高等代数课件(北大版)第九章-欧式空间§9.1

合集下载

高等代数-9第九章 欧几里得空间

高等代数-9第九章   欧几里得空间
3) ( , ) , ( , )
(线性性)
4) ( , ) 0, 当且仅当 o 时 ( , ) 0. (非负性)
则称 ( , )为 和 的内积,称这种定义了内积的 实数域 R上的线性空间V为欧几里得空间.
§1 定义与基本性质
b
§1 定义与基本性质
线性性 ( k f lg , h) a k f ( x ) lg ( x ) h( x )dx
b
k f ( x )h( x )dx l g ( x )h( x )dx
a a
b
b
k ( f , h ) l ( g , h)
非负性 ( f , f ) f ( x ) f ( x ) dx f 2 ( x ) dx 0 a a 且 ( f , f ) 0 f ( x ) 0. 故( f , g) 为一内积, C (a , b) 构成欧氏空间.
注1 欧几里得空间 V是特殊的线性空间. (1)V为实数域 R上的线性空间; (2)V既有向量的线性运算,还有内积运算; (3) , V ,( , ) R. 注2 欧几里得空间,Euclidean Space, 简称欧氏空间. 欧几里得(Euclid,约公元前330 年—前275年),古希腊数学家,是几 何学的奠基人,被称为“几何之 父”. 他最著名的著作是《几何原本》.
b b
§1 定义与基本性质
2. 内积的运算性质 设V为欧氏空间, , , , i V , k , l , ki R
1) ( , k ) k ( , ) 2) ( , ) ( , ) ( , ) 3) ( , k l ) k ( , ) l ( , ) 4) ( k l , ) k ( , ) l ( , )

第九章 欧几里德空间

第九章 欧几里德空间

第九章 欧几里德空间§1基本知识§1. 1 基本概念 1、欧式空间: 2、向量的长度:3、向量之间的夹角:4、单位向量:5、向量的正交:6、度量矩阵:7、正交向量组:8、正交基与标准正交基: 9、正交矩阵:10、欧式空间的同构: 11、正交变换:12、子空间、子空间的正交与正交补: 13、内射影或正射影: 14、对称变换:15、向量之间的距离: 16、最小二乘法:§1. 2 基本定理定理1(正交组的性质定理)正交向量组一定是线性无关组.定理2 (标准正交基的存在性定理)对于n 维欧式空间中任意一组基n ααα,,,21 ,都可以找到一组标准正交基n εεε,,,21 ,使得:n r L L r r ,,2,1),,,,(),,,(2121 ==αααεεε定理3(有限维欧式空间同构的条件)两个有限维欧式空间同构的充分必要条件是:它们的维数相等.定理4(正交变换的等价条件)设σ是n 维欧式空间V 的一个线性变换,则如下条件等价(1)σ是正交变换;(2)σ保持向量的长度不变,即:V ∈∀=ααασ|,||)(|;(3)如果n εεε,,,21 是V 的一组标准正交基,则)(,),(),(21n εσεσεσ 也是V 的一组标准正交基;(4)σ在任意一组标准正交基下的矩阵是正交矩阵。

定理5如果子空间s V V V ,,,21 两两正交,那么:s V V V +++ 21是直和。

定理6(正交补存在性定理)n 维欧式空间V 的任何一个子空间1V 都有唯一的正交补。

定理7(实对称矩阵的性质定理)对于任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵P ,使得:AP P T 为对角矩阵。

§1. 3 基本性质1、欧式空间的性质:(1)零向量且仅有零向量与任何向量的内积为零;(2)对任何R a V ∈∈,,,ζηξ,有:),(),(),(ηζξζηξζ+=+;),(),(ηξηξa a =;(3)s j r i R b a V j i j i ,,2,1;,,2,1,,,, ==∈∈∀ηξ,有:∑∑∑∑=====r i sj j i j i j s j j i r i i b a b a 1111),(),(ηξηξ;(4)V ∈∀βα,,有:),)(,(),(2ββααβα≤,当且仅当βα,线性相关时,等号成立。

高等代数课件(北大版)第九章-欧式空间§9

高等代数课件(北大版)第九章-欧式空间§9
L (1 ,2 , ,s)
中向量 Y 使 B 到它的距离 ( Y B ) 比到
L (1 ,2 , ,s)中其它向量的距离都短.
§9.7 向量到子空间的距离 数学与计算科学学院
设 C B Y B A X ,
为此必 C L (1 ,2 , ,s )
这等价于 ( C , 1 ) ( C , 2 ) ( C , s ) 0 , (4)
第九章 欧氏空间
§1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间
§6 对称矩阵的标准形 §7 向量到子空间的
距离─最小二乘法 §8酉空间介绍 小结与习题
2024/10/23
数学与计算科学学院
§9.7 向量到子空间的距离
一、向量到子空间的距离 二、最小二乘法
§9.7 向量到子空间的距离 数学与计算科学学院
§9.7 向量到子空间的距离 数学与计算科学学院
即为
1 0 6 . 7 5 a 2 7 . 3 b 1 9 . 6 7 5 0 2 7 . 3 a 7 b 5 . 1 2 0 解得 a 1 .0 5 , b 4 .8 1(取三位有效数字).
§9.7 向量到子空间的距离 数学与计算科学学院
可能无解, 即任意 x1,x2, ,xn都可能使
n
ai1x1ai2x2 ainxnbi 2
i 1
不等于零.
(2)
§9.7 向量到子空间的距离 数学与计算科学学院
设法找实数组 x10,x02,
,x0 使(2)最小, n
这样的 x10,x02,
,x0 为方程组(1)的最小二乘解, n
此问题叫最小二乘法问题.
最小二乘法的表示:

n
n

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

高等代数【北大版】9

高等代数【北大版】9

| 1 | 2,
|
3
|
3
4 10
,
| 2 |
2, 6
|
4
|
5
4 14
.
§9.2 标准正交基
于是得 R[ x]4的标准正交基
1
|
1
1
| 1
2 ,
2
2
|
1
2
|
2
6 x
2
3
|
1
3
| 3
10 4
14 (5x3 3x) 4
§9.2 标准正交基
4.标准正交基间的基变换
设 1, 2 , , n与 1,2 , ,n 是 n 维欧氏空间V中的
1. 定义
设 A (aij ) Rnn , 若A满足 则称A为正交矩阵.
AA E
2. 简单性质
1)A为正交矩阵 A 1. 2)由标准正交基到标准正交基的过渡矩阵是正交
矩阵.
§9.2 标准正交基
3)设 1, 2 , , n 是标准正交基,A为正交矩阵,若 (1,2 , ,n ) (1, 2 , , n ) A
(6)
§9.2 标准正交基
由公式(3), 有
(i , j ) a1i1 j a2i 2 j
aninj
1 0
i i
j j
, (7)
把A按列分块为 A A1, A2, , An
由(7)有
A1
AA
A2
A1
,
A2
,
An
, An En
(8)
§9.2 标准正交基
三、正交矩阵
注:
① 由正交基的每个向量单位化, 可得到一组标准 正交基.

第09章 欧式空间

第09章 欧式空间

= α s−1

(α s−1, ε1 ) (ε1,ε1 )
ε
1
−⋯

(α s−1 (ε s−2
,ε ,ε
s −2 s−2
) )
ε
s
−2
,ε s
= αs

s −1 k=1
(α s (εk
− εk ) ,εk )
ε
k
① L(ε1 ,⋯,ε s ) = L (α1 ,⋯,αs ) ⇔ ε1,⋯,ε s 与 α1,⋯, αs 等价
α = (ε1,⋯,ε n ) X = (η1,⋯,ηn ) X , X = T X , β = (ε1,⋯,ε n)Y = (η1,⋯,η n)Y ,Y = T Y
(α, β )在基 ε1,⋯,ε n ,η1,⋯,ηn下的度量矩阵分别为 G, G
(α ,
β)
=
X
'GY
=
X
'
T
'GT Y
=
X
'
GY
∴G = T 'GT 即 G~G
⎧R欧式空间
线性空间定义度量性质后 ⎪⎪C酉空间
⎨⎪思维时空空间 ⎪⎩辛空间
三维几何空间 R3
R
2
:设
� a
=
(a1
,
a2
),
� b
=
(b1,
b2)
�� a ⋅b = a1b1 + a2b2 ∈R
� a 的长度:
� a
=
a2 + a2 =
�� a⋅a
1
2
�� a,b
的夹角:
<
�� a, b
>= ar

扬州大学高等代数北大三 第九欧几里得空间PPT学习教案

扬州大学高等代数北大三  第九欧几里得空间PPT学习教案
→ 据公理 4,(γ,γ)=(α+tβ,α+tβ)≥ 0,即 (αα)+2(αβ)t+(ββ)t2 ≥ 0,对任意的 t∈R
取 t ( , ) 代入上式,得 (α,α)- ( , )2 ≥0 , 即
( , )
( , )
(α,β)2≤(α,α)(β,β), 即|(α,β)|≤|α||β|.
证明分析: 根据定积分
的性质,易证欧氏空间
定义中
4条公理成立,故C(a, b)
关于(f, g)构成欧氏空
a
f(x)
b
间.
注: R[x], R[x]n 关于如 上
定义的(f, g)也构成欧
氏空间.
第5页/共79页
二 基本性质
5) (α, kβ) = k(α, β)
(α, kβ) = ( kβ,α) = k (β,α) = k (α,β) .
( , )
( , )
( , ) 0 ( , ) 0 ,即α,β线性相关.

( , )
第10页/共79页
➢ 柯西-施瓦茨不等式应用于例 1 中 R n 的内积的具体表现形式:
(a1, , an ), (b1, , bn ) R n , 据内积定义和柯-施不等式得
(a1b1 anbn )2 ( , )2 ≤ ( , )( , ) (a12
3) (α+β,γ) = (α,γ) + (β,γ)
4) (α,α)≥0 ,并且α = 0 当且仅当 (αα) = 0 这时,称V是欧几里德空间.
公理1称为对称性,公理2,3合称为线性性,公理4称 为恒正性. 对称性,线性性和恒正性正是数量积(如功) 的基本属性.
在此基础上可进一步建立向量长度、夹角、距离等 概念,这均为几何空间的特征,是以欧氏几何为基础 的,故称为欧氏空间.

高等代数(北大版)第9章习题参考答案

高等代数(北大版)第9章习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档