圆锥曲线的综合问题(含答案)
高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!

高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为36分,试卷Ⅱ分值为64分。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.已知点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,则点O 到直线AB 的距离等于 ( ) A. 2 B.3 C .2 D .2 210.(2009·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.(2009·四川高考)已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( ) A .-12 B .-2 C .0 D .412.(2009·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF = ( )A.45B.23C.47D.12第Ⅰ卷二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.(2009·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF =FB ,BA ·BC =48,则抛物线的方程为______________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)(2010·南通模拟)已知动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .20.[理](本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值; (2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.20.[文](本小题满分12分)已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.21.(本小题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.22.[理](本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.[文](本小题满分14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2.答案:B2、解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2.答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab ≥3+22, 当且仅当b a =2ab ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7、解析:由已知b a =55e ,∴b a =55×ca ,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.答案:C9、解析:本题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x ⇒x = 2.答案:A10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b 2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12、解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值.∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A 13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2. 答案:a 2+b 2 解析:由焦点弦|AB |=2p sin 2α得|AB |=2psin 245°, ∴2p =|AB |×12,∴p =2.答案:214、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=115、解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点,故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48, 解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x16、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 17、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =4-02-2x ,k PB =4-2y 2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.18、解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x . 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ .19、解:(1)根据抛物线的方程可得焦点F (1,0),设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0.设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2),则y 1y 2=-4.因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1, 故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ, 因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52. 20、解:∵e =c a =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点,设A (2-m,1-n ),B (2+m,1+n ),则⎩⎪⎨⎪⎧ (2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧ 8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2 203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16. 故所求椭圆的方程为x 2+2y 2=16.21、解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点, 又因为坐标原点O 为线段AB 的中点,所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1, 所以E 点在以O 为圆心,1为半径的圆上,又因为A ,B ,D 三点不在一条直线上,所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y =k (x +2)(当直线斜率不存在时不成立),由于直线MN 与圆x 2+y 2=1(y ≠0)相切,所以|2k |k 2+1=1,解得k =±33, 所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y 2a 2-4=1, 整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0, 所以x 0=x 1+x 22=-a 22(a 2-3). 又线段MN 的中点到y 轴的距离为45, 即x 0=-a 22(a 2-3)=-45,解得a =2 2. 故所求的椭圆方程为x 28+y 24=1. 22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧ x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y . 又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4, 由⎩⎪⎨⎪⎧ x 225+y 29=1,x =my +4,消去x 得 (9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25。
(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
圆锥曲线综合测试题(含详细答案)

圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
高考数学专题十九圆锥曲线综合练习题

培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有:Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x1-x 2|或1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2-x 23=1B.y 23-x 2=1C.34x 2-38y 2=1 D.34y 2-38x 2=1解析:选A 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a2+y 2b2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.[自主解答](1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=1+k 2[x 1+x 22-4x 1x 2]=21+k 24+6k 21+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1.【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +2⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧2+c2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2,设点P 到直线AB 的距离为d ,则 d =|8-2m |32+22=2|m -4|13.设△ABP 的面积为S ,则 S =12|AB |·d =36·m -4212-m 2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,23 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 的方程为3x +2y +27-2=0.【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p -a =y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-yy 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b,y 2=2pa y 0,则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0.当x =a ,y =2pab时上式恒成立,即定点为⎝⎛⎭⎪⎫a ,2pa b . 答案:⎝ ⎛⎭⎪⎫a ,2pa b。