m2-12=0.
在 Δ>0 的情况下有xx11+ x2=x2= 4k332m+8+k242-4mkk212 2,
上一页
返回导航
下一页
专题五 解析几何
24
|MA|2+|MB|2=(1+k2)[(x1-m)2+(x2-m)2] =(1+k2)[(x1+x2)2-2x1x2-2m(x1+x2)+2m2] =(31++4kk22)2[(-24k2+18)m2+96k2+72],
上一页
返回导航
下一页
专题五 解析几何
16
(2)求解定值问题的两大途径 ①首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证 式与参数(某些变量)无关. ②先将式子用动点坐标或动直线中的参数表示,再利用其满足的约束条件使其绝对值相 等的正负项抵消或分子、分母约分得定值. [注] 对于此类问题可先根据特殊情况确定定点、定值,再进行一般性证明的方法就是 由特殊到一般的方法.
请说明理由.
上一页
返回导航
下一页
专题五 解析几何
22
【解】 (1)因为椭圆xa22+by22=1(a>b>0)的两个焦点为 F1,F2,焦距为 2,
设点 P(a,b)满足△PF1F2 是等腰三角形,
所以根据题意,有2(c=a-21)2+b2=4,
解得ab= =2
, 3
故所求椭圆方程为x42+y32=1.
上一页
返回导航
下一页
专题五 解析几何
9
(2)由(1)可知yy11+ y2=y2= 8x02-y0,y20,
所以|PM|=18(y21+y22)-x0=34y20-3x0,
|y1-y2|=2 2(y20-4x0). 因此,△PAB 的面积 S△PAB=12|PM|·|y1-y2|=34 2(y20-4x0)32. 因为 x20+y420=1(x0<0),所以 y20-4x0=-4x20-4x0+4∈[4,5],
上一页
返回导航
下一页
专题五 解析几何
12
(2)证明:设直线 P2A 与直线 P2B 的斜率分别为 k1,k2.
如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分别为t, 42-t2,
t,- 42-t2.
则 k1+k2=
4-t2-2- 2t
4-2tt2+2=-1,得 t=2,不符合题设.
第2部分 高考热点 专题突破
专题五 解析几何 第3讲 圆锥曲线中的综合问题
数学
专题五 解析几何
1
01
考点1
02
考点2
03
考点3
04
专题强化训练
上一页
返回导航
下一页
专题五 解析几何
2
“ 构造法”求最值(范围) [典型例题]
(2019·高考浙江卷)如图,已知点 F(1,0)为抛物线 y2=2px(p>0)的焦点.过点 F 的直线交抛物线于 A,B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直 线 AC 交 x 轴于点 Q,且 Q 在点 F 的右侧.记△AFG,△CQG 的面积分别为 S1,S2. (1)求 p 的值及抛物线的准线方程; (2)求SS12的最小值及此时点 G 的坐标.
上一页
返回导航
下一页
专题五 解析几何
3
【解】 (1)由题意得p2=1,即 p=2.
所以抛物线的准线方程为 x=-1.
(2)设 A(xA,yA),B(xB,yB),C(xC,yC),重心 G(xG,yG).令 yA=2t,t≠0,则 xA=t2. 由于直线 AB 过点 F,故直线 AB 的方程为 x=t2-2t 1y+1,代入 y2=4x,得
相关文档
最新文档