数字电路脉冲波形的产生和整形
数字电子技术基础第五版第十章

1. 原理分析
* 稳V 态 I 0 ,V O 下 1 ,( V O 1 V O : )V H A , V O ; H *V I后V , O0,进入暂 V O 1 稳 0,C 开 态始 ,放电 *当放 VA 至 VTH 后V , O1,返回稳态; V I后 C 重 , 新 充 至 V OH
暂稳态时, Vo1,V ,Co1开始0充电
C 充电V至 I2VTH 时,VI2又引起正反馈
VI2 VO VO1
这期间vd维持低电平
电路迅速返V回 O稳 0,VO 态 1VDD,C放电至没有电压 稳, 态恢 。复
稳态 V I 0 ,V 下 d 0 ,V I : 2 V D,V D O 0 ,(V O 1 V D)D C ,上无电 暂稳态时, Vo1,V ,Co1开始0充电
2. 性能参数计算 输出脉宽:
放电 回路
tw (R R o)C ln V V ( ( ) ) V V ( (0 t) ) (R R o)C ln V V O T H H
输出脉宽
输出脉 V O 0 时 冲间 宽 V A 从 ) 度 V O放 H 等 ( V 电 T于 的 H至 时间。
二、微分型单稳态触发器
则有: vAVTH R1R2R2VT
V TR 1R 2R2V TH(1R R 1 2)V TH
vA VT R2 R1 R2
VT+称为输入信号vI的正向阈值电压
3.当 v 从I 高电平 V逐D D渐下降时,有
VTH=
vI
vA
v o1
vo
设此时
VI =VT-
当 v 下I 降到使 vA 时V,电th 路的状态将迅速转换为
性能参数: 暂稳态输出的宽度
脉冲波形的产生和整形电路

脉冲波形发生器与整形电路
2.3.2 RC电路的零状态响应
动态元件的初始储能为零的状态叫零状态。零状态的
电路由外施激励引起的响应,称为零状态响应。外施激励
可以是恒定的电压或电流,也可以是变化的电压或电流。
这里只讨论直流激励引起的响应。
脉冲波形发生器与整形电路
图2.13(a)所示电路,开关S原来与“1”闭合已久,
其电压uC从0按指数规律上升到稳态值US;而电阻电压则 从0跃变到最大值US后,按指数规律衰减到0;电路中的电 流也是从0跃变到最大值 后按指数规律衰减到0。电压、
电流变化的快慢仍然取决于电路的时间U常S 数τ的大小。
R
脉冲波形发生器与整形电路
τ越大,uC上升越慢,暂态过程越长;反之,τ越小, uC上升越快,暂态过程越短。
脉冲波形发生器与整形电路
RC称为电路的时间常数,单位是秒 (s),用τ来表示,即τ=RC。
引入时间常数τ后,电压、电流的响应可 分别写成
t
uC U 0e (t≥0)
i
U0
t
e
R
(t≥0)
脉冲波形发生器与整形电路
uC衰减的快慢只与电路的时间常数τ有关,与初始储能
无关。图2.11示出了电容C在三个不同时间常数的放电电路
图2.10 RC电路的零输入响应曲线
2.时间常数
脉冲波形发生器与整形电路
从uC和i的表达式可以看出它们衰减的快慢取决于指数
中 的大小,也就是取决于1电路参数R和C的乘积,RC越
大,衰减越慢,过渡过程持RC续的时间越长;反之,RC值越
小,衰减越快,过渡过程持续的时间越短。因此,电容电
压和电流衰减的快慢,取决于电路中电阻R和电容C的乘积。
7脉冲波形的产生与整形电路

图
脉冲定时
EXIT
数模和模数转换器
7.3 施密特触发器
主要用途:把变化缓慢的信号波形变换为边沿 陡峭的矩形波。 特点: ⑴电路有两种稳定状态。两种稳定状态的维持 和转换完全取决于外加触发信号。触发方式:电平 触发。 ⑵电压传输特性特殊 ,电路有两个转换电平 (上限触发转换电平UT+和下限触发转换电平UT-)。 ⑶状态翻转时有正反馈过程,从而输出边沿陡 峭的矩形脉冲。
脉冲信号。
EXIT
数模和模数转换器
7.1 多谐振荡器
1.多谐振荡器没有稳定状态,只有两个暂稳态。
2.通过电容的充电和放电,使两个暂稳态相互交
替,从而产生自激振荡,无需外触发。
3.输出周期性的矩形脉冲信号,由于含有丰富的
谐波分量,故称作多谐振荡器。
EXIT
数模和模数转换器
7.1.1 矩形脉冲的主要参数 1. 常见的脉冲波形 脉冲波形是指突变的电流和电压的波形。
图7-1 常见的脉冲波形图 EXIT
数模和模数转换器
2. 矩形波及其参数
数字电路中用得最多的是矩形波。矩形波
有周期性与非周期性两种。
图7-2 非周期性和周期性矩形波 (a) 非周期性 (b) 周期性 EXIT
数模和模数转换器
图7-3 矩形波的主要参数
周期性矩形波的 周期用T表示,有时 也用频率f表示(f =1/ T)。 矩形波的另外几 个主要参数:
前面介绍的多谐振荡器的一个共同特点就是振 荡频率不稳定,容易受温度、电源电压波动和RC参
数误差的影响。
而在数字系统中,矩形脉冲信号常用作时钟信
号来控制和协调整个系统的工作。因此,控制信号
频率不稳定会直接影响到系统的工作,显然,前面
07脉冲波形的产生和整形

VI VO1 VO
使电路迅速跳变到VO VOH
VA
VTH
R1
R2 R2
VI
VI
VT
(1
R1 R2
)VTH
当VI 1时,VO 1。
当VI 至VA VTH时,进入传输特性的放大区,故
VA VO1 VO
使电路迅速跳变到VO VOL
VA
VTH
VDD
(VDD
VT )
7.2.2施密特触发器的应用 用于波形变换
7.2.2施密特触发器的应用 用于鉴幅
7.2.2 施密特触发器的应用 用于脉冲整形
7.2.3 用施密特触发器构成的多谐振荡器
T
T1
T2
RC ln VDD VDD
VT VT
RC ln VT VT
调节R和C的大小,可以改变振荡周期
输出脉冲占空比可调
同样,若触摸金属片A时,人体感应电信号经R4、 R5加至T1基极,也能使T1导通,触发555,达到上述 效果。
练习:救护车报警音响电路
VCC (+12V)
R1 10kΩ
VCC RD
8
4
7
R2
150kΩ
555 3
vI1 6 ( A )
vC
vI2 2
R3
C1 10μF
15 0.01μF
R4
R5 10kΩ
环节,加大t
pd
。
2
第二步:为获取更大 延迟,将C的接地 端改至G1输出。
通过调整R、C 改(f R不能太大) RC常数远大于Tpd , 因此周期主要计算 RC环节
7.4.5 石英晶体多谐振荡器
1922年美国 卡第提出用石英 压电效应调制电磁振荡的频率。
数字电子技术脉冲波形的产生与整形

tf
Vm tW T
2.脉冲宽度tW
0.5Vm~0.5Vm
3.上升时间tr
0.1Vm~0.9Vm
4.下降时间tf
0.9Vm~0.1Vm
5.周期T
周期性脉冲信号,两脉冲间的时间间隔
6.频率f
周期的倒数或每秒钟重复的次数。
7.占空比q
脉冲宽度与周期之比
3
6.5 555定时器的电路结构与功能
6. 5.1 555 定时器的电路结构与功能
6
5K
vC1 =1,vC2 =1, Q =1不变, vO=1不变
vI> 2/3VCC时, vC1 =0,vC2 =1,
vI2
2 VR2
-+C2 5K
&
vC2 Q
G2
& G3
TD
7
Q=0, vO =0,所以VT+=2/3VCC 1
1
3 vO
G4
10
(2)vI从高于 2/3VCC下降的情况
vI>2/3VCC时,
vC1=vC2=0,工作不正常。
vO
t
措施:在输入端加微分网络Rd、 Cd(足够小),将宽脉冲变为
vC
tw
窄脉冲。
+UCC
R 0.01µF
Cd vd vI
Rd
.
uC C
58 4
6
2
3
71
vI
uO
vd
2 3VCC
t
t t
24
该电路为不可重复触发的单稳态电路,除此之外还 有可重复触发的单稳态电路。
在暂稳态尚未结束时,又 来一个触发脉冲,此脉冲 不会引发新的暂稳态。
第10章 脉冲波形

uO的下降沿比uI的下降沿延迟了tw的时间。
数字电子技术
单稳态触发器小结
单稳态触发器可以由门电路构成,也可以由 555定时器构成。在单稳态触发器中,由一个暂稳 态过渡到稳态,其“触发”信号也是由电路内部 电容充(放)电提供的,暂稳态的持续时间即脉 冲宽度也由电路的阻容元件决定。
单稳态触发器不能自动地产生矩形脉冲,但 却可以把其它形状的信号变换成为矩形波,用途 很广。
对称式 多谐振荡器
数字电子技术
二、工作原理
假定接通电源后,由于某种原因使uI1有微小正跳变,则 必然会引起如下的正反馈过程 :
使uO1迅速跳变为低电平、uO2迅速跳变为高电平, 电路进入第一暂稳态。 此后,uO2的高电平对C1电容充电使uI2升高,电容 C2放电使uI1降低。由于充电时间常数小于放电时间常数, 所以充电速度较快,uI2首先上升到G2的阈值电压UTH, 并引起如下的正反馈过程:
为数字—模拟混合集成电路。 可产生精确的时间延迟和振荡,内部有 3 个 5KΩ的电阻分压器,故称555。
在波形的产生与变换、测量与控制、家用电
器、电子玩具等许多领域中都得到了应用。
数字电子技术
各公司生产的 555 定时器的逻辑功能与外引线 排列都完全相同。
双极型产品 单555型号的最后几位数码 双555型号的最后几位数码 优点 电源电压工作范围 负载电流 555 556 驱动能力较大 5~16V 可达200mA CMOS产品 7555 7556 低功耗、高输入阻抗 3~18V 可达4mA
数字电子技术
10.4 多谐振荡器
1. 多谐振荡器没有稳定状态,只有两个暂稳态。 • 通过电容的充电和放电,使两个暂稳态相互交替, 从而产生自激振荡。 • 输出周期性的矩形脉冲信号,由于含有丰富的谐 波分量,故称作多谐振荡器。
数字电路答案第八章

第八章脉冲产生与整形在时序电路中,常常需要用到不同幅度、宽度以及具有陡峭边沿的脉冲信号。
事实上,数字系统几乎离不开脉冲信号。
获取这些脉冲信号的方法通常有两种:直接产生或者利用已有信号变换得到。
本章主要讨论常用的脉冲产生和整形电路的结构、工作原理、性能分析等,常见的脉冲电路有:单稳态触发器、施密特触发器和多谐振荡器。
第一节基本知识、重点与难点一、基本知识(一)常用脉冲产生和整形电路1. 施密特触发器(1)电路特点施密特触发器是常用的脉冲变换和脉冲整形电路。
电路主要有两个特点:一是施密特触发器是电平型触发电路;二是施密特触发器电压传输特性具有回差特性,或称滞回特性。
输入信号在低电平上升过程中,电路输出状态发生转换时对应的输入电平称为正向阈值电压U T+,输入信号在高电平下降过程中,电路状态转换对应的输入电平称为负向阈值电压U T-,U T+与U T-的差值称为回差电压ΔU T。
(2)电路构成及参数施密特触发器有多种构成方式,如:门电路构成、集成施密特触发器、555定时器构成。
主要电路参数:正向阈值电压U T+、负向阈值电压U T-和回差电压ΔU T。
(3)电路应用施密特触发器主要应用范围:波形变换、波形整形和幅度鉴别等。
2. 单稳态触发器(1)电路特点单稳态触发器特点如下:①单稳态触发器有稳态和暂稳态两个不同的工作状态;②在外加触发信号的作用下,触发器可以从稳态翻转到暂稳态,暂稳态维持一段时间,自动返回原稳态;③暂稳态维持时间的长短取决于电路参数R和C。
(2)电路构成及参数单稳态触发器有多种构成方式,如:门电路构成的积分型单稳态触发器、门电路构成的微分型单稳态触发器、集成单稳态触发器、555定时器构成的单稳态触发器等。
主要电路参数:暂稳态的维持时间t w、恢复时间t re 、分辨时间t d、输出脉冲幅度U m。
(3)电路应用单稳态触发器主要应用范围:定时、延时、脉冲波形整形等。
3. 多谐振荡器多谐振荡器是一种自激振荡器,接通电源后,就可以自动产生矩形脉冲,是数字系统中产生脉冲信号的主要电路。
脉冲波形的产生和整形

第十章脉冲波形的产生和整形内容提要本章主要介绍矩形波的产生和整形电路。
在矩形波产生电路中介绍几种常用的多谐振荡器-对称式和非对称多谐振荡器、环形振荡器以及用施密特触发器和555定时器构成的多谐振荡器等。
此外对几种不同类型的压控振荡器也做了介绍。
在整形电路中,介绍了施密特触发器和单稳态触发器。
本章也讨论了最常用的555定时器及其所构成的施密特触发器、单稳态触发器及多谐振荡器的电路及工作原理。
本章内容10.4 多谐振荡器10.5 555定时器及其应用一、产生矩形脉冲的途径形如图10.1.1所示。
其中:图10.1.1脉冲周期T :周期行重复的脉冲序列中,两个相邻脉冲之间的时间间隔。
有时也用频率f=1/ T表示单位时间内脉冲重复的次数上升时间t r :脉冲上升沿从0.1V m 上升到 0.9V m 所需要的时间图10.1.1W :从脉冲前沿到达0.5V m 起,到脉冲后沿到达0.5V m 为止的一段时间。
下降时间t :脉冲下降沿从图10.1.1占空比q :脉冲宽度与脉冲周期的比值,即q =t w 注:在脉冲整型或产生电路用于数字系统时,有时对脉冲有些特殊要求,如脉冲周期和幅度的稳定性10.2 施密特触发器(Schmitt Trigger)换时对应的输入电平,与输入信号从高电平下降过程在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。
注:利用这两个特点不仅能将边沿变化缓慢地信号波形整形为边沿陡峭的矩形波,而且可以将叠加在矩形波脉冲高、低电平上的噪声有效地清除。
图10.2.111I v 1R 2R I v ′o v 1o v ov ′G 1G 2图6.2.1 用C M O S 反相器构成的施密特触发器(a )电路I v v ′I v o v 设反相器G 1和G 2均为CMOS 门,其阈值电压为=011≈+=v R R v A ①当v I =0时, v o1= V OH , v o = V OL ≈0,此时G 1门的输入电压为逐渐升高到使得v A=时,反相器进入电压传输特性的放大区(转折区),故v A的增加,会引起下面的正反馈,即v1o v vA设施密特触发器在输入信号v I 正向增加时的门槛电T +,称为正向阈值电压,此时v o =0, G 1门的输入电压为++=T 212TH V V R R R v A =121T V V R R R R ++=于也存在正反馈,即ov 使电路迅速跳变到v o =V OL ≈ 0此时施密特触发器在v I 下降时对应输出电压由高电平转为低电平时的输入电压为DD 211T 2120211I 212TH V V V R R R R R R v R R R v R R R v A ++++++=-==TH21T V )1V R R −=(-由于V TH = V DD / 2,故只要v ITH21T T T V 2V V V R R =∆-+-=THT I V R R V V )(211+==+THT I V R R V V )(211−==−施密特触发器的电压传输特性为图10.2.2所示图10.2.2TH V DDV Iv ov V O L+T V -T V TV ∆TH V DD V Iv Av 0+T V -T V TV ∆(a )同相输出(b )反相输出V O HV O LV O H用门电路组成的施密特触发器TH DDV Iv +T -T TH V V Av 0+T V -T V TV ∆(a )同相输出(b )反相输出图100..2.3由C M OS 反相器构成的施密特触发器的电压传输特性V O LV O H图10.2.3(a)是以v o 做为输出的, v o 和v I 同相位;而图10.2.3(b)是以v ′A 做为输出的,利用施密特触发器可以将边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲DD V I v +(b )反相输出反相器构成的施密特触发器的电压传输特性利用施密特触发器将一系列幅度不同的脉冲信号,其中幅度大于正向阈值电压的幅度鉴别出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单定时器 型号:
单双极极型型— —— —最最后后43位位数数555 7555
双定时器 双极型——最后3位数556 单极型——最后4位数7556
资料仅供参考,不当之处,请联系改正。
一、 555定时器的电路结构和基本功能 1.电路结构
555定时器的内部电路包括以下几部分 :
①两个电压比较器: C1、C2 ; ②一个基本RS 触发器;
路会自动返回到稳态。暂稳态的持续时间与触发脉冲无关, 仅决定于电路本身的参数(主要为RC参数)。
或 t =τ ln vC ( ) - vC (0 +) vC ( ) - vC ( t )
资料仅供参考,不当之处,请联系改正。
本章讲授
§1 555定时器的原理和应用 §2 集成门构成的脉冲电路
学习要求
§1
资料仅供参考,不当之处,请联系改正。
555定时器的原理和应用
555定时器是将模拟电路和数字电路集成于一体的 电子器件。它使用方便,带负载能力较强, 目前得到了非 常广泛的应用。
二、555定时器的基本应用
555定时器应用范围非常广泛,可构成多种电路 形式,但最基本的电路为:单稳态触发器、多谐振荡 器和施密特触发器。其它电路基本是这3种电路的变 形。
1. 单稳态触发器
2. 多谐振荡器
3. 施密特触发器
⒈
单稳态触发器 资料仅供参考,不当之处,请联系改正。
单稳态触发器的特点
①电路有一个稳态和一个暂稳态。 ②在外来触发脉冲作用下,电路由稳态翻转到暂稳态。 ③暂稳态是一个不能长久保持的状态,经过一段时间后,电
分别为 2 Vc和c 。1 Vcc
3
3
工作状态:
在TH、TR、RD 端施CO
加不同电平的控制 TH 信号,得到555的几
种不同工作状态。 TR
需了解C1、C2、T、
Q、Q、Vo 的工作情 D
况。
+Vcc R 0 资料仅供参考,不当之处,请联系改正。 D
8
R
5
C1
+
6
R
4 &
2
+ -
&
C2
R
7
T
Rb
②R= D1, VTH 3 2V CC , VTR 1 3V CC 时 : C 1=0、 C= 2 1、 Q = 1、 Q= 0、 V= o0, T导。 通
CO TH
<2VCC/3
TR
>VCC/3
D
+Vcc RD 资料仅供参考,不当之处,请联系改正。
8
4
R
5
+ C1 1 &
-
6
R
Q1
2
+ -
1 & Q0
4.5~18V
电压
控制端 CO TH
阈值 输入端
TR
触发 输入端 D
放电端
+Vc
RD
c
8
4
R
5
C1
+
&
-
6
R
2
+ -
&
C2
R
7
T
Rb
1
地
复位端 低电平有效
Q
3
Q
1
输出端
v
o
资料仅供参考,不当之处,请联系改正。
555定时器的管脚图
电源电压范围: 4.5V ~ 18V
电 放 阈 电控 源 电 值 压制
1
Q1 Q
30
1
vo
①R= D 0时 :Q = 1, V0,oT = 导通
资料仅供参考,不当之处,请联系改正。
+Vcc
RD 1
CO TH
>2/3VCC
TR
>1/3 VCC
D
8
4
R
5
C1
+ 0&
-
6
R
2
+ 1&
-
C2
R
7
Rb
1
Q1 Q0
0
3 1
vo
①R= D 0时 :Q = 1, V0,oT = 导通
C2
R
7
× Rb
1
31
1
Vo
③R= D1,VTH 3 2VCC , VTR 1 3VCC 时:
C1=1、C= 21、Q、 Q不变 ;V不 o 变 , T状态不变。
④R= D1, VTH 3 2VCC , VTR 1 3VCC 时 :
C1=1、 C= 20、 Q=1、 Q=0;Vo=1, T截止。
资料仅供参考,不当之处,请联系改正。
综合以上的分析结果,便可得到 555的功能表:
RD 阈值端
TH
0
触发端
TR
vo
晶体管
T
0 导通
1 大于 / 2VCC 3 大于 / VCC 3 0 1 小于 / 2VCC 3 大于 / VCC 3 保持
导通 保持
1 小于 / 2VCC 3 小于 / VCC 3 1 截止
资料仅供参考,不当之处,请联系改正。
脉冲电路作用: 脉冲波形的产生和整形。
脉冲电路构成:开关电路 + RC电路
破坏电路的稳态, 产生暂态。
控制暂稳态时 间的长短。
脉冲电路与数字电路的比较: ★脉冲电路侧重波形,数字电路侧重逻辑关系。 ★数字电路的信号波形也是一种脉冲波形。
资料仅供参考,不当之处,请联系改正。压不能突变,Vc(0+)= Vc(0-),
C2
R
7
Rb
1
30
1
vo
③R= D1,VTH 3 2VCC , VTR 1 3VCC 时:
C1=1、C= 21、Q、 Q不变 ;V不 o 变 , T状态不变
CO TH
<2VCC/3
TR
<VCC/3
D
+Vcc RD 资料仅供参考,不当之处,请联系改正。
8
4
R
5
+ C1 1 & Q 0
-
6
R
2
+ -
0 & Q1
③一个晶体管T; ④由三个相等电阻组成的分压器; ⑤一个反相器等。
资料仅供参考,不当之处,请联系改正。
两个电压比较器: C1、C2 一个基本RS 触发器
+Vc
RD
c
8
4
R
CO
5
C1
+
Q
&
TH
-
6
R
TR
2
+ -
&Q
C2
R
D
7
T
Rb
1
一个反相器
3 1
v
o
由三个相等电阻组成的分压器 一个晶体管T
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
数字电路区别于模拟电路的主要特点之一 是:它的工作信号是离散的脉冲信号。
最常用的脉冲信号是方波(矩形波)。如何产 生方波以及对不理想的方波如何整形,是本 章讨论的重点。
脉冲电路分类:
资料仅供参考,不当之处,请联系改正。
单稳态电路(单稳态触发器) 多谐振荡(无稳态)电路 施密特电路(施密特触发器)
VCC D TH CO
876 5
555
12 3 4
GND TR Vo RD
地 触输复 发出位
2.基本工作状态
资料仅供参考,不当之处,请联系改正。
+Vcc
RD
CO
TH
2 Vcc
3
TR
1 Vcc
3
D
8
4
R
5
C1
+
6
R
&Q
2
+ -
C2
R
7
T
1
&Q
Rb
3 1
vo
三个电阻构成的分压器给两个比较器提供基准电压:
电容充放电需要时间,有过渡过程,其时间长短只与 τ=RC有关,工程上取3τ;
(2)开始充放电(换路)瞬间,阻抗很小,相当短路; 充放电结束,电路处于稳态,C支路电流为0,阻抗很大, 相当开路;
(3)简单RC电路中,各处电压、电流均按指数规律变化;
(4)在简单RC电路中
t
vC ( t ) = vC ( ) + [vC (0 +) - vC ( )]e τ