材料力学答案解析第二章

合集下载

材料力学课后习题答案详细

材料力学课后习题答案详细
Rr (R r) (3 104 ) (60 30) 0.009mm
变形厚的壁厚:
(R r) | (R r) | 30 0.009 29.991(mm)
[习题 2-11] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性
常数为 E, ,试求 C 与 D 两点间的距离改
22

N 22 A

10 103 N 400mm 2
25MPa
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-3] 试求图示阶梯状直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作
轴力图。若横截面面积 A1 200mm2 , A2 300mm2 , A3 400mm2 ,并求各横截 面上的应力。
A1 11.503cm2 1150.3mm2
AE

N EA A

366.86 103 N 2 1150.3mm2
159.5MPa
EG

N EG A

357.62 103 N 2 1150.3mm2
155.5MPa
[习题 2-5] 石砌桥墩的墩身高 l 10m ,其横截面面尺寸如图所示。荷载
22

N 22 A2

10 103 N 300mm 2
33.3MPa
3
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-4] 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制
成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均
为两个 75mm 8mm 的等边角钢。已知屋面承受集度为

材料力学第二章的习题答案

材料力学第二章的习题答案

材料力学第二章的习题答案材料力学第二章的习题答案材料力学是一门研究物质的力学性质和变形行为的学科,其内容涉及广泛且深奥。

在学习材料力学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对理论知识的理解,提高解决实际问题的能力。

本文将为大家提供材料力学第二章的习题答案,希望能对大家的学习有所帮助。

第一题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到拉力F。

求杆件的伸长量。

解答:根据胡克定律,应力与应变成正比。

应力σ等于拉力F除以截面积A,应变ε等于伸长量ΔL除以杆件的原始长度L。

根据胡克定律的表达式σ=Eε,我们可以得到伸长量的计算公式:ΔL = FL / (AE)其中,ΔL为伸长量,F为拉力,L为杆件的原始长度,A为截面积,E为杨氏模量。

第二题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到弯矩M。

求杆件的弯曲角度。

解答:根据弯曲理论,弯矩M等于杆件截面上的应力σ乘以截面的转动惯量I。

弯曲角度θ等于弯矩M乘以杆件的长度L除以杨氏模量E乘以截面的转动惯量I。

因此,弯曲角度的计算公式为:θ = ML / (EI)其中,θ为弯曲角度,M为弯矩,L为杆件的长度,E为杨氏模量,I为截面的转动惯量。

第三题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到剪力V。

求杆件的剪切变形。

解答:根据剪切变形的定义,剪切变形γ等于剪力V乘以杆件的长度L除以杨氏模量E乘以截面的剪切模量G。

因此,剪切变形的计算公式为:γ = VL / (EG)其中,γ为剪切变形,V为剪力,L为杆件的长度,E为杨氏模量,G为截面的剪切模量。

通过解答以上三个习题,我们可以看到材料力学第二章主要涉及杆件的拉伸、弯曲和剪切变形问题。

通过掌握这些基本的计算公式,我们能够准确地计算杆件在不同受力情况下的变形量。

这对于工程实践中的结构设计和材料选用具有重要的指导意义。

除了以上习题,材料力学第二章还包括其他一些重要的内容,如应力、应变、弹性模量、截面形状对杆件变形的影响等。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。

(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。

列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。

方法二:简便方法。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。

故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。

2-2b 作图示杆的轴力图。

(c)图:(b)图:(3)杆的轴力图如图(d )所示。

2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。

试计算两柱上、中、下三段的应力。

(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。

将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。

列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。

(2)作柱的轴力图,如(e)、(f)所示。

(3)求柱各段的应力。

解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。

α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

材料力学第2章答案

材料力学第2章答案
问:(1)用这一试验机作拉断试验时,试样直径最大可达多大?
(2)若设计时取试验机的安全因数 n = 2 ,则杆 CD 的横截面面积为多少?
8
(3)若试样直径 d = 10 mm ,今欲测弹性模量 E ,则所加载荷最大不能超过多少?
解(1) σ
2-5 何谓失效?极限应力、安全因数和许用应力间有何关系?何谓强度条件?利用强度 条件可以解决哪些形式的强度问题?
答 失效(包括强度失效、刚度失效和稳定性失效)是指构件不能正常工作。 许用应力=极限应力/安全因数。 利用强度条件可以解决强度校核、截面设计和确定许用载荷等。
2-6 试指出下列概念的区别:比例极限与弹性极限;弹性变形与塑性变形;延伸率与正 应变;强度极限与极限应力;工作应力与许用应力。
α = 90° τ 90° = 0
2-5 图 示 拉 杆 沿 斜 截 面 m − m 由 两 部 分 胶 合 而 成 , 设 在 胶 合 面 上 许 用 拉 应 力 [σ ] = 100 MPa ,许用切应力[τ ] = 50 MPa 。并设胶合面的强度控制杆件的拉力。问:
(1)为使杆件承受最大拉力 F ,角α 的值应为多少? (2)若杆件横截面面积为 4 cm2,并规定α ≤ 60° ,确定许用载荷[F ] 。
∑ Fx = 0 , FCx = 0
图(c)
∑ M D = 0 , FC'y = 0
图(b)
∑ M B = 0 , FN1 = 10 kN (拉)
∑ Fy = 0 , FN2 = 20 kN (拉)
6
σ1
=
FN1 A1
=
4FN1 πd12
=
4 ×10 ×103 π ×102 ×10−6
= 127 MPa

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-13图示结构的AB杆为刚性杆,A处为铰接,AB杆由钢杆BE与铜杆CD吊起。已知CD杆的长度为 ,横截面面积为 ,铜的弹性模量 ;BE杆的长度为 ,横截面面积为 ,钢的弹性模量 。试求CD杆和BE杆中的应力以及BE杆的伸长。
解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件

可得螺栓的直径应为

3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象

由此可知:当 时,
由 ≤
可得

3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得

《材料力学》第二章课后习题及参考答案

《材料力学》第二章课后习题及参考答案
简答题2答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-10图示凸缘联轴节传递的力偶矩为 ,凸缘之间用四个对称分布在 圆周上的螺栓联接,螺栓的内径 ,螺栓材料的许用切应力 。试校核螺栓的剪切强度。
解:
设每个螺栓承受的剪力为 ,则由
可得
螺栓的切应力
MPa MPa
∴螺栓满足剪切强度条件。
3-11图示矩形截面木拉杆的接头。已知轴向拉力 ,截面的宽度 ,木材顺纹的许用挤压应力 ,顺纹的许用切应力 。试求接头处所需的尺寸l和a。
解:
1.求支反力,作剪力图和弯矩图。

2.按正应力强度条件选择工字钢型号
由 ≤ ,得到

查表选 14工字钢,其
, ,
3.切应力强度校核
满足切应力强度条件。
∴选择 14工字钢。
5-17图示木梁受移动载荷 作用。已知木材的许用正应力 ,许用切应力 , ,木梁的横截面为矩形截面,其高宽比 。试选择此梁的横截面尺寸。

可得 ≤ ①
D点受力如图(b)所示,由平衡条件可得:
CD杆受压,压力为 ,由压杆的强度条件

可得 ≤ ②
由①②可得结构的许用载荷为 。
3-8图示横担结构,小车可在梁AC上移动。已知小车上作用的载荷 ,斜杆AB为圆截面钢杆,钢的许用应力 。若载荷F通过小车对梁AC的作用可简化为一集中力,试确定斜杆AB的直径d。
截面上的剪力和弯矩为: ,
2.求1-1横截面上a、b两点的应力
5-10为了改善载荷分布,在主梁AB上安置辅助梁CD。若主梁和辅助梁的抗弯截面系数分别为 和 ,材料相同,试求a的合理长度。
解:
1.作主梁AB和辅助梁CD的弯矩图
2.求主梁和辅助梁中的最大正应力
主梁:
辅助梁:
3.求 的合理长度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 拉伸、压缩与剪切
第二章答案
2.1 求图示各杆指定截面的轴力,并作轴力图。

40kN 50kN 25kN
(a )
4
4F R
F N
4
40kN 3
F N
3
25kN 2F N
2
20kN
11
F N
1
解:
F R =5kN F N 4
=F R =5 kN
F N 3
=F R +40=45 kN
F N 2
=-25+20=-5 kN
F N 1
=20kN
45kN 5kN
20kN
5kN
(b)
1
10kN
6kN
F N
1
=10 kN
F N
2
=10-10=0
F N
3
=6 kN
1—1截面:
2—2截面:
3—3截面:10kN
F N
1
1
1
10kN
10kN
2
2
F N
2
6kN
3
3
F N
3
2.2 图示一面积为100mm 200mm的矩形截面杆,受拉力F = 20kN的作用,试求:(1)
6
π
=
θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。

解:
320101MPa
0.10.2
P A σ⨯===⨯2
303cos 14
σσα==⨯=3013sin600.433MPa 2
22
σ
τ=
=
⨯=max 1MPa
σσ==max 0.5MPa
2
σ
τ=
=F
2.3 图示一正方形截面的阶梯形混凝土柱。

设重力加速度g = 9.8m/s 2, 混凝土的密度为
33m /kg 1004.2⨯=ρ,F = 100kN ,许用应力[]MPa 2=σ。

试根据强度条件选择截面宽度a
和b 。

b
a
解:
2
4,
a
ρ⋅3
42
2.0410ρ=⨯⨯11
[]
a
σσ=0.228m
a ≥
=
=22
342424431001021040.2282104a b b ρρ=⋅+⋅=⨯⨯+⨯⨯⨯+⨯⨯⨯2[],
b
σσ≥0.398m 398mm
b ≥
==
2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。

BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。

为使杆系使用的材料最省,试求夹角θ的值。

F F N F
θθsin ,0sin ,022F F F F F N N Y =
=-=∑F F F F F N N N X
θ
θ
cos ,0cos ,01
12
==
-=∑1
A =2A A 2A 1解:
[])
sin cos cos sin 1(cos 1221θθ
θθσθ
+=+=
+=Fl l A l A V V V []
)
cot 2(tan θθσ+=
Fl
)cot tan cos sin cos sin cos sin 1(22θθθθθ
θθθ+=+=θθθθθ22sin 1
)(,cos 1)(tan ,0-=
'='=ctg d d 由V 0sin 2cos 1)2(tan 22=-=+θ
θθθθctg d d 0
cos 2sin ,0cos sin cos 2sin 222222=θ-θ=θ
θθ-θ
44.54,
2tan ,2tan 2==
=θθθ。

相关文档
最新文档